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Abstract: Ensuring noise immunity is one of the main tasks of radio engineering and telecommunica-
tion. The main task of signal receiving comes down to the best recovery of useful information from a
signal that is destructed during propagation and received together with interference. Currently, the
interference and noise control comes to the fore. Modern elements and methods of processing, related
to intelligent systems, strengthen the role of the verification and recognition of targets. This makes
noise control particularly relevant. The most-important quantitative indicator that characterizes the
quality of the useful signal is the signal-to-noise ratio. Therefore, determining the noise parameters is
very important. In the present paper, a signal model is used in the form of an additive mixture of
useful signals and Gaussian noise. It is an ordinary model of a received signal in radio engineering
and communications. It is shown that the phase portrait of this signal has the shape of an ellipse at
the low noise level. For the first time, an expression of the width of the ellipse line is obtained, which
is determined by the noise dispersion. Currently, in electroencephalography, diagnosis is based on
the Fourier transform. But, many brain diseases are not detected by this method. Therefore, the
search and use of other methods of signal processing is relevant.

Keywords: phase portrait; signal-to-noise ratio; electroencephalogram; wavelet transform

1. Introduction

The expansion of the functions and tasks of information exchange is one of the most-
important trends in the modern development of society. At the same time, the role of
information systems that ensure the transmission, reception, and processing of information
with the required quality and in specified time intervals increases significantly. The use of
a unified energy information carrier—the electromagnetic field—significantly increases the
importance of radio engineering systems for receiving and processing signals operating in
a wide range of frequencies, both in pulsed and continuous modes.

The complexity of the problem is significantly aggravated due to a sharp increase in
the number of signal sources, which leads to an increase in the integral background of
electromagnetic interference. This complicates the task of the useful signal standing out.
Along with natural noise, which includes the internal noise of radio receivers, atmospheric
and industrial interference, signal fluctuations, reflection from the underlying surface, etc.,
in the channels of radio engineering systems, several radio systems for various purposes
operate simultaneously on the same or adjacent sections of the frequency range. Based on
this, the search for new methods of signal processing is relevant.

Despite the high information content and compactness, the phase plane did not
become a tool for analyzing processes in radio engineering and telecommunication systems.
The phase plane is a less-commonly used method in signal processing than the amplitude
spectrum. However, there are applications of this method to EEG, audio signals, etc. [1–4].
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This work aims to expand the application of this method and to show its advantages in the
visualization and determination of the SNR, also in the case of EEG.

2. Phase Plane Method

A phase portrait is a graphical representation of a dynamical system, which is de-
scribed by a system of differential equations. It allows us to visualize the change in the
state of the system as a function of time. A phase portrait is constructed in a coordinate
plane, where each point represents the state of the system at a certain point in time. The
coordinate axes correspond to the variables of the system’s state.

The phase portrait allows us to analyze the behavior of the system, determine the
stability of its states, and find points of equilibrium. It can also help in predicting the future
behavior of the system and determine the optimal parameters to achieve the desired results.

To build a phase portrait, it is necessary to:

• Define the system state variables. These can be physical quantities such as position,
speed, temperature, etc.;

• Define differential equations that describe how the variables of the state of the system
change over time. These equations can be derived from physical laws or experimen-
tal data;

• Solve the differential equations for different initial conditions to obtain the values of
the variables of the state of the system at different points in time;

• Draw points corresponding to the values of the state variables on the coordinate plane.
Each point represents the state of the system at a particular point in time;

• Connect the points with lines or curves to obtain a phase portrait. The shape and nature
of these lines or curves can provide information about the behavior of the system.

The phase portrait can be supplemented with additional elements such as phase
trajectories, phase flows, and phase lines. These elements can help to visualize and analyze
the behavior of the system in detail.

A phase portrait is a graphical representation of the states of a system as a func-
tion of time. It consists of several basic elements: equilibrium points, phase trajectories,
phase lines.

