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Abstract: We construct hypergraphs to analyze functional brain connectivity, leveraging event-
related coherence in magnetoencephalography (MEG) data during the visual perception of a flickering
image. Principal network characteristics are computed for the delta, theta, alpha, beta, and gamma
frequency ranges. Employing a coherence measure, a statistical estimate of correlation between signal
pairs across frequencies, we generate an edge time series, depicting how an edge evolves over time.
This forms the basis for constructing an edge-to-edge functional connectivity network. We emphasize
hyperedges as connected components in an absolute-valued functional connectivity network. Our
coherence-based hypergraph construction specifically addresses functional connectivity among four
brain lobes in both hemispheres: frontal, parietal, temporal, and occipital. This approach enables a
nuanced exploration of individual differences within diverse frequency bands, providing insights
into the dynamic nature of brain connectivity during visual perception tasks. The results furnish
compelling evidence supporting the hypothesis of cortico–cortical interactions occurring across
varying scales. The derived hypergraph illustrates robust activation patterns in specific brain regions,
indicative of their engagement across diverse cognitive contexts and different frequency bands. Our
findings suggest potential integration or multifunctionality within the examined lobes, contributing
valuable perspectives to our understanding of brain dynamics during visual perception.

Keywords: brain; magnetoencephalography (MEG); network; hypergraph; coherence; visual perception

1. Introduction

Understanding the intricacies of brain connectivity in response to diverse stimuli is crucial
for unraveling the mechanisms underlying information processing and decision making
within the brain. This study delves into three essential forms of brain connectivity: structural,
functional, and efficient [1–4]. Structural connectivity entails the identification of anatomical
neural networks, revealing potential pathways for neural communication [5,6]. On the other
hand, functional connectivity explores active brain regions exhibiting correlated frequency,
phase, and/or amplitude [7]. Finally, effective connectivity utilizes information from
functional connectivity to discern the dynamic flow of information within the brain [8,9].

Measurement of effective and functional connectivity can be conducted in both the
frequency domain, employing methods such as coherence [10], and in the time domain,
utilizing approaches like Granger causality [4] or artificial-neural-network-based functional
connectivity [11]. When a sufficiently large population of neurons synchronizes, their
electrical and magnetic activities become detectable outside the skull through techniques
like electroencephalography (EEG) and magnetoencephalography (MEG) [12]. While
EEG measures return or bulk currents outside the neuron (secondary currents), MEG
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captures ionic currents inside the neuron (primary currents). Notably, MEG holds a distinct
advantage over EEG due to its superior spatial resolution, rendering it an exceptional tool
for investigating and characterizing interactions between distinct brain regions [13].

To study functional connectivity, some researchers use approaches borrowed from
graph theory [14]. Using connections between the biorhythms of the brain in its various
parts, a model of a complex network is recreated, in which parts of the brain are considered
as nodes, and the connection forces between them are considered as links [15,16]. Using this
approach makes it possible to identify not only individual cognitive differences between
subjects [17], but also helps to diagnose some diseases at an early stage [18–20] and also
monitor the aging process [21–24].

One of the important measures that can be used to quantify neuronal synchrony is
event-related coherence [10,25,26]. It examines the frequency domain relationship between
two signals, indicating the degree to which their spectral components are synchronized.
Essentially, it is an assessment of the constancy of the relative amplitude and phase between
two signals within a given frequency range. There is a linear mathematical method that
creates a symmetrical matrix, devoid of any directional information. Identical signals
produce a coherence value of 1, while the coherence value approaches 0 as the difference
between the signals in question increases. Since then, coherence has been used in many
brain connectivity studies with both patients and control individuals; these include but are
not limited to studies of working memory [27], brain lesions [28], hemiparesis [29], resting
state networks [30], schizophrenia [31,32], favorable responses to panic medications [33],
and motor imagery [34]. As a result of the unique characteristics of human brains, distinct
patterns of coherent neuronal activity were observed among different subjects. For instance,
the presentation of flickering visual stimuli induces coherent responses in the visual cortex
of subjects at both the flicker frequency and its harmonics, resulting in varied sizes of
coherent neural networks [35,36].

