
Citation: Fan, J.; Zuo, J.; Sun, G.;

Shi, Z.; Gao, Y.; Zhang, Y. Multicore

Parallelized Spatial Overlay Analysis

Algorithm Using Vector Polygon Shape

Complexity Index Optimization. Appl.

Sci. 2024, 14, 2006. https://doi.org/

10.3390/app14052006

Academic Editors: Ferdinando Di

Martino and Barbara Cardone

Received: 29 January 2024

Revised: 24 February 2024

Accepted: 27 February 2024

Published: 28 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Multicore Parallelized Spatial Overlay Analysis Algorithm
Using Vector Polygon Shape Complexity Index Optimization
Junfu Fan 1,2 , Jiwei Zuo 1, Guangwei Sun 1,*, Zongwen Shi 1, Yu Gao 1 and Yi Zhang 3,4

1 School of Civil Engineering and Geomatics, Shandong University of Technology, Zibo 255000, China;
fanjf@sdut.edu.cn (J.F.); 21407010773@stumail.sdut.edu.cn (J.Z.); 21407010766@stumail.sdut.edu.cn (Z.S.);
21507020775@stumail.sdut.edu.cn (Y.G.)

2 State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences
and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

3 College of Land and Resources and Surveying & Mapping Engineering, Shandong Agriculture and
Engineering University, Jinan 250100, China; cloud.zhangyi@foxmail.com

4 School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
* Correspondence: sgw_sdut@163.com; Tel.: +86-13-32520-6076

Abstract: As core algorithms of geographic computing, overlay analysis algorithms typically have
computation-intensive and data-intensive characteristics. It is highly important to optimize overlay
analysis algorithms by parallelizing the vector polygons after reasonable data division. To address
the problem of unbalanced data partitioning in the task decomposition process for parallel polygon
overlay analysis and calculation, this paper presents a data partitioning method based on shape
complexity index optimization, which achieves data equalization among multicore parallel computing
tasks. Taking the intersection operator and difference operator of the Vatti algorithm as examples, six
polygon shape indexes are selected to construct the shape complexity model, and the vector data are
divided in accordance with the calculated shape complexity results. Finally, multicore parallelism is
achieved based on OpenMP. The experimental results show that when a data set with a large amount
of data is used, the effect of the multicore parallel execution of the Vatti algorithm’s intersection
operator and difference operator based on shape complexity division is clearly improved. With
16 threads, compared with the serial algorithm, speedups of 29 times and 32 times can be obtained.
Compared with the traditional multicore parallel algorithm based on polygon number division, the
speed can be improved by 33% and 29%, and the load balancing index is reduced. For a data set with
a small amount of data, the acceleration effect of this method is similar to that of traditional methods
involving multicore parallelism.

Keywords: overlay analysis; shape complexity; data partitioning; parallel computing; acceleration
ratio; load balancing; OpenMP

1. Introduction

The overlay analysis of vector polygons is one of the basic functions of geographic
information system (GIS) spatial analysis [1], and it is an important and difficult problem
in the field of geographic data processing [2,3]. Vector polygon overlay analysis is not
only complicated in algorithm implementation but is also becoming increasingly computa-
tionally intensive and data-intensive with the rapid growth of spatial data volumes [4–6].
The computing performance of serial algorithms in dealing with large-scale spatial data
superposition is showing increasing difficulty in meeting application requirements [7].
The development of computer hardware technology and programming models has given
parallel computing an important role in solving intensive problems in the field of geo-
science computing. The ability of a CPU to directly and quickly access internal storage
also allows data sharing between tasks to be fast and unified. The OpenMP programming

Appl. Sci. 2024, 14, 2006. https://doi.org/10.3390/app14052006 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14052006
https://doi.org/10.3390/app14052006
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8987-7930
https://doi.org/10.3390/app14052006
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14052006?type=check_update&version=2

Appl. Sci. 2024, 14, 2006 2 of 14

model in a multicore environment is an effective way to perform parallel polygon overlay
analysis [8–10].

In parallel spatial analysis, the primary task of the parallel processing of spatial data
is to reasonably divide complex data and store them evenly and in a dispersed manner
among multiple computing nodes [11]. Ye et al., divided vector data in accordance with
the storage order of the polygon IDs, with the same number of polygons in each group [12].
Mineter, based on the spatial range division method of regular strips, extended the grid
division method for raster data division to the division of vector data and divided the data
in accordance with the spatial position of the data set [13]. Wang et al. proposed a quadtree
partitioning method based on the spatial locations of data sets [14]. Lee et al., proposed
a heuristic partitioning method using equal areas as the criterion for partitioning [15].
Zhou et al., proposed a data partitioning method based on the Hilbert curve [16]. Yang
et al. proposed a data partitioning method that amounts to the topological relationships of
polygons and achieved good parallel efficiency [17]. From the perspective of multicore data
parallelism, Fan et al. analyzed the similarities and differences of the parallel implementa-
tion methods of eight polygon overlay analysis tools and proposed an improved grouping
association minimization method to achieve data partitioning. Based on a load-balancing
calculation strategy with the number of vertices as an indicator and a variety of parallel
optimization methods and strategies, a parallel polygon overlay analysis toolset, including
eight operations, was implemented [10]. Wu et al. proposed a parallel filling and digging
algorithm for large-scale DEM data based on strip division [18,19]. These scholars’ data
partitioning methods have improved the efficiency of parallel spatial data processing, but
these partitioning methods cannot fully consider the impacts of polygon shape, size, and
structure, which can easily lead to an imbalance in the amount of calculation needed among
different groups.

The data structures of the geographic polygons used in overlay analysis can greatly
differ. These polygons include not only simple convex polygons but also complex concave
polygons, polygons with hole islands, and self-intersecting polygons [20]. To quantita-
tively measure the complexity of polygons, the concept of shape complexity has been
proposed [21]. Attneave first proposed constructing a shape complexity model based on
geometric features such as the number of vertices, symmetry, turning number, and angular
variability, but this model is effective only for concave polygons [22]. Chen et al. used
global distance entropy, local angle entropy, and polygon randomness to measure the
shape complexity of two-dimensional graphs [23]. Duan et al. used a combination of the
area, perimeter ratio, and number of blocks of a graph to represent shape complexity [24].
Brinkhoff et al. selected structural parameters, metric parameters, and statistical parameters
to construct a polygon complexity model [25]. Matsumoto et al. used the absolute curvature
to quantify the surface shape complexity of objects [26]. Guo et al. used the number of
polygon features and the number of vertices of each feature to quantify the complexity of
objects and, based on this, achieved reasonable data partitioning in parallel computing [27].
Li et al. defined a complexity calculation method for line elements and area elements based
on two indicators, namely, an area coefficient and an angle coefficient, and quantified the
geometric information of sensitive elements in digital maps [28]. However, although this
method partially solves the problem of measurement complexity in geographic calculations,
it does not reflect the relationship between shape complexity and the computational effi-
ciency of an overlay analysis algorithm. Zhang et al. selected 27 shape variables and used
a stepwise multiple linear regression method to establish a shape complexity model [29],
which effectively explained the relationship between complexity and algorithm efficiency;
however, this shape complexity model was not applied to vector data partitioning.

