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Abstract: Data outsourcing has become more and more popular due to its low cost and flexibility.
However, there is a problem that the cloud server used to store data is partially trusted. Searchable
encryption is an efficient technology that is devoted to helping people conduct accurate searches
without leaking information. Nonetheless, most existing schemes cannot support dynamic updates
or meet the privacy requirements of all users. There have been some experiments to solve these issues
by implementing a dynamically searchable asymmetric encryption scheme. This paper proposes an
efficient searchable encryption scheme based on the Authenticator Bloom Filter (ABF). The solution
can support dynamic updates and multiple users and meet forward and backward security. This
paper uses an ABF to improve the efficiency of searches and updates while playing a significant
role in dynamic updates. This paper designs a new token encryption scheme and file set encryption
scheme, which not only helps users reduce time in searches and updates but also supports multi-user
modes. Experiments show that the proposed scheme takes less time in searching and updating
algorithms, especially when the keyword does not exist. The solution also takes into account the
problem of history storage when updating, which reduces the unnecessary consumption of memory
and avoids multiple storage states for the same file.

Keywords: forwardprivacy; backward privacy; asymmetric searchable encryption; multi-user; Bloom
filter

1. Introduction

In the age of big data, both individuals and businesses need to store large amounts
of data. The identification information, preferences, and habits generated by users when
using various applications are stored and analyzed. To protect the privacy of users, cloud
servers fade in people’s sight. As cloud servers are semi-trusted, unencrypted information
being stored in a server can be insecure in two ways: In the first case, some malicious
users will access the server. These malicious users will copy the information from the
server, which will cause the user’s information to be compromised. In the second scenario,
the cloud server is honest but curious. In Chai and Gong [1], the definition of an honest
but curious server in the paper is: (1) storing outsourced data without modifying it;
(2) honestly performing all operations such as searching and returning text data separately;
and (3) attempting to learn the users’ initial data.

An honest but curious adversary is also defined as a legitimate server that will try to
find out all the useful information from the obtained content but will not deviate from the
set protocol in the communication channel mentioned by Paverd et al. [2]. As a result, users
need to encrypt their important information and store it on cloud servers; otherwise, their
information security will be at risk. For example, threat actors broke into Amazon’s web
servers and caused a breach of the sensitive information of 3.7 million users. The stolen
data were then posted on various hacking forums for sale. In the same time frame, the
FlexBooker cloud server was also compromised and the personal data of up to 19 million
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users were leaked. The investigation found that the company was using AWS S3 storage
buckets to store data but had not implemented any security measures. It is therefore
essential that data in cloud servers are kept encrypted.

While encrypting the data keeps them from being compromised, it also prevents the
cloud server from being able to manipulate the data. The reality is that users do not want
to download data and process them again; they want to be able to add, delete, change,
and check their encrypted data directly on the cloud server. As a result, the concept of
symmetric searchable encryption (SSE) has been introduced and investigated. SSE enables
the execution of keyword searches in ciphertext, one of the most basic data operations [3].

Users encrypt their private data and outsource them to a semi-trusted server, after
which they send a search token to the server to perform a keyword search without revealing
sensitive information [4–8]. Searchable encryption is divided into symmetric searchable
encryption and asymmetric searchable encryption. In earlier research, symmetric searchable
encryption was mainly studied in the static case. However, the static case is not applicable
to practical work. Dynamic searchable encryption implements dynamic updates on the
basis of the former. However, in order to improve the efficiency of the search, each of these
options allows some information to be divulged within certain limits. The file injection
attack was confirmed by Zhang et al. [9]. This attack is performed by injecting a relatively
small number of files to learn a large portion of the keywords searched by the client. To
resist this attack, forward security has received attention.

Bost et al. [10] proposed a definition of forward security for searchable encryption and
proposed a scheme for a type of DSSE based on forward security. Later, Bost et al. [11]
proposed a definition of backward security and gave several schemes. He et al. [12] propose
a searchable solution that satisfies backward and forward security. However, this scheme
is only applicable to individual users for searching their own data stored in cloud servers
and is not applicable to practical applications.

As most practical application environments are not closed, the implementation of
symmetric searchable encryption always falls short of the requirements. We therefore
introduce asymmetric searchable encryption.

Our main contributions are summarized as follows.

(1) In this paper, a new multi-user dynamic searchable scheme is proposed on the basis of
the predecessors. A new validation Bloom filter structure (ABF) based on the existing
Bloom filter is proposed. The new ABF not only includes the original features of
the Bloom filter but also adds a counter module, which makes the solution easy to
implement in dynamic updates and greatly reduces the error rate.

(2) In this paper, a new file set encryption scheme is designed, which uses a lightweight
algorithm to reduce the overhead of initialization and update. At the same time, the
ABF and state op of encrypted files are used to realize dynamic update of data.