The phase portrait is a powerful tool for analyzing and understanding the dynamics
of a system. It is used in various fields of science and technology: mechanics and physics,
biology, economics, and finance. In radio engineering, the phase portrait is used to analyze
the dynamics of electrical circuits. For example, when analyzing the operation of a generator
of electromagnetic oscillations, both harmonic and relaxation, the phase portrait allows us
to determine different modes of operation.

The phase plane method is a qualitative method for studying both the stationary
and transient regimes, including nonlinear systems. In fact, this method is reduced to the
numerical solution of a second-order differential equation. The main advantage of the
phase plane method is its suitability for the analysis of nonlinear systems. Some important
features of nonlinear systems, which are impossible or difficult to study analytically, can be
studied using graphoanalytical constructions on the phase plane [5].

The phase trajectory is a set of points; the horizontal coordinate corresponds to the
system function, and the vertical coordinate is its derivative at each moment of time.

The phase portrait (PP) shows all possible system operation regimes at any initial
conditions. In particular, it is possible to observe limit cycles, if they exist. Besides, the PP
illustrates the stability of limit cycles, and the shape of limit cycles reflects the oscillations
shape [6,7].

If the equations of a system are presented in canonical form, then the state vector of
the system uniquely determines its state. Using the phase plane method, the behavior of
the nonlinear system under study is considered and described, not in the time domain
(that is, in the form of equations of processes in the system), but in the phase space of the
system (that is, in the form of phase trajectories). Each state of the system in the state space
corresponds to a point. The depicted point moves over time, describing the phase trajectory.
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From this point of view, time is a parameter: the phase trajectory equation is given by the
relationship between the function and its velocity.

Visually, the phase trajectory and phase portrait can be represented in the case of a
two-dimensional phase space. The two-dimensional phase space is called the phase plane;
this is a coordinate plane in which two variables (phase coordinates) are placed along the
coordinate axes, which uniquely determines the state of the second-order system. The
speed of movement is placed along the ordinate axis and displacement along the abscissa
axis of the phase plane [8–10].

Based on the phase portrait, conclusions can be drawn about the nature of transient
processes. The phase portrait provides the necessary information about the behavior of the
system, which is described by a nonlinear equation. The phase portrait shows all possible
modes for any initial conditions. In particular, boundary cycles, if they exist, are noticeable.
Based on the phase portrait, conclusions can be drawn about the stability of boundary
cycles. The shape of the boundary cycles expresses the shape of the oscillations. The phase
plane method is widely used in the theory of nonlinear devices, as it helps to simply and
clearly illustrate the nature of oscillations [11–14].

However, it is convenient to study nonlinear systems by constructing a phase portrait
only in the case of a second-order system, when the phase trajectories are placed on a
plane [15,16].

Let us determine the phase trajectory of the harmonic oscillation: x = Acos(ωt + ϕ),
then v = x′ = −Aωsin(ωt + ϕ).

Let us exclude time by adding x2 and (x′)2. We obtain

x2

A2 +
ν2

(Aω)2 = 1. (1)

On the phase plane, Equation (1) describes an ellipse with half-axes A and Aω
(Figure 1). The ellipse turns into a circle at ω = 1. However, a circle can be obtained
for any frequency by changing the ordinate axis scale [17,18].

Figure 1. Harmonic oscillations the PP of different amplitudes.

Let us consider a different kind of signal. For the triangular signal, the velocity is
piecewise constant. In this case, the phase trajectory is a rhombus (Figure 2).
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Figure 2. PP of triangular oscillation.

3. Determination of the Signal-to-Noise Ratio Based on the Phase Portrait

The possibilities of the phase plane method are considered in the analysis of stochastic
processes. First, we consider Gaussian noise with zero mean value and standard deviation
σ = 1. The Gaussian noise PP is shown in Figure 3.

Figure 3. Gaussian noise PP.

In Figure 3, it is seen that the deviation from the mean practically does not exceed
3, i.e., the 3-sigma rule is carried out [17]. Along the ordinate axis, the derivative of the
normal process has been placed. Let us define its mean value and dispersion using the
statistics’ basic formulas [18,19].

The obtained results are given in Table 1.

Table 1. Statistical parameters of the normal process derivative.