In this work, we employ hypergraph analysis, a technique rooted in dynamic graph
theory [37], to investigate functional connectivity. We analyze variations in functional
connectivity networks using MEG data collected during the observation of flickering
images. This approach is an extension of conventional graph theory methods. Specifically,
we begin by defining a standard functional network that connects nodes across consecutive
time segments. We then generate a set of edge time series, representing the fluctuation of
edges over time. We process these edge time series similarly to node time series, creating
a network of edge-to-edge functional connectivity. Within this framework, we focus on
“hyperedges,” which are the connected components of an absolute-valued end-to-end
functional connectivity network.

Conventional graphs are limited in their ability to represent connections between pairs
of nodes, while hypergraphs can depict relationships among sets of nodes, especially when
complex interactions involve more than two elements. Using a hypergraph allows for
a more intuitive interpretation of inter-element relationships, enhancing comprehension
and result interpretation. It should be noted that Wang et al. [38] have already demon-
strated the utility of hypergraphs in showcasing multiple relationships between vertices by
employing Pearson correlation for interaction derivation. However, despite the fact that
the hypergraph theory was applied several years ago, our paper introduces a significant
advancement in hypergraph data representation by leveraging event-related coherence
between brain lobes rather than conventional correlation metrics. We prefer coherence due
to its ability to measure signal relationships based on relative phase, thereby capturing
temporal synchronization between signals. By using a hypergraph, we can clearly and
succinctly visualize the correlation between brain lobes and frequency bands, crucial for
unraveling the intricate network of cerebral interactions. Moreover, our approach, centered
on visualization with modulation, enriches our research with an additional layer of depth,
offering an innovative and pertinent perspective in this burgeoning field.
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2. Materials and Methods
2.1. Subjects

In this study, we analyze the MEG data of 15 control subjects (aged 17–64 years; 10 men and
5 women) obtained in the experiment based on a flickering image paradigm [39] at the Center
for Biomedical Technology of the Universidad Politécnica de Madrid, Spain. The MEG data have
been downloaded from https://zenodo.org/record/4408648#.X-72UdYo-Cc (accessed on 10
August 2023).

2.2. Experimental Paradigm

The experimental protocol, depicted in Figure 1, consists of two stages. During the
first stage, subjects were presented with a static (unmodulated) black square with white
lines for 120 s. They were instructed to fix their gaze on a red dot located at the center of the
square. The MEG of the baseline neuronal activity (B-trial) was recorded during this stage.
After a brief break (40–390 s), the second stage of the experiment commenced. During
this stage, the brightness of pixels on the square image was periodically modulated with
a frequency of fm = 6.67 Hz and a maximum amplitude of 50% of the RGB color model,
oscillating between black (0) and gray (127). This frequency was chosen due to its ability
to elicit a prominent spectral response in the visual cortex [35]. The flickering image was
presented 2–5 times at intervals of 120 s, with a 30-second break between each presentation,
and the MEG was recorded (F-trials). The averaged F-trials were then normalized to the
B-trial for each subject and subsequently averaged across all subjects.

Figure 1. Experiment protocol. The B-trial corresponds to the baseline neuronal activity induced by
the unmodulated visual stimulus and the F-trials correspond to the flickering image.

2.3. Signal Analysis in Brainstorm

The signal analysis was performed using the Brainstorm 3.231017 software, a collabo-
rative, open-source application based on MATLAB R2022a that is dedicated to processing
and analyzing brain recordings obtained through different brain imaging techniques [40].
The included tools, along with the interface, facilitated the creation of the scripts used in
this article.

2.4. Head Model Adjustment

The default Brainstorm head model was adjusted to the head points recorded using a
Polhemus Fastrak system, with 2% deformation and automatic refinement of head points.

https://zenodo.org/record/44 08648#.X-72UdYo-Cc
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2.5. Signal Processing

Signal analysis involved reading MEG data, and applying a Notch filter to eliminate
50 Hz power line frequencies and their harmonics. Artifacts from the electrooculogram
(EOG) and electrocardiogram (ECG) signals were automatically identified and manually re-
viewed to ensure the inclusion of any potentially omitted artifacts. Signal–space projection
(SSP) methods were applied to correct the artifacts by order.