(3) The scheme satisfies forward and backward safety. Forward security is satisfied
by updating the search token, and backward security is realized by a new file set
encryption scheme. Compared with other schemes, the scheme in this paper not only
has a great advantage in time cost but also fully considers the problem of historical
storage, avoiding multiple different storage states for the same file.

2. Related Work

Asymmetric encryption utilizes a pair of keys, known as the public key and private key.
The public key is made publicly available and is used for encrypting data, while the private
key is kept secret and is used for decrypting data. For asymmetric searchable encryption,
it was first proposed by again Boneh et al. [13] in their article. But this scheme requires
a secure communication channel to pass the trapdoor. However, establishing a secure
communication channel is very difficult and expensive. Therefore, Beak et al. devised a
scheme that does not require a secure communication channel [14]. Tang and Chen et al. [15]
designed a PKI-based asymmetric searchable encryption scheme. It improves on the flaw
that an attacker can obtain the relationship between the trapdoor and the ciphertext, as
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proposed by Baek et al. Park et al. [16] propose two structures for link keyword search with
public key encryption. However, this solution involves many connections between the user
and the server and has a large storage overhead.

Guo et al. [17] analyze the scheme of Li et al. [18] and demonstrate that its trapdoor
indistinguishability is not satisfied. A security scheme that satisfies the requirements of the
test-specified server and provides stronger security guarantees for the confidentiality of
keywords is also proposed. However, these two schemes do not address the encryption
algorithm for files and only enhance the security of keywords, without much advantage in
terms of practical application.

A spatial keyword query satisfying forward–backward security was proposed by
Wang et al. [19]. The article uses Hilbert curves to simplify geometric range queries to range
queries and uses prefix encoding to cover range queries. This solution allows other users to
search for data, but this solution is not designed to update steps regarding data that already
exist on the cloud server. Although this solution proposes a change to the bitmap when
updating, the part of the update algorithm and storage file involved is not further described.
Chen et al. [20] proposed a blockchain-based public-key searchable encryption scheme
in the paper. The scheme, BSPEFB, not only makes use of smart contracts for searching,
which can ensure the correctness and immutability of the returned results, but also satisfies
backward and forward security. The solution reduces the number of computationally
intensive operations and has a high search efficiency. However, each trapdoor in the
scheme corresponds to a separate keyword, which causes a huge inconvenience to the data
owner each time the data user requests a search token while giving the data owner an idea
of the range of keywords the data user is interested in. If a malicious data owner uses this
for analysis, it could easily compromise the data user’s privacy.

3. Preliminaries
3.1. Forward and Backward Privacy

The definition of forward–backward security was first proposed by Stefanov et al. [21]
with the first scheme to support dynamic keywords. Then, forward–backward security was
first formalized by Bost et al. [10,11]. As for the definition of forward security, Bost et al.
argue that an update does not reveal information about the updated keywords. Importantly,
the server does not know if the updated file matches the keyword that the user searched
for. The definition is as follows:

Definition 1. The update leak function LUpdt can be written as:

LUpdt(op, in) = L
′
(op, {indi, µi}) (1)

For (op, in) pairs, op is the update query and in is the input. {indi, µi} is a collection
of update files, in which µi is the key of the update and ind is the updated document. If
the update function can be written as the above expression, then the L adaptive secure SSE
scheme is forward private.

Bost et al.’s [10] definition here extends forward privacy as proposed by Stefanov
et al. [21]. Also, this definition focuses only on adding documents, not updating them.

In backward security, the server cannot associate the currently searched keyword
with the results of a previous search. That is, every time a user adds a document ind
corresponding to a keyword to the database, then it is removed later [21]. After this
series of operations, when searching this keyword, the search result will not appear in
the document ind, so the SSE scheme is backward safe. Bost et al. defined three types
of backward security in their paper: backward privacy with insertion pattern, backward
privacy with update pattern, and weak backward privacy. In this paper, backward security
is judged according to the second one: backward privacy with update mode. It leaks the
documents currently matching w, when they were inserted, and when all the updates on w
happened (but not their content).
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3.2. Bilinear Pairing

Let q be a prime, G1 and G2 be two cycle groups of prime order q, on which the
operations are addition and multiplication, respectively. The bilinear mapping e : G1 ×
G1 → G2 from G1 to G2 satisfies the following properties:

1. Bilinearity: For all P, Q, R ∈G1 and a, b ∈ Z, there are e(aP, bQ) = e(P, Q)ab, or
e(P + Q, R) = e(P, R) · e(Q, R) and e(P, Q + R) = e(P, Q) · e(P, R) then the mapping
is said to be bilinear.

2. Non-degeneracy: If P is the generator of G1, then e(P, P) is the generator of G2.
3. Computability: For all P, Q ∈G1, there is an efficient algorithm for calculating e(P, Q) .

3.3. Bloom Filter

The Bloom filter was proposed by Bloom in 1970 [22]. It is actually a very long binary
vector and a series of random mapping functions. The Bloom filter can be used to search
whether an element is in a set; its advantage is that the space efficiency and query time
are much better than the general algorithm, and the disadvantage is that there is a certain
misrecognition rate and deletion difficulty.