With the continuous development of the field of spatial overlay analysis, many poly-
gon clipping algorithms with different characteristics have emerged. Common polygon
clipping algorithms include the Wang algorithm [30], the Liang–Barsky algorithm [31],
the Sutherland–Hodgeman algorithm [32], the Weiler–Atherton algorithm [33], the Vatti
algorithm [34], the Greiner–Hormann algorithm [35], the Liu algorithm [36], and the Mar-

Appl. Sci. 2024, 14, 2006 3 of 14

tinez algorithm [37]. All of these algorithms have their own advantages and disadvantages.
The Wang algorithm and the Liang–Barsky algorithm apply only to arc polygons. The
Sutherland–Hodgman algorithm can be used to clip only arbitrary polygons and convex
polygons. The Weiler–Atherton algorithm can be used to perform the overlay analysis of
concave polygons and convex polygons, but there is a possibility of failure when dealing
with the superposition of overlapping edges. Compared with the Greiner–Hormann al-
gorithm, Liu’s algorithm offers no substantial improvement, and the algorithm proposed
by Martinez et al. has not been widely used [19]. The Greiner–Hormann algorithm and
the Vatti algorithm are generally recognized as effective algorithms that can address ar-
bitrary polygon clipping problems in a limited time and obtain correct results. However,
according to the experimental results of Martinez et al., the computational efficiency of the
Greiner–Hormann algorithm may be lower than that of the Vatti algorithm [37]. Therefore,
the Vatti algorithm is selected as the clipping algorithm in this paper.

In summary, previous scholars have carried out a lot of research on vector data
partitioning and polygon shape complexity measurement and have achieved certain results,
but there are some shortcomings. The current data partitioning method cannot fully
consider factors such as polygon spatial characteristics and shape characteristics, resulting
in unbalanced data after grouping; the measurement of shape complexity cannot fully
reflect the relationship with the performance of the overlay analysis algorithm. In view of
the above considerations, this paper combines shape complexity measurement with data
partitioning to establish a shape complexity model that can effectively explain algorithm
performance and applies it to the partitioning of vector data to make the grouped data
complexity similar and achieve data balance. Using two kinds of vector data with different
amounts of data, the intersection operator and difference operator of the Vatti algorithm
are taken as examples for multicore parallel comparative analysis. Specifically, a variety
of polygon shape indicators are selected, a stepwise multiple linear regression method is
used to establish a shape complexity model, the shape complexity value of each polygon is
calculated in accordance with this shape complexity model, and the vector data are then
divided based on the calculated shape complexity results. Finally, multicore parallelization
is performed on the divided data based on OpenMP. Moreover, the effectiveness of the
data partitioning method proposed in this paper for parallel overlay analysis is verified in
comparison with the traditional data partitioning method based on the number of polygons.
The acceleration effect and load balancing index are tested and evaluated in environments
with different numbers of parallel threads, and the most suitable number of parallel threads
is determined to improve the computational efficiency of the algorithm as much as possible.

2. Data

The parallel processing algorithms discussed in this article were developed in the C++
language, and the configuration of the experimental environment is shown in Table 1.

Table 1. Experimental environment configuration.

CPU GPU Memory/GB External
Memory/TB Compiler

AMD Ryzen 9
5950X 3.4 GHz

16 core

NVIDIA
GeForce RTX

3090
128 4 Visual Studio

2019

The experimental data for the target polygons were obtained from land use patch data
for China in OpenStreetMap and from the 2009 land use data for several counties in Ningxia.
The clipping polygon uses rectangular data with holes. The amount of land use patch data
for China is large: with 509,219 polygons, the number of vertices can reach 12,914,282, and
the overall complexity is high, as shown in Figure 1a. The amount of land use data for
several counties of Ningxia in 2009 is small, with 9129 polygons and 856,238 vertices, as
shown in Figure 1b. Figure 1c shows 52,100 rectangular holes used for the overlay analysis

Appl. Sci. 2024, 14, 2006 4 of 14

of the land use patches for China. Figure 1d shows 196 rectangular holes used for the
overlay analysis with the land use data for several counties in Ningxia in 2009. In both
cases, the target polygon data include simple polygons, concave polygons, hole-containing
island polygons, and self-intersecting polygons, representative of the general characteristics
and application value of planar geographic data in overlay analysis. The basic information
of the experimental data is shown in Table 2.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 4 of 14

vertices, as shown in Figure 1b. Figure 1c shows 52,100 rectangular holes used for the

overlay analysis of the land use patches for China. Figure 1d shows 196 rectangular holes

used for the overlay analysis with the land use data for several counties in Ningxia in 2009.

In both cases, the target polygon data include simple polygons, concave polygons, hole-

containing island polygons, and self-intersecting polygons, representative of the general

characteristics and application value of planar geographic data in overlay analysis. The

basic information of the experimental data is shown in Table 2.

Figure 1. Diagrams of the experimental data. (a) Land use patch data from China. (b) 2009 land

use data for several counties in Ningxia. (c) 52,100 rectangular data with holes. (d) 196 rectangular

data with holes.

Table 2. Details of the experimental data.

Experimental Data Number of Polygons Number of Vertices Area/km2

Land use patch data from China 509,219 12,914,282 96,390.5

2009 land use data for several

counties in Ningxia
9129 856,238 8611.9

3. Methods

3.1. Polygon Clipping Algorithm

The main process of clipping polygons with the Vatti algorithm is shown in Figure 2.