2.6. Event Segmentation

The signals were segmented into 120 s epochs for two experimental phases: B-trial
and F-trial (Figure 1). The signal recorded during the B section was used as a reference
signal. These epochs were further divided into 3 s trials.

2.7. Source Reconstruction

Reconstruction of electrical activity in the brain from MEG measurements was car-
ried out by creating a forward model and a lead field matrix. Brainstorm’s overlapped
spheres method was used, maintaining the recommended 15,000 cortical sources. The
inverse solution was calculated using standardized low-resolution electromagnetic tomog-
raphy (sLORETA).

2.8. Fourier Analysis

To analyze the recorded signal, a Fourier analysis technique using a hanning window
was employed. First, a Hanning window was generated with an appropriate length
corresponding to the duration of the recorded signal (3 s). Subsequently, this window was
applied to the signal to mitigate edge effects and enhance frequency domain resolution.
Once the frequency spectrum of the processed signals was obtained, the spectrum of
the signal of interest was normalized to the reference signal. This was accomplished by
computing the fast Fourier transform (FFT)—using MATLAB’s FFT function—of each
processed signal and subsequently dividing the frequency spectrum of the signal of interest
by that of the reference (baseline) signal.

2.9. Signal Coherence

The brain is known to generate electromagnetic activity in a wide frequency range,
from slow waves of 0.5 Hz to fast waves of 500 Hz and higher frequencies [41]. These
rhythms are classified according to their frequencies and are assigned Greek letters. In this
paper, we consider five frequency bands: delta (0.5–4 Hz), theta (4–7 Hz), alpha (8–12 Hz),
beta (13–30 Hz), and gamma (31–90 Hz). Coherence measures the correlation within discrete
frequency bands for selected epoch lengths and is independent of signal amplitude [42].
We constructed brain networks based on coherence, a mathematical measure quantifying
synchronization patterns between spatially separated sensors or between brain areas [10].

After the Hanning window was applied to the signal, we estimated the strength
of network interactions according to coherence between eight brain areas: frontal left—
FL; frontal right—FR; occipital left—OL; occipital right—OR; parietal left—PL; parietal
right—PR; temporal left—TL; temporal right—TR. The 15,000 brain sources were grouped
into these eight lobes using Brainstorm’s segmentation model, PALS-12 Lobes with ten
structures, excluding the insula, resulting in eight structures or vertices.

The stored vertices were used to average signals within each lobe, reducing complexity
to eight signals. The square magnitude coherence was then calculated between time series
of each lobe with the rest, for both F and B trials (CF and CB, respectively). Subsequently, the
absolute difference between the coherence values of F and B was obtained and normalized
to the B activity, giving event-related coherence (ERC) as

ERC =
|CF − CB|

CB
. (1)



Appl. Sci. 2024, 14, 2343 5 of 19

2.10. Visualization with BrainNet

The output consisted of a tensor with dimensions 8× 8× 15. The average matrix
of all subjects was calculated for each frequency band, and these matrices were saved in
“.edge” text files for visualization with BrainNet Viewer. The latter is a tool that facilitates
the visualization of structural and functional connectivity patterns in brain networks [43].
The surface template used was “BrainMesh_ICBM152_smoothed.nv”, included in the
“BrainNetViewer_20191031” folder when downloaded.

A “Node.node” text file was created with the format defined by BrainNet Viewer to
set the position of nodes in the brain figure. The “.edge” files for each frequency band
obtained earlier were used to display interactions.

2.11. Graph Construction

Coherence matrices showed coefficients between 0.1 and 19.16. A threshold σth was
set for graph construction, with its value varying between 0.1 and 1.25. The analysis was
conducted to assess how graph characteristics change when including interactions above
σth. Various centrality measures were calculated such as degree centrality (number of
edges [44]), betweenness centrality (fraction of shortest paths passing through a node [45]),
and eigenvector centrality (importance of a node considering the importance of its neigh-
bors [44]). Connected components of the graphs were explored [45]. The shortest path
distances between all node pairs were calculated, and cycles in the graph were identified,
and defined as connected graphs in which each vertex has degree 2 [46]. These metrics,
with respect to σth, are presented in Appendix (Figures A1–A7).