For each datum, the data owner hashes it into the Bloom filter through k unbiased
hash functions. For the number of unbiased hash functions k, this paper uses the following
formula to calculate:

k = (
m
n
) ∗ ln(2), (2)

where m is the size of the filter’s bit array, and n is the number of elements expected to
be inserted.

For the false positive rate of the Bloom filter, the following definition is given:

BFR = (1− e−
kn
m )k, (3)

where k is the number of the hush function, n is the number of elements to be stored, and
m is the size of the bit array. In this paper the false positive rate of 10−6 is specified based
on the size of the experimental data.

4. Proposed Construction

We propose a new chain structure which includes two parts: keyword-security en-
cryption and file-security encryption. Forward–backward security can be satisfied by
performing these two parts.

4.1. System Model

In our design, there are three parts: data owner (DO), data user (DU) and cloud
server (CS). The cloud server stores and manages the data owner’s ciphertext set and helps
legitimate data users search for the corresponding data. The system model is shown in
Figure 1. First, the data owner collects the public keys of all legitimate users to be used
to compute the relevant data pp for the search token. In the second step, the data owner
sends the encrypted EDB, ABF, and B to the cloud server for storage. The above is the
initialization preparation. Next, if there is a user (legitimate or not), he/she can request
the data about the search token from the data owner (Step 3). After that, the data owner
sends pp to the data user (Step 4). In step 5, the data user uses the data pp to calculate the
corresponding keyword search token. Here, only legitimate users can calculate the correct
search token using their private key; otherwise, they will only obtain the wrong data. In the
next step, the data user sends the search token to the cloud server to apply for the search.
In the seventh step, the cloud server sends a collection of encrypted files from the search to
the data user, and finally, in the eighth step, the data user decrypts the data in the res to
obtain the plaintext.
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Figure 1. System model.

The scheme proposed in this paper consists of eight algorithms:
Setup(λ) → para: Input the security parameter λ and generate the hash function,

pseudo-random function, bilinear mapping, and other data required in the next step.
KeyGen(H0, id, g)→ skdui

, pkdui
: Each DU generates her/his own public/private keys

using its own id.
Initial(Wind, para) → (ABF, EDB, B, NE): data owner initializes the related data.

Encrypts (keyword, file set) pairs and sends the encrypted data to cloud server.
Trapdoor(w, para, h, s)→ stw: DU runs this algorithm, enters its private key (the data

are sent from the DO into the algorithm), calculates the search token, and sends it to the
cloud server.

Search(stw, para, EDB, ABF) → res: The data user sends the keyword search token to
the cloud server, and the server runs the algorithm to send the corresponding encrypted
file set to the data user .

Update(Doc, para, EDB, ABF): The algorithm is used to update the data. This algo-
rithm is run by the DO to encrypt the newly stored keywords or files and put them in the
corresponding location.

UpdateST(W, para, EDB, ABF)→ EDB, ABF: This algorithm is run by the DO, which
updates all keyword search tokens at the end of each update, and then sends all the updated
data to the server.

Dec(res, w, H2) → tal: The data user decrypts the collection from the server to obtain
the required file.

4.2. Keyword-Security Encryption

For the encryption of the search token of the keyword, this paper sets the following
definition in order to meet the search conditions of multiple users.

Let U = (id1, id2, id3, id4, . . . , idn) be the id set of legitimate search users and the num-
ber of users be n. Then, set X⃗ = (x1, x2, x3, . . . , xl) =

(
(H0(id) )

0, (H0(id) )
1, (H0(id) )

2, . . . ,
(H0(id) )

l ,
)

to the hashed set of a user’s id, where x0 = 1. Set Z⃗ = (z1, z2, z3, . . . , zl), where
zj in Z⃗ is the coefficient of zj of the expansion of ∏n

j=1
(
z− H0

(
idj

) )
, and idj is the id of the

j-th user. In this article, the data owner sends the following data to the data user:
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pp = (p0, p1, p2, para) , (4)

where p0 = gr, andr is the random number; p1 = gr ∏l
i=1(zi), and zi is the data of Z⃗; p2 = gz0 .

Assuming that a data user with id wants to search for the keyword w, all the data need
to be organized into the following form:

tw = e
(

g∏l
i=1(xi), p1

)
e(gw p2, p0)

= e
(

g∏l
i=1(xi), gr ∏l

i=1(zi)
)

e(gwgz0 , gr)

= e(g, g)−x0z0re(g, g)wr+z0r. (5)

As H0(id) is the root of ∏n
j=1

(
z− H0

(
idj

) )
, and

〈
X⃗, Z⃗

〉
= ∏l

i=0 xizi = 0, so that

∏l
i=1 xizi = −x0z0. However, x0 = 1, we can obtain x0z0r = z0r.