First, the vector polygons are read, and disjoint polygons are filtered out based on the

minimum bounding rectangle. Second, each polygon is traversed from the minimum

point at the bottom to the maximum point at the top by a scanning beam covering the area

between two adjacent scanning lines to extract the location information of each node of

the polygon, which is stored in the Edge Table, while the local minimum point is uni-

formly stored in the Local Minima Table, where all local minimum points are connected

together in the form of a one-way linked list. Finally, the resulting polygon is constructed

by calculating the intersections with the inner edges of each scanning beam and inserting

the intersection points.

Figure 1. Diagrams of the experimental data. (a) Land use patch data from China. (b) 2009 land use
data for several counties in Ningxia. (c) 52,100 rectangular data with holes. (d) 196 rectangular data
with holes.

Table 2. Details of the experimental data.

Experimental Data Number of Polygons Number of Vertices Area/km2

Land use patch data
from China 509,219 12,914,282 96,390.5

2009 land use data for several
counties in Ningxia 9129 856,238 8611.9

3. Methods
3.1. Polygon Clipping Algorithm

The main process of clipping polygons with the Vatti algorithm is shown in Figure 2. First,
the vector polygons are read, and disjoint polygons are filtered out based on the minimum
bounding rectangle. Second, each polygon is traversed from the minimum point at the bottom
to the maximum point at the top by a scanning beam covering the area between two adjacent
scanning lines to extract the location information of each node of the polygon, which is stored
in the Edge Table, while the local minimum point is uniformly stored in the Local Minima
Table, where all local minimum points are connected together in the form of a one-way linked
list. Finally, the resulting polygon is constructed by calculating the intersections with the inner
edges of each scanning beam and inserting the intersection points.

Appl. Sci. 2024, 14, 2006 5 of 14Appl. Sci. 2024, 14, x FOR PEER REVIEW 5 of 14

Figure 2. Flow chart of the Vatti algorithm.

3.2. Construction of the Shape Complexity Model

Zhang Peng et al. initially selected 27 shape variables, and 9 indexes were retained

by a stepwise multiple linear regression method for use in constructing the shape com-

plexity model. In this way, the relationship between the shape complexity of the polygons

and the computational performance of a spatial overlay analysis algorithm was estab-

lished. The model shows that the number of polygon vertices is the most important factor

affecting the overlay analysis, with its coefficient in the complexity model reaching 0.97

[29]. In multiple regression analysis, as the number of independent variables increases,

the model performance may improve, but this change is accompanied by greater compu-

tational overhead and obvious variable redundancy. Therefore, while ensuring the accu-

racy of the model, minimizing the redundancy of the variables can effectively reduce the

time needed to calculate the complexity index. This paper is based on reference [29], re-

tains the index of the number of vertices with the greatest impact, and selects 5 indexes

that take less time to calculate. The final indexes are as follows: Number of vertices (NOV),

Amplitude of the vibration (Ampl), Number of holes (NOH), Average nearest neighbor

(ANN), Concavity (Conv), and Equivalent rectangular index (ER). Detailed descriptions

of these shape indexes are shown in Table 3.

Table 3. Polygon shape indexes. (chA : area of the convex hull of the polygon; polA : area of the

polygon; mbrA : area of the minimum bounding rectangle of the polygon; polP : perimeter of the

polygon; chP : perimeter of the convex hull of the polygon; mbrP perimeter of the minimum

bounding rectangle of the polygon; earP perimeter of equal-area rectangle of the polygon.)

Polygon Shape Index Equation Description

Number of vertices

(NOV)
polNOV V=

The number of vector polygon

vertices

Amplitude of the vibra-

tion (Ampl)
() /pol ch polAmpl P P P= −

The perimeter difference be-

tween the vector polygon and

its convex hull

Number of holes (NOH) holeNOH H=
The number of inner rings of

the vector polygon

Figure 2. Flow chart of the Vatti algorithm.

3.2. Construction of the Shape Complexity Model

Zhang Peng et al. initially selected 27 shape variables, and 9 indexes were retained by
a stepwise multiple linear regression method for use in constructing the shape complexity
model. In this way, the relationship between the shape complexity of the polygons and the
computational performance of a spatial overlay analysis algorithm was established. The
model shows that the number of polygon vertices is the most important factor affecting
the overlay analysis, with its coefficient in the complexity model reaching 0.97 [29]. In
multiple regression analysis, as the number of independent variables increases, the model
performance may improve, but this change is accompanied by greater computational
overhead and obvious variable redundancy. Therefore, while ensuring the accuracy of
the model, minimizing the redundancy of the variables can effectively reduce the time
needed to calculate the complexity index. This paper is based on reference [29], retains
the index of the number of vertices with the greatest impact, and selects 5 indexes that
take less time to calculate. The final indexes are as follows: Number of vertices (NOV),
Amplitude of the vibration (Ampl), Number of holes (NOH), Average nearest neighbor
(ANN), Concavity (Conv), and Equivalent rectangular index (ER). Detailed descriptions of
these shape indexes are shown in Table 3.

In this paper, 100,000 polygons are randomly selected from the land use patch data for
China and the 2009 land use data for several counties in Ningxia for use as target polygons,
and a typical complex polygon is selected as a clipping polygon. For each target polygon,
an overlay analysis operation is performed with the selected clipping polygon, with the
above six indicators as independent variables and the running time of the polygon overlay
analysis algorithm as the dependent variable. The stepwise multiple linear regression
method in the IBM SPSS Statistics 27.0.1 software is used to construct the shape complexity
models for the intersection operator and difference operator of the Vatti algorithm. The
model equations are (1) and (2):

C1 = 0.971x1 + 0.059x4 + 0.018x5 + 0.034x6 (1)

C2 = 0.97x1 − 0.004x2 + 0.037x3 + 0.06x4 + 0.024x5 + 0.037x6 (2)

Appl. Sci. 2024, 14, 2006 6 of 14

where C1 is the shape complexity of the intersection operator of the Vatti algorithm, C2
is the shape complexity of the difference operator, x1 is the Number of vertices, x2 is the
Amplitude of the vibration, x3 is the Number of holes, x4 is the Average nearest neighbor,
x5 is the Concavity, and x6 is the Equivalent rectangular index.

Table 3. Polygon shape indexes. (Ach: area of the convex hull of the polygon; Apol: area of the
polygon; Ambr: area of the minimum bounding rectangle of the polygon; Ppol: perimeter of the
polygon; Pch: perimeter of the convex hull of the polygon; Pmbr perimeter of the minimum bounding
rectangle of the polygon; Pear perimeter of equal-area rectangle of the polygon.)