To assess the connectivity of the graphs generated in this study, the ‘conncomp’
function in MATLAB was employed. This function facilitates the identification of connected
components in an undirected graph, thus providing a measure of the level of connection
within the network. This function assigns each node in the graph a connected component
identifier, enabling the determination of the total number of connected components present
in the graph. The graph’s connectivity coefficient can be calculated as

κ =
1
n

, (2)

where n is the number of connected components. This methodological approach allowed
for the analysis of how the variation in the threshold σth affects the global connectivity of
the graphs.

A threshold value of σth = 0.5 was decided upon, as lower values show coherence
interactions that may include noise, and values higher than this completely lose one of our
frequency bands.

With the specified threshold, we generated graphs explicitly depicting the mentioned
measures using MATLAB. The calculation of the distances between node pairs was carried
out without considering the weight of the edges, i.e., treating it as an unweighted graph.
Betweenness centrality and eigenvector centrality measures can be found in Appendix A
(Figures A6 and A7).

2.12. Hypergraph Construction

To contextualize the analysis of hypergraphs, we define the elements of graph theory
used to construct hypergraphs formed by nodes and edges, where nodes denote brain
regions, or groups of voxels, and edges denote correlations in activity between pairs of
nodes over time. Significant correlation in activity between pairs of edges over time is
denoted as links. In this context, we define a hyperedge as a group of links connecting two
or more edges with significantly correlated temporal profiles. Finally, a set of hyperedges
forms a hypergraph, H, defined as an ordered pair (V, ε). Here, V is a finite set of nodes
or vertices V = {1, . . . , N} and ε = {h1, h2, . . . , hn} is a family of nonempty subsets of
elements of X, called hyperedges or hyperlinks, showing the interaction between elements
of X [14].
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The algorithm of [47] was used for part of the hypergraph visualization. The incidence
matrix was given as input. The obtained representations included the hypergraph, the
incidence matrix in linear form, and the star expansion. Hypergraph characteristics were
obtained along with some matrix representations of the same.

2.12.1. Adjacency and Node Stars

Adjacency between vertices is established when at least one hyperedge contains two
vertices [14]. This is illustrated by the star of the nodes, which is defined as the collection
of hyperedges incident on node i: ε(i) = {h|i ∈ h} is referred to as the star of i, where h is
a hyperedge.

2.12.2. Degrees of Vertices and Hyperedges

The degree of vertices in the hypergraph is defined as degH(i) = |ε(i)|, which corre-
sponds to the size of its stars, i.e., the number of hyperedges incident to i. The degree of a
hyperedge, h ∈ ε, is the number of vertices it contains, denoted as deg(h) = |h|.

3. Results and Discussion
3.1. Coherence Brain Networks and Matrices

Figure 2 displays brain networks (left column) of the coherence and corresponding
8× 8 coherence matrices (right column) for five frequency bands (delta, theta, alpha, beta,
and gamma), presented using the BrainNet Viewer template. The coherence values shown
in this figure were computed from the averaged F-trials normalized to the B-trials. One
can observe that, in general, the coherence at low frequencies (delta and theta waves) is
stronger than that at high frequencies (alpha, beta, and gamma waves). In particular, the
strongest coherence at low frequencies occurred between the right and left temporal lobes
(Figure 2a,b). At the same time, for alpha waves, the strongest coherence was observed
between the right occipital and left parietal lobes (Figure 2c), while for beta waves, the
strongest coherence occurred between the right frontal and left occipital lobes (Figure 2d).
Finally, for gamma waves, the strongest coherence was observed between the left frontal
and right occipital lobes (Figure 2e). The coherence values in both the brain and matrix
representations are prominently depicted in the color bar, appearing as a distinct shade of
dark red.

3.2. Frequency Spectra

Figure 3 displays the brain activity in the frequency domain. Here, we present the
normalized power spectra in eight lobes, which correspond to the average fast Fourier
transform (FFT) of the F-trials, normalized to the FFT of the B-trials.

The modulation frequency fm = 6.67 Hz (M) is notably visible in the frequency
spectrum of most lobes. However, its second harmonic, 2 fm = 13.34 Hz (H), exhibits the
highest amplitude across all lobes. Furthermore, the higher harmonics at 3 fm and 4 fm are
discernible in the occipital lobes. This observation aligns cohesively with findings reported
by Chholak et al. [39].