4.3. Keyword Storage Scheme

For keyword storage, this paper designs an Authenticator Bloom Filter (ABF). As
shown in Figure 2, the Bloom filter has been modified to add a counting module, and the
authenticator is designed to support dynamic updates.

Figure 2. Authenticator Bloom Filter.

In the ABF structure, for each keyword, the Data Wwner hashes it into the Bloom filter
through k unbiased hash functions. For the problem that there may be multiple keywords
corresponding to one location, this article adds the counter A[]. Each time A keyword is
computed and mapped to the Bloom filter, the count is increased by one for each position
A[i]. This means that there is a keyword mapped in the i-th position.

Figures 3 and 4 show the process of adding and deleting data for the ABF. Add data
as shown in Figure 3. Hash keyword A and map it to bits 1, 3, 5, and 8 in the Bloom
filter. Since bits 1, 5, and 8 are already mapped with keywords, only one is added to
the counter. On the third bit, not only a one is added to the counter, but also a one is
placed on the corresponding bit of the filter. The deletion process is shown in Figure 4.
After keyword B is hashed, it is mapped to the first, fifth, sixth, and eighth bits. First,
the corresponding counters are reduced by one, and it is found that the eighth counter is
reduced to 0. This means that there are no more keywords mapped to this location, so place
0 in the Bloom filter.
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Figure 3. Authenticator Bloom Filter (addition). (The red font is the changed data).

Figure 4. Authenticator Bloom Filter (deletion). (The red font is the changed data).

4.4. File-Security Encryption

The ind in this paper’s scheme refers to the address of the file, and the user can find
the encrypted file by decrypting to obtain the ind plaintext. This paper uses a symmetric
encryption scheme to encrypt the contents of the file, which is not specifically described
because it is not very relevant to the scheme of this paper.

The encryption for the document set is as follows:

IEj
stw

= H2(w||j)⊕ (ind[j]||op), (6)

where op is the state of the file (add/del).
The form of the encrypted file collection is put into the server, but the form of the first

key-value pair of each keyword is different from the other; the first set of key-value pairs is
as follows:

add1
stw = H3(stw), (7)
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val1
stw =

(
IE1

stw ||rn1

)
⊕ H3(stw). (8)

Here the first set of key-value pairs requires a search token and a randomly generated
number that is used to search for the next key-value pair, and the rest of the key-value pairs
are as follows:

addi
stw = H3(rni−1) , (9)

vali
stw =

(
IE1

stw ||rni

)
⊕ H3(rni−1) . (10)

Each key-value pair here is calculated from the previous set of key-value pairs, as
shown in Figure 5.

Figure 5. Encrypted file storage structure.

For document deletion operations, this article does not physically delete an existing
document but sets the op state corresponding to the document to delete. When the server
runs the search algorithm, it obtains an encrypted file, thus supporting backward security.

5. Construction

In this section, we introduce our method. This method can be used in many different
situations. We will describe and analyze the following Algorithms 1–8.

Algorithm 1 Setup

Input: λ
Output: para

1: Generates the paramenters about the pairing operation (G1,G2, e, g, q)
2: Generate the sets Z⃗
3: Select the Hash functions

(
Hi∈{0,2}, hi∈{1,4}

)
4: para =

(
G1,G2, e, g, q, Hi∈{0,2}, hi∈{1,4}

)

Algorithm 2 KeyGen

Input: H0, id, g
Output: skdui

, pkdui

1: Generate the sets X⃗ of user i
2: skdu = g∏l

i=1xi

3: pkdu = H0(id)
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Algorithm 3 Initial

Input: Wind, para
Output: ABF, EDB, B, NE

1: while Wind ̸= null do
2: wind

R←Wind
3: Wind ←Wind \ {wind}
4: Parse wind as (w, stw, ind[j])
5: ABF ← H′ = (h1(stw), h2(stw), h3(stw), h4(stw))
6: cstw = 1,B[stw] = cstw

7: IE1
stw

= H2(w||1) ⊕ (ind[1]||op)
8: add1

stw
= H3(stw)

9: rn1 ← {0, 1}λ

10: val1
stw

=
(

IE1
stw
||rn1

)
⊕ H3(stw)

11: EDB[add1
stw

] = val1
stw

,NE[stw] = rn1
12: for i = 2 to j do
13: IEi

stw
= H2(w||i) ⊕ (ind[i]||op)

14: rni ← {0, 1}λ,rn← NE[stw]
15: addi

stw
= H3(rn)

16: vali
stw

=
(

IEi
stw
||rni

)
⊕ H3(stw)

17: EDB[addi
stw

] = vali
stw

18: NE[stw] = rni,cstw ← B[stw]
19: B[stw] = cstw + 1
20: end for
21: end while
22: send ABF,EDB,B and NE to the cloud server

Algorithm 4 Trapdoor

Input: w, pp
Output: stw

1: stw = H0

(
e
(

g∏l
i=1(xi), p1

)
e(gw p2, p0)