Polygon Shape Index Equation Description

Number of vertices (NOV) NOV = Vpol The number of vector polygon vertices

Amplitude of the vibration (Ampl) Ampl = (Ppol − Pch)/Ppol The perimeter difference between the
vector polygon and its convex hull

Number of holes (NOH) NOH = Hhole The number of inner rings of the
vector polygon

Average nearest neighbor (ANN)
ANN =

n
∑

i=1
di

n
/

0.5√
n/Apol

The degree of spatial clustering of the
vector polygon vertices

Concavity (Conv) Conv = (Ach − Apol)/Ach The number of concave points in the
vector polygon vertices

Equivalent rectangular index (ER) ER = Pear/Ppol =

√
Apol
Ambr

× Pmbr
Ppol

The difference between the perimeter
of a vector polygon and its

equal-area rectangle

Regression analysis is widely used in the fields of econometrics, psychology, and
sociology. The coefficient of determination (R2) is mainly used to evaluate the quality of a
model. The closer R2 is to 1, the better the model fitting effect and the higher the consistency.
In this paper, shape complexity models are established based on the intersection operator
and difference operator of the Vatti algorithm. The coefficients of determination of both
shape complexity models based on the intersection operator and the difference operator of
the Vatti algorithm are greater than 0.89, indicating that the shape complexity of the input
polygon is highly correlated with the calculation time. Specifically, the shape characteristics
of the input polygon can explain more than 89% of the calculation time of the algorithm.
The model summary is shown in Table 4.

Table 4. Model summary.

R R2 Adjusted R2

Vatti Intersection 0.943 0.890 0.890
Vatti Difference 0.947 0.896 0.896

By means of the constructed shape complexity models, the shape complexity of each
polygon subjected to clipping can be calculated. In Figure 3, the calculation times for
100,000 polygons are plotted versus their shape complexities, as evaluated based on the
intersection operator and difference operator of the Vatti algorithm in the form of scatter
plots. Linear fits to these data are also shown. According to Figure 3, 89% of the data points
are concentrated near the regression line for both the intersection operator and difference
operator of the Vatti algorithm, indicating that the fitting accuracy is high.

Appl. Sci. 2024, 14, 2006 7 of 14
Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 14

Figure 3. Scatter plots and linear fitting of calculation time versus shape complexity.

3.3. Data Partitioning and Parallelization

3.3.1. Polygon Number Division and Parallelization

The traditional polygon number division method is a direct and simple method of

dividing data in accordance with the order of polygon storage. This method is easy to

implement; it does not cause damage to the input data when dividing, and the number of

polygons in each group after division is equal. Moreover, this method has clear termina-

tion conditions for the loop traversal clipping process of the target layer and can be easily

parallelized based on OpenMP. Figure 4 shows a schematic diagram of the multicore par-

allel computing method based on the number of polygons. The main process is to sequen-

tially extract each polygon element from the vector data, ensure that the number of poly-

gon elements in each group of data is equal, distribute the divided data among different

CPU threads, and perform the polygon overlay analysis operation in parallel. The com-

plexity of each group of data grouped by this method varies greatly, and the balance is

poor when multiple cores execute the polygon overlay analysis algorithm.

Figure 4. Polygon multicore parallel computing based on polygon number division.

3.3.2. Shape Complexity Partitioning and Parallelization

In this paper, a data partitioning method based on polygon shape complexity is de-

signed and implemented. After partitioning, the complexity for each group of data is sim-

ilar. The process of this method is as follows: ① The vector data are read, the polygons in

Figure 3. Scatter plots and linear fitting of calculation time versus shape complexity.

3.3. Data Partitioning and Parallelization
3.3.1. Polygon Number Division and Parallelization

The traditional polygon number division method is a direct and simple method of
dividing data in accordance with the order of polygon storage. This method is easy to
implement; it does not cause damage to the input data when dividing, and the number of
polygons in each group after division is equal. Moreover, this method has clear termination
conditions for the loop traversal clipping process of the target layer and can be easily
parallelized based on OpenMP. Figure 4 shows a schematic diagram of the multicore
parallel computing method based on the number of polygons. The main process is to
sequentially extract each polygon element from the vector data, ensure that the number
of polygon elements in each group of data is equal, distribute the divided data among
different CPU threads, and perform the polygon overlay analysis operation in parallel. The
complexity of each group of data grouped by this method varies greatly, and the balance is
poor when multiple cores execute the polygon overlay analysis algorithm.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 14

Figure 3. Scatter plots and linear fitting of calculation time versus shape complexity.

3.3. Data Partitioning and Parallelization

3.3.1. Polygon Number Division and Parallelization

The traditional polygon number division method is a direct and simple method of

dividing data in accordance with the order of polygon storage. This method is easy to

implement; it does not cause damage to the input data when dividing, and the number of

polygons in each group after division is equal. Moreover, this method has clear termina-

tion conditions for the loop traversal clipping process of the target layer and can be easily

parallelized based on OpenMP. Figure 4 shows a schematic diagram of the multicore par-

allel computing method based on the number of polygons. The main process is to sequen-

tially extract each polygon element from the vector data, ensure that the number of poly-

gon elements in each group of data is equal, distribute the divided data among different

CPU threads, and perform the polygon overlay analysis operation in parallel. The com-

plexity of each group of data grouped by this method varies greatly, and the balance is

poor when multiple cores execute the polygon overlay analysis algorithm.

Figure 4. Polygon multicore parallel computing based on polygon number division.

3.3.2. Shape Complexity Partitioning and Parallelization

In this paper, a data partitioning method based on polygon shape complexity is de-

signed and implemented. After partitioning, the complexity for each group of data is sim-

ilar. The process of this method is as follows: ① The vector data are read, the polygons in

Figure 4. Polygon multicore parallel computing based on polygon number division.

3.3.2. Shape Complexity Partitioning and Parallelization

In this paper, a data partitioning method based on polygon shape complexity is
designed and implemented. After partitioning, the complexity for each group of data is
similar. The process of this method is as follows: 1⃝ The vector data are read, the polygons
in the layer are traversed, the six indicators of NOV, Ampl, NOH, ANN, Conv, and ER of

Appl. Sci. 2024, 14, 2006 8 of 14

each polygon are calculated according to the calculation formula, the shape complexity
model obtained above is brought in to calculate the complexity value of each polygon in
the vector data, and it is stored in the table. 2⃝ The sum of the complexity values of all
polygons in the table is calculated. The sum value is denoted by M; the number of groups,
which is determined by the number of CPU threads, is denoted by n; and the threshold on
the complexity that can be assigned to each thread is denoted by L. For example, when
the number of threads is selected to be 16, the data will be divided into 16 groups, and the
complexity threshold of each group of data is 1/16 of the sum of the complexity values of
the vector data. This complexity threshold is calculated as shown in Equation (3).