3.3. Network Characteristics

We computed various network characteristics. As depicted in Figure 2, the coherence
coefficient ranges from 0 to 19.16 across different frequency bands, reaching a distinct
maximum value for each band. Table 1 displays the maximum coherences observed within
each frequency band, along with the lobes between which they were identified.
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Figure 2. Coherence networks (left column) with their respective matrices (right column) for
(a) delta, (b) theta, (c) alpha, (d) beta, and (e) gamma waves of the normalized F-trials. The stronger
coherence is represented by wider lines.
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(a) (b) (c) (d)

(e) (f) (g) (h)

−4 −4

−4 −4 −4 −4

−3−3

Figure 3. Power spectra of brain activity in different lobes: (a) left frontal, (b) right frontal, (c) left
occipital, (d) right occipital, (e) left parietal, (f) right parietal, (g) left temporal, and (h) right temporal.
The dotted lines marked by letters M and H denote the modulation frequency fm and its second
harmonic 2 fm, respectively.

Table 1. Maximum coherence of each frequency band.

Frequency Band Maximum Coherence Lobes

Delta 15.5940 Temporal Left–Temporal Right
Theta 19.160 Temporal Left–Temporal Right
Alpha 4.6720 Parietal Left–Parietal Right
Beta 0.8300 Frontal Right–Occipital Left

Gamma 0.7180 Frontal Left–Occipital Right

In Figure 4, we plot the global connectivity coefficient κ found by Equation (2) for each
frequency band with respect to the threshold value σth. A general decrease in the coherence
coefficient between nodes was observed with increasing frequency.

Figure 4. Global connectivity coefficient κ for different frequency bands as a function of the thresh-
old value.
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Additionally, it is noteworthy that our representation emphasizes the heightened
connectivity of low-frequency components compared to high frequencies, aligning with
previous observations by Salvador et al. [48]. This depiction offers a clearer insight into the
variations in connectivity between lobes within each frequency band.

One can see that, for each frequency range, there is a coherence threshold value σth at
which centrality measures, shortest-path distances, and degree of nodes undergo significant
changes (Figures A1–A5). This threshold value depends on the wave frequency. Specifically,
as seen in Figure 4, for delta waves σth ≈ 0.75 and for theta waves, the global connectivity
appears to remain constant at 1 at all these σth values: for alpha waves, this is σth ≈ 0.42, for
beta waves, this is σth ≈ 0.37, and for gamma waves, this is σth ≈ 0.3. This means that σth
decreases as the wave frequency increases, i.e., the brain network of functional connectivity
is more stable at low frequencies.

A connectivity threshold serves as a crucial parameter in delineating genuine connec-
tions within a functional network while filtering out spurious ones. This approach enables
a focused examination of network properties. Analyzing a graph necessitates setting a
connectivity threshold to discern valid connections among nodes and discard erroneous
ones. The choice of threshold value is somewhat arbitrary, with increasing thresholds
excluding weaker, potentially noisy connections. However, setting the threshold too high
risks eliminating important frequency bands like beta and gamma, resulting in a connectiv-
ity coefficient of 0 for the resulting graph. Our chosen threshold value of σth = 0.5 ensures
a minimum coherence of this magnitude between lobes’ signals. Despite its strictness, this
threshold preserves all connections across various frequency bands.

Figure 5 illustrates the results of the analysis of degree centrality in the brain network of
the eight lobes for different frequency ranges. The node sizes indicate their importance as a
function of edge weights. Centrality, as extensively documented in the electrophysiological
literature, has consistently underscored the non-uniform distribution of coherence across
frequencies [49]. It is well established that different systems of brain regions may exhibit
varying levels of coherence at distinct frequencies [48].

(a) (b) (c)

(d) (e)

Figure 5. Degree centrality for (a) delta, (b) theta, (c) alpha, (d) beta, and (e) gamma waves at σ = 0.5.