)
2: Send stw to Cloud Server

Algorithm 5 Search

Input: stw, para, EDB, B
Output: res

1: res← ∅
2: H′ = (h1(stw), h2(stw), h3(stw), h4(stw))
3: if H′ can′t be mapped to ABF, break;
4: else
5: cstw ← B[stw]
6: val1

stw
← EDB[H3(stw)]

7:
(

IE1
stw
||rn1

)
= val1

stw
⊕ H3(stw)

8: res = res ∪ IE1
stw

,temp = rn1
9: for y = 2 to cstw do

10: valy
stw
← EDB[H3(temp)]

11:
(

IEy
stw
||rny

)
= valy

stw
⊕ H3(temp)

12: res = res ∪
{

IEy
stw

}
,temp = rny

13: end for
14: send res to DataUser
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Algorithm 6 Update

Input: Doc, para, EDB, B
Output:

1: while Doc ̸= null do
2: doc R← Doc,Doc← Doc \ {doc}, f lag = 0
3: Prase doc as (w, ind, stw, op′)
4: While f lag == 0 do
5: if stw not exit
6: update ABF
7: cstw = 1,B[stw] = cstw

8: add1
stw

= H3(stw), rn1
R← {0, 1}λ

9: IE1
stw

= H2(w||1)⊕ (ind[1]||op′)
10: val1

stw
=

(
IE1

stw
||rn1

)
⊕ H3(stw)

11: f lag = 1,update EDB, NE
12: Put search token stw in the ABF
13: else
14: c← B[stw],rn← NE[stw]
15: val1

stw
← EDB[H3(stw)]

16:
(

IE1
stw
||rn1

)
= val1

stw
⊕ H3(stw)

17: (ind[1]||op) = IE1
stw
⊕ H2(w||1)

18: temp = rn1
19: if ind == ind[1]
20: op = op′, f lag = 1
21: else
22: for y = 2 to c do
23: valy

stw
← EDB[H3(temp)]

24:
(

IEy
stw
||rny

)
= valy

stw
⊕ H3(temp)

25: (ind[y]||op) = IEy
stw
⊕ H2(w||y)

26: if ind == ind[y]
27: op = op′, f lag = 1
28: end for
29: rnc+1

R← {0, 1}λ, NE[stw] = rnc+1
30: addc+1

stw
= H3(rn)

31: IEc+1
stw

= (ind[c + 1]||op)⊕ H2(w||c + 1)

32: valc+1
stw

=
(

IEc+1
stw
||rnc+1

)
⊕ H3(rn), f lag = 1

33: end while
34: end while

Algorithm 7 UpdateST

Input: W, para
Output: EDB, ABF

1: r R← {0, 1}λ

2: for each keyword wi ∈Wdo
3: tw = e(g, g)wir

4: stw = H0(tw)
5: add1

stw
= H3(stw)

6: val1
stw

=
(

IE1
stw
||rn1

)
⊕ H3(stw)

7: Update EDB ABF
8: end for
9: Send EDB ABF to Cloud Server
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Algorithm 8 Dec

Input: res, w, H2
Output: tal

1: tal ← ϕ
2: for j = 1 to |res| do
3: IEj

stw
← res

4: (ind[j]||op) = IEj
stw
⊕ H2(w||j)

5: if op == add
6: tal = tal ∪ {ind[j]}
7: end for
8: return tal

Setup(λ)→ para: The algorithm is run by the DO and the initialization parameters
are defined. First, the data owner inputs the security parameter λ to the algorithm, then
generatea the addition group G1, whose order is a prime q. Let the multiplicative group
G2 have the same order. Let e : G1 ×G1 → G2 be a map. So, we have g as the generator of
group G1. Then, the Hash function is selected and we also need to generate vector Z⃗ based
on the set of public keys of all users.

KeyGen(H0, id, g)→ skdui
, pkdui

: Each DU generates her/his own public/private keys
using its own id.

Initial(Wind, para) → (ABF, EDB, B, NE): The data owner runs Algorithm 3 to ini-
tialize all the data. The data owner encrypts all the data before sending it to the cloud
server. The initialization data for each keyword are placed in wind = (w, stw, ind[j]), where
ind[j] is a document collection of keywords (line 4–5). The search token corresponding to
this keyword is evaluated by four hashes and mapped to the Bloom filter, while the counter
A[i] at each corresponding position of the filter is increased by one.

The next step is to encrypt the file set. The first document of each keyword is encrypted
differently from the other documents, so it needs to be calculated separately. This scheme
requires key-value pairs to store encrypted file sets. Key-value pairs are represented in
this paper by (add/val), and the corresponding val value is represented in this paper by
EDB[add]. This scheme needs to create an NE to store the random number generated
by the latest keyword file for future updates. Finally, ABF, EDB, B, NE are sent to the
cloud server.

Trapdoor(w, pp) → stw: The DU runs this algorithm, enters its private key and the
data sent from the DO into the algorithm, and calculates the search token and sends it to
the cloud server.