Probability Density Function Mean Value Dispersion{
x

2σ2 exp(−x2

2σ2 ), if x ≥ 0
−x
2σ2 exp(−x2

2σ2 ), if x ≤ 0
0 2σ2 = 2

The probability density function of the normal process derivative is shown in Figure 4.
The resulting probability density function characterizes a new random process, which

has zero mean value, and the values of the process are concentrated in the interval −4σ ≤
x′ ≤ 4σ. This is shown in Table 2.

One of the most-commonly used models of a received signal in radio engineering and
communications is the additive mixture of useful signals and noise. In radio engineering
and communications, the Gaussian random process is a mathematical model of active
and passive interferences, atmospheric and cosmic noise, fading channels, and channels
with multipath propagation. The receiver’s fluctuation noises also have a normal law of
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distribution [19]. The adequacy of this model for many real interferences and signals and
its universality are explained by the central limit theorem of the probability theory.

Figure 4. Probability density function of the normal process derivative.

Let us consider the signal PP at different signal-to-noise ratios (SNRs) (Figure 5). The
harmonic signal is a useful signal, and Gaussian noise is an interference.

From the figures (Figure 5), it can be seen that the PP of the additive mixture of the
harmonic signal and normal noise has an ellipse form and the ellipse line width is a function
of the noise power.

Figure 5. PP of the sum of harmonic oscillation and Gaussian noise.

Since the differentiation operation is linear, it is possible to determine the ellipse line
width. To do this, the probability of x′ should be defined in certain limits.

The probability of x′ = y should be in the range [−a, a] and P(−a ≤ y ≤ a) =⌊
1 − exp(−y2/2σ2)

⌋
.

Let us determine this probability at different values of the parameter a. The results are
shown in Table 2.

Table 2. Probability of x′ = y at different values of the parameter a.

a 2σ 3σ 4σ

P (−a ≤ y ≤ a) 0.8647 0.9889 0.9997

Therefore, the ellipse line thickness is determined by the value of 8σ. Obviously, for
the phase portrait of the additive mixture of the harmonic signal and normal noise to have
the form of an ellipse, the following condition should be satisfied:

Aω sin(ωt + ϕ)/4σ > 1 . (2)

4. Electroencephalogram Phase Portrait and Wavelet Analysis

Numerical methods in biomedical research belong to a rapidly developing field, which
provides a state-of-the-art tool for biomedical research and applications. These methods are
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currently applied in medicine, specifically in neuroscience, cardiology, and pathology. Data
processing has currently become one of the most-active fields of neuroscience, in particular
in the processing of electroencephalograms (EEGs).

An EEG is a broadband oscillatory process in which, however, certain dominant
harmonic constituents exist. The total EEG reflects the functional activity of the brain.
Changes in the brain’s functional activity are quite unambiguously reflected in the EEG.

Therefore, in modern studies, EEG indicators are among the most-important in as-
sessing the level of functional activity in clinical neurophysiology and psychophysiol-
ogy [20,21].

The spectrum of the EEG is quite complicated. The classification of EEG rhythms by
some basic ranges is introduced. The concept of “rhythm” in the EEG refers to a certain
frequency band matching to a certain brain condition. The main rhythms are given in
Table 3 [20,21].

Table 3. EEG rhythms.

EEG rhythms of an awake adult

rhythm Frequency (Hz) Amplitude (µV)

α 8 ÷ 13 up to 100

β 14 ÷ 40 up to 15
normally 3 ÷ 7

Types of pathological activity for an awake adult

δ 0.5 ÷ 3 exceeds 40 µV,
reaching 300 µV or more
in some pathological
conditions

θ 4 ÷ 6 − ≪ −

The most-widely used method in clinical practice is the study of the signal spectrum,
which is, to some extent, comparable to the manual amplitude–frequency analysis of the
EEG. This method is highly informative and visual when assessing EEG components. As
in manual analysis, the problem of determining the ratio of various rhythmic components
in a complex EEG and determining their individual expression is solved. For this purpose,
the Fourier transform (FT) is used. The FT is used when it is necessary to visually assess
the holistic dynamics of the EEG during long-term observation or functional tests. In
this case, the spectra for successive epochs are displayed, drawn one after the other. But,
unfortunately, this method of EEG analysis does not allow diagnosing many brain diseases,
for example Parkinson’s and Alzheimer’s diseases. Therefore, the use of other methods of
EEG analysis is relevant.