The centrality patterns also demonstrate frequency-specific nuances. Specifically, at
low frequencies, centrality predominantly manifests in temporal lobes, with noteworthy
lateralization observed in delta and theta waves (Figure 5a,b). For alpha frequencies
(Figure 5c), the coherence reveals a shift in centrality, now prominently observed in the
right occipital and left parietal lobes, whereas in the case of beta and gamma waves
(Figure 5d,e), the centrality is very weak and homogeneous between lobes. Contralateral
coherences are observed between frontal and occipital lobes in the high-frequency bands.
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Figure 6 presents another representation of the node degrees for the lobes. It is evident
that the nodes exhibit larger coherence-related connections in the low-frequency bands
(Figure 6a,b). However, in the higher-frequency bands (Figure 6c–e), the connections are less
pronounced. Notably, the connections in the delta band (Figure 6a) are smaller compared
to those in the theta network (Figure 6b), which shows nodes with degrees of 7. A more
evident alteration is observed for alpha waves (Figure 6c), where the left temporal lobe is
completely disconnected, while the other lobes experience a reduction in connections. In
the beta graph (Figure 6d), the right parietal lobe ceases to participate entirely. Meanwhile,
for gamma waves (Figure 6e), engagement diminishes for the temporal lobes, while the
rest show a degree of 1.

(a) (b) (c)

(d) (e)

Figure 6. Node degrees for (a) delta, (b) theta, (c) alpha, (d) beta, and (e) gamma waves. FL—left
frontal; FR—right frontal; OL—left occipital; OR—right occipital; PL—left parietal; PR—right parietal;
TL—left temporal; TR—right temporal.

Figure 7 illustrates the connected graph components, which are the subset of network
nodes where there is a path from each node in the subset to any other node in the same
subset [45]. This representation allows us to observe the formation of groups as connections
begin to dissolve. Identifying connected components within an undirected graph provides
insight into the network’s level of connectivity and aids in the extraction of coefficient κ
(Equation (2)). Table 2 presents the global connectivity coefficients for σth = 0.5.

Figure 8 shows cycles formed in the networks for three frequency bands: delta, theta,
and alpha. A cycle is a connected graph, in which each vertex has degree 2 [46]. The total
number of cycles found for each graph is indicated in the figure. The theta graph (Figure 8b)
displays the greatest connectivity and the most edges, resulting in a higher number of cycles
within the network. In contrast, both the alpha and delta graphs (Figure 8a–c, respectively)
exhibit fewer connections, with the alpha graph revealing only three cycles. Furthermore,
no cycles were observed in the beta or gamma graphs. This observation is consistent with
the broader literature, which suggests that slower rhythmic patterns typically exhibit a
more widespread network configuration compared to faster ones [50,51].

Table 2. Connectivity coefficients for different frequency bands.

Frequency Band κ

Delta 1
Theta 1
Alpha 0.5
Beta 0.5

Gamma 0.2
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(a) (b) (c)

(d) (e)

Figure 7. Connected graph components for (a) delta, (b) theta, (c) alpha, (d) beta, and
(e) gamma bands.

(a) (b) (c)

Figure 8. Cycles of the graphs for (a) delta, (b) theta, and (c) alpha bands.

Distances between nodes are represented as 8× 8 matrices (DeltaD, ThetaD, AlphaD,
BetaD, GammaD), showing the shortest path distances. When the nodes are not connected,
the distance is infinite. The disconnection of the networks is also noticeable in these
matrices. The largest value is a five-node distance, only seen in the beta wave.

DeltaD =



0 1 2 1 1 1 2 1
1 0 1 2 1 2 1 2
2 1 0 2 1 1 2 2
1 2 2 0 2 1 2 2
1 1 1 2 0 2 1 1
1 2 1 1 2 0 1 1
2 1 2 2 1 1 0 1
1 2 2 2 1 1 1 0



ThetaD =



0 2 1 1 1 1 1 1
2 0 1 2 2 1 1 2
1 1 0 1 1 1 1 1
1 2 1 0 2 1 2 1
1 2 1 2 0 1 2 1
1 1 1 1 1 0 1 1
1 1 1 2 2 1 0 1
1 2 1 1 1 1 1 0
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AlphaD =