Search(stw, para, EDB, ABF) → res: The CS runs this algorithm, uses the keyword
search token to put its corresponding set of encrypted files into the set res, and sends the res
to the DU. First, the cloud server needs to map the search token to the vABF to determine
whether the token exists (Line 2–3). If the search token exists, the key-value pair of the
encrypted file is found through the token. First, the first value val1

stw
is found by searching

the token, and then the encrypted file and rn value are calculated by val1
stw

. Then, the key
pair of the next encrypted file is found by the rn value found in turn, and all the encrypted
files IE are put into the set res through calculation. Finally, the cloud server sends the set
res to the DU.

Update(Doc, para, EDB, ABF) :This algorithm is run by the DO to encrypt the newly
stored keywords or files and put them in the corresponding location.

Updates in this scheme are batch updates (including additions and deletions), and the
data owner packages the files that need to be added along with other keywords, update
status, and search tokens into a quadruple doc, and puts all the docs into a collection, Doc.

There are four situations that need to be determined during the update:

1. When the keyword corresponding to the updated document does not exist (line 8–18).
At this point, you need to initialize the keyword and its files and update the ABF;
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2. When the keyword exists, and the corresponding first document is the target document
(line 20–28). When determining that the first document is the target document, change
the status op directly to the target op′;

3. When the keyword exists, and the target file corresponds to a subsequent known file
set (line 30–36). Check whether all the files correspond to the target file at one time,
and change the corresponding state of the file op to the target state op′ (add or del
state) if found;

4. If the target file has not been stored (line 38–43). Add the target file to the end of the
file set while updating EDB and file counters B and NE.

UpdateST(W, para, EDB, ABF)→ EDB, ABF: This algorithm is run by the DO, which
updates all keyword search tokens at the end of each update and then sends all the updated
data to the server. This algorithm is run when the data owner is sure that all the data
that need to be updated have been updated. When updating the search token, the data
owner needs to randomly select a random number r to replace the original r to achieve the
purpose of data update. Since the generation of a key-value pair for the first document of
the encrypted document set corresponding to each keyword involves a search token, the
EDB needs to be updated after each search token is updated. Finally, the new EDB and
ABF are sent to the cloud server.

Dec(res, w, H2) → tal: The DU runs this algorithm to take the encrypted data from
the cloud server and decrypt it one by one. After obtaining the file state op, determine
whether it is the state add, and if it is, put the file into the collection tal. Finally, send tal to
the DU.

6. Security Analysis
6.1. Forward–Backward Privacy

First, forward security means that an update does not reveal any information about
the updated keywords. Since the hash function is one-way, the server cannot decrypt the
stored identifier unless the client can generate a previous search token. At the same time,
every time the data owner updates, the updated keyword search token is updated, so
even if the previous search token is leaked, it will not affect future security. Therefore, the
scheme in this paper realizes forward privacy.

Backward security ensures that search queries do not show indexes that were previ-
ously added but later removed. In this scenario, the file and its file state op are encrypted.
Because the search results are still in ciphertext, even if it is stored in a curious server, an
attacker cannot learn useful information about the index without knowing exactly what
the keyword is. Thus, we support backward privacy.

6.2. Adaptive Security

In order to improve the efficiency of the solution, most existing solutions will leak some
information to the cloud server. Therefore, the confidentiality of searchable encryption
schemes means that no more information is leaked than is allowed. To demonstrate
confidentiality, we follow a true-ideal simulation paradigm similar to the work [23].

Let Π = (Setup, KeyGen, Initial, Trapdoor, Search, Update, UpdateST, Dec) be this ar-
ticle’s scheme, S be the simulator, and A be the adversary. We defined the following
two games:

RealΠ
A(λ): Run the algorithm Setup(λ) and the algorithm KeyGen(para). Then, the

game is published (para, pkdu) and skdu is saved. After that, The attacker then selects a
database DB, executes various queries against it, including update queries, search queries,
and decryption queries, and returns the answers to these queries by executing the corre-
sponding algorithms or protocols update, search, and dec, respectively. Finally, A outputs
a bit b ∈ {0, 1}.

IdealΠ
A(λ): In an ideal world, the opponent selects A safety parameter, and the

simulator selects the leak functions LSetup and LKeyGen to generate system parameters
and return them to the A. The adversary then selects a database, DB, and executes
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various queries against it, including update queries, search queries, and decryption
queries. The experiment returns the answers to these queries by calling the leak func-
tion L =

(
LSetup,LKeyGen,LInitial ,LTrapdoor,LSearch,LUpdate,LDec

)
. Finally, A outputs a bit

b ∈ {0, 1}.

Theorem 1. Let H be the password hash function. The scheme is L adaptively safe in the stochastic
prediction model, where the set of leakage functions L is defined as follows:

L =
(
LSetup,LKeyGen,LInitial ,LTrapdoor,LSearch,LUpdate,LDec

)
, (11)

where LSetup =⊥,LKeyGen =⊥,LInitial =⊥,LTrapdoor =⊥,LDec =⊥.