The ability to accurately quantify EEG parameters allows for a more-detailed and
objective assessment of dynamic changes in the functional state of the brain, which turn
out to be more-informative than assessing the differences between normal and pathological
conditions using manual research methods. Using the power spectrum, you can easily
obtain a picture of the EEG distribution over the rhythms and determine the dominant
rhythm and the dominant frequency of both the entire EEG and each individual rhythm.

The use of numerical methods in studying the rhythms of the biopotentials of the
brains of patients with local lesions made it possible to obtain quantitative, objective
assessments of EEG disorders. In addition, the use of numerical methods expands the
diagnostic and, in cases of severe conditions, prognostic capabilities of EEG.

The fact that EEG is a broadband oscillatory process, in which, however, certain
dominant harmonics can be identified, is proof that brain neurons synchronize their work
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with each other. Otherwise, the sum of many thousands or even millions of electrical
potentials of individual nerve cells would constitute quasi-white noise. Changes in the
functional activity of the brain are reflected quite clearly in the EEG. The connection between
these changes and EEG changes is so close that, in modern studies, EEG indicators are one of
the most-important in assessing the level of functional activity in clinical neurophysiology
and psychophysiology.

The EEG rhythms of an awake adult person include the alpha, beta, and gamma
rhythms [22–25].

The alpha rhythm is characterized by a frequency in the range of 8 ÷ 13 Hz, with
an amplitude up to 100 µV. It is registered in 85 ÷ 95% of healthy adults examined. It is
best expressed in the occipital regions; in the anterior direction, its amplitude gradually
decreases. Healthy people are characterized by a relatively narrow range of the α rhythm.
The α rhythm has the greatest amplitude in a state of calm, relaxed wakefulness. Its
amplitude varies significantly over time. Spontaneous changes in amplitude, the so-called
“spindles”, are observed quite regularly, expressed in alternating increases and decreases
in amplitude. With an increase in the level of the functional activity of the brain (intense
attention, intense mental work, etc.), the amplitude of the α rhythm decreases, and often, it
completely disappears. High-frequency irregular activity appears in the EEG.

The beta rhythm is characterized by a frequency in the range of 14 ÷ 40 Hz and
an amplitude up to 15 µV. The β rhythm is best recorded in the area of the anterior
central gyri, but also extends to the posterior central and frontal gyri. Normally, it is very
weakly expressed and usually has an amplitude of 3 ÷ 7 µV. If there are artifacts, they
can completely camouflage themselves. The β rhythm is associated with motor cortical
mechanisms and produces an extinction reaction in response to motor activation. When
moving, the β rhythm disappears in the zone of the corresponding cortical projection.

In Figure 6, the EEG of an healthy adult person is shown. Since the frequency band
0.5 ÷ 40 Hz is informative, the signal is filtered by a bandpass filter with cutoff frequencies
of 0.4 and 45 Hz. This figure clearly shows the nonstationarity of the EEG.

Figure 6. EEG of an awake adult.

The spectrum of this implementation is shown in Figure 7. It is incorrect to use the
spectral method in the case of a nonstationary signal, but, nevertheless, it has found wide
application in electroencephalography, because it allows obtaining an approximate idea of
EEG rhythms.

In this figure, a high level of the α rhythm can be observed, which is natural in a state
of quiet wakefulness. Other rhythms are weakly expressed. The EEG is essentially uniform
across the entire brain and symmetrical. However, the functional heterogeneity of the
cortex leads to peculiarities in the electrical activity of different areas of the brain. However,
due to a fairly gradual transition from one functional zone of the cortex to another, the
change in EEG types along the length of the cortex occurs gradually.
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Figure 7. EEG amplitude spectrum of the awake adult shown in Figure 6.