0 2 2 1 2 2 ∞ 1
2 0 2 2 1 2 ∞ 1
2 2 0 3 3 2 ∞ 1
1 2 3 0 1 2 ∞ 2
2 1 3 1 0 1 ∞ 2
2 2 2 2 1 0 ∞ 1
∞ ∞ ∞ ∞ ∞ ∞ 0 ∞
1 1 1 2 2 1 ∞ 0



BetaD =



0 4 3 1 2 ∞ 2 1
4 0 1 5 2 ∞ 4 3
3 1 0 4 1 ∞ 3 2
1 5 4 0 3 ∞ 3 2
2 2 1 3 0 ∞ 2 1
∞ ∞ ∞ ∞ ∞ 0 ∞ ∞
2 4 3 3 2 ∞ 0 1
1 3 2 2 1 ∞ 1 0



GammaD =



0 ∞ ∞ 1 ∞ ∞ ∞ ∞
∞ 0 1 ∞ ∞ ∞ ∞ ∞
∞ 1 0 ∞ ∞ ∞ 1 ∞
1 ∞ ∞ 0 ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ 0 1 ∞ ∞
∞ ∞ ∞ ∞ 1 0 ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ 0 ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ 0


3.4. Hypergraphs

Figure 9 represents the hypergraph constructed based on a chosen threshold (σth = 0.5)
in different forms with colors corresponding to different frequency bands. In particular,
the hypergraph is shown as a network in Figure 9a, a star expansion in Figure 9b with
connections for each node, and as its incidence matrix in Figure 9c. It is observed that all
eight lobes are coupled in the low-frequency ranges of the delta and theta bands, seven
lobes (FL, FR, OL, OR, TR, PL, and PR) are coupled for the alpha band, eight lobes (FL, FR,
TL, TR, OL, OR, and PL) for the beta band, and six lobes (FL, FR, OL, OR, PL, and PR) for
the gamma band.

The analysis was carried out following the basic properties of hypergraphs. The
degrees of the vertices and hyperedges are given in Table 3, where degH(i) = |ε(i)| is the
number of vertices incident on i, and the degree of a hyperedge deg(h) = |h| is the number
of vertices it contains.

Table 3. Vertices and hyperedges degrees.

Vertice |ε(i)| Hyperedge |e|
Frontal Left 5 Delta 8

Frontal Right 5 Theta 8
Occipital Left 5 Alpha 7

Occipital Right 5 Beta 7
Parietal Left 5 Gamma 6

Parietal Right 4
Temporal Left 3

Temporal Right 4
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Figure 9. Hypergraph representation as (a) network, (b) star expansion, and (c) adjacency matrix.
Colors are maintained between hypergraph representations. Delta (red), Theta (blue), Alpha (green),
Beta (magenta), Gamma (yellow).

A star, as mentioned earlier, denotes a pattern where a central vertex—in this case,
representing a cerebral lobe—is intricately connected to multiple peripheral vertices, sym-
bolizing different brain frequency ranges. This graphical representation is valuable as it
effectively portrays the intricate relationship between a specific cerebral lobe and its in-
volvement across diverse frequency bands. The presence of stars within the graph signifies
that the central cerebral lobe exhibits activation across various cognitive conditions or
mental states, indicative of its multifunctional nature.

The stars of each lobe are the following:

- Left frontal lobe (node 1): Delta, theta, alpha, beta, and gamma.
- Right frontal lobe (node 2): Delta, theta, alpha, beta, and gamma.
- Left occipital lobe (node 3): Delta, theta, alpha, beta, and gamma.
- Right occipital lobe (node 4): Delta, theta, alpha, beta, and gamma.
- Left parietal lobe (node 5): Delta, theta, alpha, beta, and gamma.
- Right parietal lobe (node 6): Delta, theta, alpha, and gamma.
- Left temporal lobe (node 7): Delta, theta, and beta.
- Right temporal lobe (node 8): Delta, theta, alpha, and beta.