Proof. Our proof uses a hybrid argument consisting of a series of games. The first game is
exactly the same as the game in the real world, while the last game is exactly the same as
the game in the ideal world.

G0: This game is the real world SSE security game Real. So, we can obtain :

Pr
[

RealEDAEFB
A (λ) = 1

]
= Pr[Game0 = 1]. (12)

G1: In this game, we need to randomly select the user’s public key IDi to replace the
original public key pkdui

= H0(idi). It is easy to see here that G1 and G0 are indistinguishable.

Pr[Game0 = 1] = Pr[Game1 = 1]. (13)

G2: In this game, we create a table TOKEN to store search tokens. Each search token
is replaced by a random number. Whenever a keyword search token is called, we call the
number in the table TOKEN instead of the number in the text. In the case of updates, we
will randomly select a string in {0, 1}λ to act. Here we have:

|Pr[G2 = 1]− Pr[G1 = 1]| ≤ Advhash
A (λ) (14)

G3: In this game, we need to create four tables Ha1, Ha2, Ha3, Ha4 to answer the
random oracle query, which are used to record the hi∈{1,4} that needs to be mapped to the
ABF. In the game, whenever these four values need to be calculated, they are directly taken
at random from {0, 1}λ and put into the four Ha1, Ha2, Ha3, Ha4 tables. If the opponent
can distinguish between game 2 and game 3, then the hash function can be distinguished
from the real random function, which is obviously impossible. Thus, we have:

|Pr[G3 = 1]− Pr[G2 = 1]| ≤ Advhash
A (λ). (15)

G4: In this game, two tables, H1 and H2, need to be created to answer A’s query.
H1 is to record the response to H2(w||j) and H2 is to record the response to H3(). In
our game, we only consider the leak function in the algorithms update, so we can define
LUpdate(DOC) = Σw∈W |EDB(w) |, which only leaks the number of keyword/document
pairs. In game 2, we generate the search token stw in the update algorithm as a random
string instead of the search token generated in the algorithm. In addition, the H1(stw, wi)
and Hcstw

2 (stw) during token generation is also replaced by the random strings. If the
adversary can distinguish between games 2 and 3, we can distinguish between hashed and
truly random functions. Then, we have:

Pr[Game4 = 1]− Pr[Game3 = 1] ≤ Advhash
A (λ) . (16)

G5: In this game, we maintain a table UPDATE to generate the encrypted document.
In the update protocol, game 5 uses random numbers instead of encrypted document IE. It
can be seen that games 4 and 5 are the same.
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Pr[Game4 = 1] = Pr[Game5 = 1]. (17)

G6: Simulator S simulates the adversary’s point of view with a leak function L that
includes search patterns and add history. From the opponent’s point of view, G4 and G5
are exactly the same. Thus, they are indistinguishable:

Pr[Game6 = 1] = Pr[Game5 = 1] = Pr
[

IdealΠ
A (λ) = 1

]
. (18)

Conclusion: To sum up the contributions of G0, G1, G2, G3, G4, G5, and G6 we have:

Pr
[

RealΠ
A(λ) = 1

]
= Pr

[
IdealΠ

A(λ) = 1
]
≤ Advhash

A (λ) (19)

Since the hash function is a one-way function, this scheme is an L-adaptively-secure
searchable encryption scheme.

7. Performance Analysis

This chapter analyzes our scheme through performance and experiments. Comparing
multiple thesis schemes with the scheme of this paper, we draw a conclusion.

We use python cryptographic libraries on a machine with 16 GB of RAM, Intel CORE
i7-9700(8-core, 3.6 GHz), running Windows 10 to implement our algorithm. The experiment
took Enron email as the data set, mainly tested the algorithm of updating and searching, and
compared the time spent in processing all the keywords and file pairs. In the experiment,
the security parameter λ = 128 was set, and MD5 was used to implement the hash function.
The scheme in this paper will also be compared with the schemes in papers of Chen1 [24],
Liu [25], and Chen2 [20].

7.1. Functional Comparison

The functional comparison is shown in Table 1. The scheme of Chen1 et al. [24]
can satisfy the anterograde safety. However, this scheme uses symmetric encryption and
does not satisfy multiple users. Liu et al.’s [25] scheme satisfies forward security but not
backward security or multiple users and uses symmetric key encryption. The scheme
proposed by Chen2 et al. [20] satisfies both forward and backward security, supports
multiple users, and uses asymmetric key encryption. However, the multiple users of this
scheme will consume more time but not in the main scheme, which the article author only
mentioned in the article. As can be seen from the table, the scheme in this paper is one of
the best.

Table 1. Functional comparison.