One of the main criteria when analyzing the EEG is symmetry. EEG symmetry means
a significant coincidence of frequencies, amplitudes, and phases of symmetrical areas of the
two hemispheres of the brain. Based on the prevalence of asymmetric pathological oscilla-
tions, they predict hemispheric disorders, when the changes cover the entire hemisphere,
and focal ones, which are usually expressed under one electrode.

The frequency–amplitude characteristics of the EEG described above are characteristics
of a healthy, awake person.

Pathological manifestations in the EEG include the appearance of slow rhythms: theta
(θ) and delta (δ). The lower their frequency and higher the amplitude, the more pronounced
the pathological process is. The theta rhythm is characterized by a frequency of 4 ÷ 6 Hz,
and the amplitude exceeds 40 µV, reaching 300 µV or more in some pathological conditions.
The δ rhythm is characterized by a frequency of 0.5 ÷ 3 Hz, and the amplitude is the same
as that of the θ rhythm. In the EEG of an awake adult person, there may also be θ and δ
rhythms of short duration and with an amplitude not exceeding the amplitude of the α
rhythm. In this case, they speak of a certain decrease in the level of the functional activity
of the brain.

One of the important aspects of the use of the EEG is the study of epilepsy. Data
from modern research indicate that the brain in epilepsy is characterized by a number of
functional rearrangements at the macro- and micro-structural level.

Let us consider the implementation of the EEG of a person with epilepsy (Figure 8). The
same filtering was performed here as in the previous case (Figure 6). This implementation
differs from the implementation shown in Figure 6, even visually. It can be seen that it
contains slow components.

Figure 8. Implementation of an EEG of a person with epilepsy.

The spectrum of this implementation is shown in Figure 9. It contains powerful
frequency components in the ranges of the θ and δ rhythms and practically does not contain
the α rhythm.
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Figure 9. The spectrum of the EEG implementation shown in Figure 8.

The features of the EEG signal characterize it as nonstationary and broadband. In
the case of a nonstationary process, the Fourier transform does not provide any time
information. This method allows seeing the frequencies contained in the signal, but does
not allow determining at what time interval of the oscillations certain frequencies exist.
Therefore, the Fourier transform can be used to analyze nonstationary signals when only
frequency information is of interest, and the lifetime of the spectral components is not
important. In addition, a frequency component that is small in amplitude and duration
may not be detected in the spectral plot.

The variety of factors influencing the statistical properties of physiological processes
largely cause their nonstationarity, which leads to the need to search for adequate methods
for the statistical analysis of the EEG. This determines the wide variety of methods for the
statistical processing of the EEG [26–28].

The PP of this EEG implementation (Figure 10) has the form of an ellipse. This confirms
the conclusion that the mathematical model of the EEG is an additive mixture of harmonic
components and Gaussian noise [29]. But, in three cases, the PP of this EEG implementation
does not have the form of an ellipse, due to the random character of the EEG.

The SNR can be determined based on the phase portrait. The power of the sinusoidal
oscillation is A2/2 (see [1]). The noise power in this case is (4δ)2 = 16δ2. From this, we
obtain SNR = A2/32δ2. The results are shown in Table 4. It can be seen that, with the help
of the PP, it is possible to obtain the statistical characteristics of the EEG, which can be used
in diagnostics.

Figure 10. EEG PP of the awake adult shown in Figure 6.

Table 4. SNR of EEG.

Number of Realizations of EEG 1 2 3 4 5 6 7

SNR 22.1 23.5 23.1 22.9 23.1 22.7 23.4



Appl. Sci. 2024, 14, 2204 10 of 13

Recently, the wavelet transform (WT) has been widely used in the study of biomedical
signals, given their nonstationarity, and, in particular, in EEG processing [30–34]. This
method makes it possible to numerically characterize the duration and change of the basic
physiological rhythms, as well as to trace the change in frequency in time within each
rhythm. In addition, it allows the distribution of power over the frequency ranges to
be traced.

The wavelet transform decomposes the original signal into its approximation and
detail components, followed by refinement by the iterative method. Each step of such a
refinement corresponds to a certain level of signal decomposition and reconstruction. To
realize this possibility, there are series of orthogonal wavelets. They are created based on
the representation of the signal space as a system of nested subspaces, which differ from
each other only by changing the scale of the independent variable [31,35].