Although correlations between frequencies have been observed in previous stud-
ies [52], and biophysical models have been proposed to explain interactions among differ-
ent frequency bands, such as theta and gamma [53], further research, similar to the current
study, is necessary to elucidate the potential coupling between the mechanisms generating
these distinct frequencies.
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4. Conclusions

In this study, we conducted a comprehensive hypergraph analysis of functional con-
nectivity using MEG data acquired from a modulated visual stimulus. By focusing on
differences within distinct frequency bands, we constructed a coherence-based hypergraph
to explore functional connectivity among the frontal, parietal, temporal, and occipital brain
lobes. Our findings suggest that each frequency band has a specific coherence threshold;
beyond this, significant changes occur in network characteristics, such as centrality, shortest-
path distances, and node degree. Interestingly, this threshold is lower for higher-frequency
bands, indicating stronger connectivity between lobes at lower frequencies and greater
stability in the brain network of functional connectivity. Specifically, we observed strong
coherence among all eight lobes in the delta and theta bands; this was only observed among
six lobes in the gamma band.

Furthermore, we noted variations in global connectivity with coherence thresholds
across different frequency bands. Strong coherence was observed between temporal right
and left lobes for delta and theta waves, occipital right and parietal left lobes for alpha
waves, frontal right and occipital left lobes for beta waves, and frontal and occipital lobes
for gamma waves. These findings collectively contribute to our understanding of brain
network dynamics across different frequency bands. Our results lend credence to the idea
that cortico–cortical interactions can manifest at multiple levels. The resultant hypergraph
exposes robust activation patterns in select brain regions across varied cognitive contexts as-
sociated with various frequency bands, hinting at possible integration or multifunctionality
within these lobes.

While previous studies have noted correlations between frequencies and proposed
biophysical models to explain interactions, our results highlight the importance of further
research to unravel potential connections between the mechanisms generating different
frequencies and with a modulated visual stimulus, using coherence instead of traditional
correlation. Additionally, we argue that exploring hypergraph visualizations with a focused
examination of finer-grained neural ensembles or smaller regions of interest (ROIs) can
reveal compelling dynamics that merit further scholarly investigation.
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Appendix A. Network Characteristics as a Function of Coherence Threshold

The dependencies of the main network characteristics on the coherence threshold σ
for different brain waves are illustrated in Figures A1–A5 (delta in Figure A1; theta in
Figure A2; alpha in Figure A3; beta in Figure A4; gamma in Figure A5). The lobes are
represented with different colors. The shortest path distances and numbers of cycles depict
averages in the case of distances and totals in the case of cycles.
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Figure A1. Network characteristics versus coherence threshold value σth for delta band: degree
centrality (degc), betweenness centrality (bc), eigenvector centrality (ec), connected components
(bins), shortest-path distances (d), number of cycles (Cycles), and degree of nodes (deg).

Figure A2. Network characteristics for theta band.

Figure A6 illustrates the results of the analysis of the betweenness centrality coefficient,
which measures the importance of a node in terms of the number of shortest paths that
pass through it. Once again, the connections are less pronounced at higher frequencies
(Figure A6c,d) compared to lower frequencies (Figure A6a,b). Furthermore, the nodes with
the highest betweenness centrality vary across different frequency bands. In the gamma
band (Figure A6d), the nodes show a uniform and reduced size, whereas in the delta
band (Figure A6a), the nodes with the highest betweenness centrality coefficient are the
left parietal and left frontal lobes. In contrast, in the theta band (Figure A6b), a notable
enlargement was observed in the right parietal lobe compared to other lobes, presenting a
striking contrast to the sizes depicted in the degree centrality graph (Figure 5b), where it
initially appeared to be one of the smallest.
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Figure A3. Network characteristics for alpha band.

Figure A4. Network characteristics for beta band.

The eigenvector centrality, depicting the significance of a node based on the importance
of its neighboring nodes, is illustrated in Figure A7. Node sizes reflect their respective
importance, mirroring the patterns observed in Figure 5 across most graphs. However, in
the case of gamma waves, node sizes remain consistent. Conversely, nodes associated with
alpha waves, particularly in the right temporal region, exhibit notably diminished sizes
compared to their prominence in degree centrality (Figure 5c).
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Figure A5. Network characteristics for gamma band.

(a) (b) (c)

(d) (e)

Figure A6. Betweenness centrality for (a) delta, (b) theta, (c) alpha, (d) beta, and (e) gamma bands.

(a) (b) (c)

(d) e)

Figure A7. Eigenvector centrality for (a) delta, (b) theta, (c) alpha, (d) beta, and (e) gamma bands.
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