L = M/n (3)

3⃝ The vector data are grouped in accordance with the calculated complexity threshold
to ensure that the shape complexity of each group of data does not exceed the threshold and
that the complexities are roughly equal. 4⃝ Each CPU thread reads the data of a completed
group and calls the polygon overlay analysis algorithm for calculation. 5⃝ The data for
each group are output after overlay analysis, and the results for each group are combined.
Figure 5 shows a schematic diagram of the proposed multicore parallel computing method
based on shape complexity. This method can account for the influence of polygon shape and
size on the computational efficiency of the algorithm and, thus, achieve a better load balance
among CPU threads while avoiding complex element cutting and stitching operations.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 14

the layer are traversed, the six indicators of NOV, Ampl, NOH, ANN, Conv, and ER of

each polygon are calculated according to the calculation formula, the shape complexity

model obtained above is brought in to calculate the complexity value of each polygon in

the vector data, and it is stored in the table. ② The sum of the complexity values of all

polygons in the table is calculated. The sum value is denoted by M ; the number of

groups, which is determined by the number of CPU threads, is denoted by 𝑛; and the

threshold on the complexity that can be assigned to each thread is denoted by L . For

example, when the number of threads is selected to be 16, the data will be divided into 16

groups, and the complexity threshold of each group of data is 1/16 of the sum of the com-

plexity values of the vector data. This complexity threshold is calculated as shown in

Equation (3).

L= M / n (3)

③ The vector data are grouped in accordance with the calculated complexity thresh-

old to ensure that the shape complexity of each group of data does not exceed the thresh-

old and that the complexities are roughly equal. ④ Each CPU thread reads the data of a

completed group and calls the polygon overlay analysis algorithm for calculation. ⑤ The

data for each group are output after overlay analysis, and the results for each group are

combined. Figure 5 shows a schematic diagram of the proposed multicore parallel com-

puting method based on shape complexity. This method can account for the influence of

polygon shape and size on the computational efficiency of the algorithm and, thus,

achieve a better load balance among CPU threads while avoiding complex element cutting

and stitching operations.

Figure 5. Polygon multicore parallel computing based on shape complexity partitioning.

4. Results

This paper reports the results of carrying out the intersection and difference opera-

tions for polygon overlay analysis via multicore parallel computing processes on land use

patch data for China and land use data for several counties in Ningxia in 2009. Consider-

ing the three characteristics of running time, speedup, and the load balancing index, the

performance of data partitioning based on polygon shape complexity and the perfor-

mance of data partitioning based on polygon number are evaluated to verify whether the

Figure 5. Polygon multicore parallel computing based on shape complexity partitioning.

4. Results

This paper reports the results of carrying out the intersection and difference operations
for polygon overlay analysis via multicore parallel computing processes on land use patch
data for China and land use data for several counties in Ningxia in 2009. Considering
the three characteristics of running time, speedup, and the load balancing index, the
performance of data partitioning based on polygon shape complexity and the performance
of data partitioning based on polygon number are evaluated to verify whether the shape
complexity-based method of data partitioning proposed in this paper is more advantageous
for multicore parallel computing than previous methods are.

Appl. Sci. 2024, 14, 2006 9 of 14

The multicore parallel running time of data partitioning based on the number of
polygons refers to the total time for data partitioning, overlay analysis, and result merging.
The multicore parallel running time of data partitioning based on shape complexity refers
to the total time for shape complexity calculation, data partitioning, overlay analysis, and
result merging.

The speedup ratio is defined as the ratio of the serial algorithm execution time to the
parallel algorithm execution time and is calculated as shown in Equation (4):

S = T1/T (4)

where S is the speedup ratio, T1 is the running time of the serial algorithm, and T is the
total running time of the parallel algorithm.

The load balancing index is defined as the ratio between the running time of the
slowest thread and the running time of the fastest thread. The smaller this ratio is, the
better the balance. The formula is shown in Equation (5):

F = Tmax/Tmin − 1 (5)

where F is the load balancing index, Tmax represents the running time of the slowest thread
among all threads participating in multicore parallel processing, and Tmin represents the running
time of the fastest thread among all threads participating in multicore parallel processing.

4.1. Polygon Overlay Analysis Intersection Operator

To compare the performances of the different data partitioning methods for different
amounts of data, the running time, acceleration ratio, and load balancing index were
calculated. Figure 6 shows the results for the intersection operator for the polygon overlay
analysis of the land use patch data for China and the land use data for several counties
in Ningxia in 2009. When the number of threads is 1, the multicore parallel computing
methods based on both types of data division are equivalent to the serial algorithm.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 14

Figure 6 also shows the test results for the multicore parallel processing of the inter-

section operator on land use data from several counties in Ningxia in 2009. Due to the

small amount of data, the serial algorithm execution time is only approximately 451 s.

When four or eight threads are used, the traditional polygon number division method is

faster. When 12 or 16 threads are used, the data division method based on shape complex-

ity designed in this paper is faster. Both data division methods can significantly shorten

the running time compared to that of the serial algorithm, and their acceleration effects

are similar. With an increasing number of CPU threads, the two data partitioning methods

do not achieve greater computational efficiency. In terms of the load balancing index,

however, the partitioning method based on shape complexity proposed in this paper has

obvious advantages. Regardless of how many threads are selected for calculation, the load

balancing index remains below 0.5, and the highest value of this index is only 0.33. With

the data partitioning method based on the number of polygons, the load balancing index

can only reach as low as 2 and can even exceed 7. This shows that for a small amount of

data, the proposed data partitioning method based on shape complexity can achieve better

load balancing when performing multicore parallel intersection calculations.

It can be seen from Figure 6 that when the Vatti algorithm intersection operator is

executed in parallel on multiple cores, with the increase in the complexity of vector data,

the data partitioning method based on shape complexity proposed in this paper can ob-

tain higher speedup than the data partitioning method based on the number of polygons.

In the face of data with different complexity, the load balancing performance of the pro-

posed method can be significantly improved.