This type of analysis is based on the following premises:

• Signal space ν can be divided into nested subspaces νj that do not intersect;
• For any function s(t) ∈ νj, its compressed version belongs to the space νj−1;
• There is a function ϕ(x) ∈ ν0, the shifts of which ϕ0,k = ϕ(t− k) create the orthonormal

basis of space ν0.

Functions ϕj,k = 2
−j
2 ϕ(2−jt − k) create the orthonormal basis of the space.

The reconstruction of the signal at the resolution n-level jn is determined by the
expression:

s(t) =
∞

∑
k=−∞

ajn ,kϕjn ,k(t) +
∞

∑
j=jn

∞

∑
k=−∞

dj,kψk(t) , (3)

where a is the approximation coefficient; d is the detail coefficient.
Let us apply the WT to the implementation of the EEG shown in Figure 6. Simlet

wavelets were used. These wavelets belong to orthogonal wavelets with a compact carrier;
they are close to symmetrical ones [36].

Let us decompose the EEG implementation (Figure 6) into an approximation (a5) and
five detail coefficients (d1 ÷ d5) (Figure 11). This method is similar to frequency analysis
using bandpass filters.

Figure 11. WT of the EEG implementation shown in Figure 6.

All detail coefficients of the PP were built (Figure 12). The PP of the coefficient d1
looks like a noise PP. The remaining coefficients have the appearance of a rhombus.

For more details, coefficients d2 and d3 are shown in Figure 13. The hole observed on
the PP indicates that the oscillations are a mixture of the harmonic signal and the fairly
small noise level in these frequency bands. Therefore, the power of the noise is not evenly
distributed over the frequency range. This is observed for the EEGs of all ten awake adults.

Let us determine the spectrum of these detail coefficients. The amplitude spectrum
of the detail component d2 is shown in Figure 14. Peaks are reached at frequencies
f = 10; 20; 40 Hz.
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Figure 12. Detail coefficients of the PP of the EEG WT.

Figure 13. PP of the detail coefficients d2 and d3 (more details).

Figure 14. Amplitude spectrum of detail coefficients d2 and d3.

The amplitude spectrum of the detail component d3 is shown in Figure 14. Peaks are
reached at frequencies f = 5; 10; 20 Hz.

The considered amplitude spectra show that the main harmonic components are at
frequencies f = 5; 10; 20; 40 Hz.

5. Conclusions

The main task of signal reception is to recover as much useful information about
the signal as possible, which is distorted during propagation and received along with
interference.

The amplitude spectrum is widely used in signal processing, and the PP is unde-
servedly forgotten in this processing.

The most-important quantitative indicator that characterizes the quality of the useful
signal is the SNR.

For the first time, using an additive mixture of the signal and noise, it can be seen that,
at a sufficiently low noise level (SNR ≥ 23.9 in our case), the PP has the shape of an ellipse,
and the ellipse line width is determined by the value of 8σ.

The free space inside the ellipse disappears with an increase in noise power, and the
PP has the form of a noise PP.
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The condition when the phase portrait of the additive mixture of the harmonic signal
and normal noise has the form of an ellipse has been obtained.

EEGs of ten awake adults were considered. By constructing the EEG PP of an awake
adult, an ellipse was obtained. This form of the PP allows assuming that the mathematical
model of the EEG is an additive mixture of harmonic components and Gaussian noise.

Currently, wavelet analysis is widely used in applied problems in the analysis of
nonstationary signals. The application of the discrete WT and PP to the EEG makes it
possible to determine the harmonic components. The main harmonic components are at
frequencies f = 5; 10; 20; 40 Hz for the EEG under consideration. The EEG noise power is
shown to be not evenly distributed over the frequency range, which opens up the prospects
for the use of this method in the diagnosis of diseases and studies of the functional activity
of the brain. These methods can be installed in the form of the software and hardware
implementations of modern encephalographs, which will increase the reliability of the
analysis and ensure the reproducibility of the results.
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