Scheme FP BP Multi-User Cryptosystem

Chen1 [24] ✓ ✓ × symmetric
Liu [25] ✓ × × symmetric

Chen2 [20] ✓ ✓ ✓ asymmetric
our ✓ ✓ ✓ asymmetric

7.2. Time Consuming for Different ABF Hash Function Numbers

In order to improve the search efficiency, this paper uses the ABF to search keywords.
In the ABF, the main factor affecting its efficiency is the number of hashes. Since the use of
Bloom filters saves on the error rate, there are generally two solutions: increase the number
of hashes and increase the storage array. Since the ABF is stored in the cloud, the error
rate can be reduced by increasing the array size so only a few hash functions need to be
considered for the most efficient update time. As shown in Figures 6 and 7, the experiment
compares the time spent adding and deleting the hash numbers of 4, 6, 8, and 10. It can be
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seen that when the number of hashing times is four, the time required is the least, and the
time required increases slowly as the number of keywords increases.

Figure 6. Impact of different hashing times on search time (add).

Figure 7. Impact of different hashing times on search time (del).

Based on the conclusion drawn above, it can be determined that the number of hash
functions used by this paper’s scheme in the ABF is four. Therefore, Formula (3) can be uti-
lized to calculate the size of the bit set in this paper. It can be obtained as m = 47,925,315 bits
so that the false positive rate of this paper scheme can be 10−6.

7.3. Time Cost of Search Algorithm

When the user initiates a query operation, a token for the corresponding keyword is
generated, and the token is then sent to the server. Figure 8 shows the relationship between
the number of keyword document pairs and the search time when the server performs a
search. In the experiment, the three schemes Chen1 [24], Liu [25], and Chen2 [20] were
compared. In order to obtain a more fair result, the experiment added up the search token
generation time of each scheme for comparison, equivalent to calculating the total process
of the data user to obtain the encrypted file of the file.
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As we can see from Figure 8, the search time in this article is less than in other scenarios,
whether the keyword is present or not. If it does not exist, simply return and prompt. As
can be seen from the Figure 8, the search time without keywords is between 0.03 ms and
0.05 ms, which can greatly improve the search rate and reduce the waiting time for users
to receive feedback. Compared with other experiments, it is necessary to conduct a chain
search for all keywords and then give feedback.

Figure 8. Time cost of search algorithm [20,24,25].

For the search of non-existent keywords, since the other three experiments are all
using the same chain storage mode, they are combined into one for comparison (shown in
Figure 9). It can be seen that once the keywords exceed 100,000, the chain search method
will gradually increase the time. However, the time consumed in the search method in this
paper is basically stable, and the time consumed is not increased due to the growth of the
total number of searches. The data will only fluctuate in a small range, and the feedback
time of users will be greatly shortened.

Figure 9. Time spent searching for a keyword when the keyword does not exist.
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7.4. Time Cost of Update Algorithm

In the update algorithm, this paper is compared with the schemes of Chen1 [24],
Liu [25], and Chen2 [20]. Since these schemes are added and deleted with this algorithm,
they are all shown in the following figure.

As can be seen from Figure 10, the solution update of Chen2 et al. [20] took more time.
In this scheme, for each keyword that needs to be updated, the file corresponding to it needs
to be re-encrypted once. That is, the data owner does not care about the previous encrypted
file set; she/he re-encrypts the new file set, and then sends it directly into the database.
The reason for the time consumed is that some calculations used in the encryption process,
such as pseudo-random function F, bilinear pair e, etc., will be more time-consuming than
hashing operations. In addition, the update scheme of Chen2 et al.’s [20] scheme does not
take into account whether the newly added file has been added before, which will lead to
repeated searches, or whether the new file is deleted and the old version is added, resulting
in the deleted file being obtained by the data user.

Figure 10. Time cost of update algorithm [20,24,25].

In Liu et al.’s [25] scheme, the previous addition of files was also not taken into account
in the update. Although the time is shorter, with the increase in the number of files, the
time is the fastest growing, even exceeding the original time-consuming Chen2 scheme.

Among the schemes proposed by Chen1 et al. [24], the time is second only to that
proposed in this paper. However, the problem is the same as that in the previous two
schemes; the existing files and their status are not considered. This not only adds unnec-
essary storage space but also affects subsequent search results. Finally, the scheme in this
paper is superior to the other three schemes both in terms of rationality and time.

8. Conclusions

In this paper, we design a new dynamic searchable scheme which satisfies forward
and backward security. A new ABF based on the original Bloom filter is proposed to reduce
the misjudgment rate. At the same time, new key encryption and file encryption schemes
are designed. The solution supports forward and backward security, multiple users, and
dynamic updates. Compared with other existing schemes on the premise of forward and
backward security, especially when the keyword does not exist, the scheme in this paper
greatly reduces the time and improves the efficiency. And the keyword search time in this
paper has been maintained between 0.03 ms and 0.05 ms. The scheme of this paper takes
into account the history of file storage, avoids the situation of multiple storage states of a
file when searching, and greatly meets the needs of users.
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