Figure 6. Multicore parallel intersection operator calculation results achieved with different meth-

ods for different amounts of data.

4.2. Polygon Overlay Analysis Difference Operator

Figure 7 shows the results obtained when applying the polygon overlay analysis dif-

ference operator to the different data sets using the different data division methods, in-

cluding the running time, acceleration ratio, and load balancing index.

According to the multicore parallel computing results for the difference operator

based on the land use patch data for China, the serial running time of the data is approx-

imately 94,917 s. Figures 6 and 7 show that the calculation results are similar when per-

forming intersection operations and difference operations on these data. When the num-

ber of threads is four, the traditional polygon number-based data partitioning method can

achieve a better acceleration effect and better load balancing than the shape complexity-

Figure 6. Multicore parallel intersection operator calculation results achieved with different methods
for different amounts of data.

According to the test results for the multicore parallel intersection processing of the
land use patch data for China, the serial running time of the intersection operator on the
land use patch data for China is approximately 65,178 s, and the load balancing index is
0. When the number of threads is 4, the polygon number-based partitioning method is

Appl. Sci. 2024, 14, 2006 10 of 14

superior to the shape complexity-based data partitioning method designed in this paper.
The running time difference is approximately 7730 s, and the load balancing index is only
0.2, which indicates that the traditional polygon number-based partitioning method is more
suitable when using four threads to perform intersection operations on a large amount of
data. When the number of threads is greater than four, however, the method designed in
this paper shows significant improvements compared with the traditional method. When
8 threads, 12 threads, and 16 threads are used, the effect is increased by 24%, 25%, and
33%, respectively. When the maximum number of threads in the parallel environment
(16 threads) is reached, the running time is only 36 min, corresponding to an acceleration
ratio of 29, which is 33% better than that of the polygon number-based partitioning method.
According to Figure 6, when the number of threads is greater than four, the load balancing
index under the proposed data partitioning method is significantly lower than that under
the traditional partitioning method, which indicates that the data partitioning method
based on shape complexity balances threads better than the data partitioning method
based on the number of polygons. The running times of the two different data partitioning
methods also gradually decrease with an increase in the number of CPU threads, and the
acceleration ratio shows an upward trend.

Figure 6 also shows the test results for the multicore parallel processing of the intersec-
tion operator on land use data from several counties in Ningxia in 2009. Due to the small
amount of data, the serial algorithm execution time is only approximately 451 s. When
four or eight threads are used, the traditional polygon number division method is faster.
When 12 or 16 threads are used, the data division method based on shape complexity
designed in this paper is faster. Both data division methods can significantly shorten the
running time compared to that of the serial algorithm, and their acceleration effects are
similar. With an increasing number of CPU threads, the two data partitioning methods
do not achieve greater computational efficiency. In terms of the load balancing index,
however, the partitioning method based on shape complexity proposed in this paper has
obvious advantages. Regardless of how many threads are selected for calculation, the load
balancing index remains below 0.5, and the highest value of this index is only 0.33. With
the data partitioning method based on the number of polygons, the load balancing index
can only reach as low as 2 and can even exceed 7. This shows that for a small amount of
data, the proposed data partitioning method based on shape complexity can achieve better
load balancing when performing multicore parallel intersection calculations.

It can be seen from Figure 6 that when the Vatti algorithm intersection operator is
executed in parallel on multiple cores, with the increase in the complexity of vector data,
the data partitioning method based on shape complexity proposed in this paper can obtain
higher speedup than the data partitioning method based on the number of polygons. In
the face of data with different complexity, the load balancing performance of the proposed
method can be significantly improved.

4.2. Polygon Overlay Analysis Difference Operator

Figure 7 shows the results obtained when applying the polygon overlay analysis
difference operator to the different data sets using the different data division methods,
including the running time, acceleration ratio, and load balancing index.

According to the multicore parallel computing results for the difference operator based
on the land use patch data for China, the serial running time of the data is approximately
94,917 s. Figures 6 and 7 show that the calculation results are similar when performing
intersection operations and difference operations on these data. When the number of
threads is four, the traditional polygon number-based data partitioning method can achieve
a better acceleration effect and better load balancing than the shape complexity-based
data partitioning method designed in this paper. When the number of threads is 8, 12,
or 16, the proposed data partitioning method can yield substantially improved results.
Compared with that achieved with the traditional data partitioning method, the calculation
speedup increased by 34%, 24%, and 29%, respectively, and the load balancing index is also

Appl. Sci. 2024, 14, 2006 11 of 14

significantly reduced. When using the data partitioning method proposed in this paper to
perform multicore parallel difference calculations with 16 threads, a 32-fold speedup can
be achieved, and the running time is only 2966 s.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 14

based data partitioning method designed in this paper. When the number of threads is 8,

12, or 16, the proposed data partitioning method can yield substantially improved results.

Compared with that achieved with the traditional data partitioning method, the calcula-

tion speedup increased by 34%, 24%, and 29%, respectively, and the load balancing index

is also significantly reduced. When using the data partitioning method proposed in this

paper to perform multicore parallel difference calculations with 16 threads, a 32-fold

speedup can be achieved, and the running time is only 2966 s.

Figure 7 also shows the multicore parallel computing results for the difference oper-

ator based on the land use data for several counties in Ningxia in 2009. The serial algo-

rithm execution time on these data is 461 s. Figures 6 and 7 show that when either the

intersection operator or the difference operator is applied to these data, both data parti-

tioning methods improve the running time compared to that of the serial algorithm, and

their improvement effects are roughly the same. However, the data partitioning method

designed in this paper achieves better balancing of the multicore parallel difference calcu-

lations than does the traditional data partitioning method. The maximum load balancing

index is only approximately 0.3, whereas the load balancing index of the traditional par-

titioning method exceeds 2.

According to Figure 7, when the multicore performs the Vatti algorithm difference

operator in parallel, with the increase of the complexity of vector data, the acceleration

ratio of the data partitioning method based on shape complexity proposed in this paper

is significantly improved compared with the data partitioning method based on the num-

ber of polygons. Regardless of whether the data complexity is improved, the load balanc-

ing performance of this method can be significantly improved compared with the tradi-

tional method.

Figure 7. Multicore parallel difference operator calculation results achieved with different methods

for different amounts of data.

5. Discussion

Overlay analysis is one of the basic functions of GIS spatial analysis. When faced with

a large amount of data, traditional serial algorithms take too much time. Parallelization

after a reasonable division of data is an effective way to improve computational efficiency.

Based on this idea, this paper designs a multicore parallelization method based on shape

complexity-based data partitioning, which considers the influence of polygon structure,

size, and other factors. By establishing a shape complexity model and applying it to divide

the vector data, the grouped data can be distributed among multiple cores to execute

Figure 7. Multicore parallel difference operator calculation results achieved with different methods
for different amounts of data.

Figure 7 also shows the multicore parallel computing results for the difference operator
based on the land use data for several counties in Ningxia in 2009. The serial algorithm execu-
tion time on these data is 461 s. Figures 6 and 7 show that when either the intersection operator
or the difference operator is applied to these data, both data partitioning methods improve
the running time compared to that of the serial algorithm, and their improvement effects are
roughly the same. However, the data partitioning method designed in this paper achieves
better balancing of the multicore parallel difference calculations than does the traditional data
partitioning method. The maximum load balancing index is only approximately 0.3, whereas
the load balancing index of the traditional partitioning method exceeds 2.

According to Figure 7, when the multicore performs the Vatti algorithm difference
operator in parallel, with the increase of the complexity of vector data, the acceleration ratio of
the data partitioning method based on shape complexity proposed in this paper is significantly
improved compared with the data partitioning method based on the number of polygons.
Regardless of whether the data complexity is improved, the load balancing performance of
this method can be significantly improved compared with the traditional method.

5. Discussion

Overlay analysis is one of the basic functions of GIS spatial analysis. When faced with
a large amount of data, traditional serial algorithms take too much time. Parallelization
after a reasonable division of data is an effective way to improve computational efficiency.
Based on this idea, this paper designs a multicore parallelization method based on shape
complexity-based data partitioning, which considers the influence of polygon structure,
size, and other factors. By establishing a shape complexity model and applying it to
divide the vector data, the grouped data can be distributed among multiple cores to
execute polygon overlay analysis in parallel. Compared with the traditional multicore
parallelization method based on dividing data by the number of polygons, the effectiveness
of the proposed method in optimizing the execution of polygon overlay analysis algorithms
is verified from three perspectives: the running time, the acceleration ratio, and the load
balancing index.

Appl. Sci. 2024, 14, 2006 12 of 14

The running speed of the method proposed in this study is greatly improved compared
to that of the serial algorithm. Moreover, compared with those achieved with the traditional
data partitioning method, the running speed and load balancing are both improved. In
particular, when processing large-scale data, the speed is significantly improved, and the
load balancing index is also significantly reduced. The running time of the multicore
parallel algorithm depends on the running time of the slowest thread. Because the data
partitioning method in this paper is more balanced, the running time of each thread is
less different, which can effectively save the overall running time. Therefore, when the
shape complexity of the data increases, the task time of each thread increases so that a
higher speedup and a lower load balancing index can be obtained. The research results
are beneficial for improving the efficiency of large-scale spatial overlay analysis and have
certain reference values for the optimization of GIS spatial algorithms. Nevertheless,
although the polygon shape complexity models proposed in this article accurately reflect the
impact of polygon shape characteristics on the computational efficiency of overlay analysis,
these models can still be improved because the structures of polygons can greatly differ.
In this paper, the proposed multicore parallelization method based on shape complexity
partitioning has been verified only for the intersection operator and difference operator
of the Vatti algorithm, and additional in-depth research must be conducted to verify its
broader applicability. In the future, we will consider calculating additional indicators that
may affect the efficiency of polygon overlay analysis based on the shape characteristics and
spatial characteristics of polygons and establish a shape complexity model that can better
explain the observed algorithm performance. Moreover, this approach will be applied to
data partitioning for various operators of other algorithms. Applying the data partitioning
method based on the shape complexity model to applications for distributed parallel
computing in a cloud environment and the cluster processing of large-scale vector data will
also effectively improve the computing efficiency of spatial data.

6. Conclusions

In this study, six polygon shape indicators are selected to establish shape complexity
models for data partitioning. Using vector data sets containing two different amounts of
data, we perform multicore parallelization of the intersection operator and difference oper-
ator of the Vatti algorithm and analyze the results of the proposed multicore parallelization
method in comparison with the results of the traditional method based on polygon number
division. The research conclusions are as follows:

(1) For large data sets, when the Vatti algorithm intersection operator and difference oper-
ator are executed on multicores in a parallel environment with more than four threads,
the data partitioning method based on shape complexity significantly improves the
speedup and load balancing performance compared with the data partitioning method
based on the number of polygons.

(2) For small data sets, multicore parallelization with data division based on shape com-
plexity has acceleration effects similar to those of the traditional multicore paralleliza-
tion method of dividing data based on polygon numbers. However, the proposed
data partitioning method based on shape complexity can greatly improve the load
balancing among threads.

In summary, the multicore parallelization method designed in this article based on
shape complexity-based data partitioning can significantly improve the running speed of
the Vatti algorithm and achieve better load balancing. When data complexity increases,
higher speedups can be achieved. Relevant research results are highly important for
overcoming bottlenecks such as balanced task decomposition and effectively improving
the computing efficiency of parallel vector polygon overlay analysis algorithms in a big
data environment.

Author Contributions: Conceptualization, J.F. and G.S.; Data curation, J.Z.; Formal analysis, J.Z. and
Z.S.; Funding acquisition, J.F. and G.S.; Investigation, Z.S.; Methodology, J.F. and J.Z.; Resources, Z.S.,

Appl. Sci. 2024, 14, 2006 13 of 14

Y.G. and Y.Z.; Software, J.Z. and Z.S.; Supervision, G.S.; Validation, J.Z.; Visualization, J.Z. and Y.G.;
Writing—original draft, J.F. and J.Z.; Writing—review & editing, J.F., G.S. and Y.Z. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (No.
42171413), a grant from the State Key Laboratory of Resources and Environmental Information
Systems, and the Natural Science Foundation of Shandong Province (No. ZR2020MD015).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: http://www.openstreetmap.org, accessed on 1 July 2023.

Acknowledgments: We would like to thank the OpenStreetMap. We appreciate the editors and
reviewers for their constructive comments and suggestions.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Li, L.Q.; Deng, M.; Liu, B.; Li, J. Design of an optimal algorithm of realizing spatial overlap analysis within GIS. Shandong Keji

Daxue Xuebao/J. Shandong Univ. Sci. Technol. (Nat. Sci.) 2002, 21, 62–64. [CrossRef]
2. Agarwal, D.; Puri, S.; He, X.; Prasad, S. A system for GIS polygonal overlay computation on linux cluster-an experience and

performance report. In Proceedings of the IEEE 26th International Parallel and Distributed Processing Symposium Workshops &
PhD Forum, Shanghai, China, 21–25 May 2012; pp. 1433–1439. [CrossRef]

3. Shi, X. System and Methods for Parallelizing Polygon Overlay Computation in Multiprocessing Environment. U.S. Patent
US20120320087A1, 14 June 2012.

4. Ma, M.Y.; Wu, Y.; Chen, L.; Li, J.; Jing, N. Interactive and online buffer-overlay analytics of large-scale spatial data. ISPRS Int. J.
Geo-Inf. 2019, 8, 21. [CrossRef]

5. Zhou, C.; Chen, Z.J.; Li, M.C. A parallel method to accelerate spatial operations involving polygon intersections. Int. J. Geogr. Inf.
Sci. 2018, 32, 2402–2426. [CrossRef]

6. Dowers, S.; Gittings, B.M.; Mineter, M.J. Towards a framework for high-performance geocomputation: Handling vector-topology
within a distributed service environment. Comput. Environ. Urban Syst. 2000, 24, 471–486. [CrossRef]

7. Liu, Y.M.; Yang, J.; Puri, S. Hierarchical filter and refinement system over large polygonal datasets on cpu-gpu. In Proceedings of
the IEEE 26th International Conference on High Performance Computing, Data, and Analytics (HiPC), Hyderabad, India, 17–20
December 2019; pp. 141–151. [CrossRef]

8. Cramer, T.; Schmidl, D.; Klemm, M.; Mey, D.A. OpenMp programming on intel r xeon phi tm coprocessors: An early performance
comparison. In Proceedings of the Many-Core Applications Research Community Symposium 2012, Aachen, Germany, 29–30
November 2012; pp. 38–44.

9. Geer, D. Chip makers turn to multicore processors. Computer 2005, 38, 11–13. [CrossRef]
10. Fan, J.F.; Ma, T.; Ji, M.; Zhou, Y.K.; Xu, T. Implementation and optimization of eight parallel polygon overlapping tools with

OpenMP at the feature layer level in GIS. Prog. Geogr. 2013, 32, 1835–1844. [CrossRef]
11. Jiang, Y.Y. Efficient Storage and Parallel Overlay Analysis of Massive Vector Data in Cloud Computing Environment. Master’s

Thesis, Kunming University of Science and Technology, Kunming, China, 2021. [CrossRef]
12. Ye, J.Y.; Chen, B.; Chen, J.; Fang, Y.; Wu, L. A spatial data partition algorithm based on statistical cluster. In Proceedings of the

19th International Conference on Geoinformatics, Shanghai, China, 24–26 June 2011; pp. 1–6. [CrossRef]
13. Mineter, M.J. A software framework to create vector-topology in parallel GIS operations. Int. J. Geogr. Inf. Sci. 2003, 17, 203–222.

[CrossRef]
14. Wang, S.W.; Cowles, M.K.; Armstrong, M.P. Grid computing of spatial statistics: Using the TeraGrid for G (d) analysis. Concurr.

Comput. Pract. Exp. 2008, 20, 1697–1720. [CrossRef]
15. Lee, C.K.; Hamdi, M. Parallel image processing applications on a network of workstations. Parallel Comput. 1995, 21, 137–160.

[CrossRef]
16. Zhou, Y.; Jiang, L. Hilbert curve based spatial data declustering method for parallel spatial database. In Proceedings of the 2nd

International Conference on Remote Sensing, Environment and Transportation Engineering, Nanjing, China, 1–3 June 2012;
pp. 1–4. [CrossRef]

17. Yang, Y.Z.; Wu, L.X.; Guo, J.T.; Li, Z.F.; Liu, S.J. A method of spatial data partition for efficient parallel computing of topological
relation. Geogr. Geo-Inf. Sci. 2013, 29, 25–29.

18. Wu, X.Q.; Wu, Y.; Chen, L.; Jing, N. A parallel cut-fill algorithm for largescale DEM data. Geomat. World 2019, 26, 21–25.
19. Zhang, Z.K.; Fan, J.F.; Xu, S.B.; Chen, Z. VCS Optimization Method of Vatti Algorithm for Polygon Overlay and Parallelization

Using GPU. J. Geo-Inf. Sci. 2022, 24, 437–447. [CrossRef]

http://www.openstreetmap.org
https://doi.org/10.16452/j.cnki.sdkjzk.2002.02.020
https://doi.org/10.1109/IPDPSW.2012.180
https://doi.org/10.3390/ijgi8010021
https://doi.org/10.1080/13658816.2018.1508689
https://doi.org/10.1016/S0198-9715(00)00011-9
https://doi.org/10.1109/HiPC.2019.00027
https://doi.org/10.1109/MC.2005.160
https://doi.org/10.11820/dlkxjz.2013.12.012
https://doi.org/10.27200/d.cnki.gkmlu.2020.000061
https://doi.org/10.1109/GeoInformatics.2011.5981085
https://doi.org/10.1080/13658810210149443
https://doi.org/10.1002/cpe.1294
https://doi.org/10.1016/0167-8191(94)00068-L
https://doi.org/10.1109/RSETE.2012.6260586
https://doi.org/10.12082/dqxxkx.2022.210409

Appl. Sci. 2024, 14, 2006 14 of 14

20. Jiang, Y.Y.; Jin, B.X.; Zhao, K.; Zhou, S.Y. Research on measurement of polygon shape complexity in overlay calculation. Sci. Surv.
Mapp. 2020, 45, 177–184. [CrossRef]

21. Tilove, R.B. Line/polygon classification: A study of the complexity of geometric computation. IEEE Comput. Graph. Appl. 1981, 1,
75–88. [CrossRef]

22. Attneave, F. Physical determinants of the judged complexity of shapes. J. Exp. Psychol. 1957, 53, 221. [CrossRef] [PubMed]
23. Chen, Y.P.; Sundaram, H. Estimating complexity of 2D shapes. In Proceedings of the IEEE 7th Workshop on Multimedia Signal

Processing, Shanghai, China, 30 October–2 November 2005; pp. 1–4. [CrossRef]
24. Duan, X.Y.; Deng, X.X.; Zuo, Q.Y. The research on the complexity of progressive die edge. J. Eng. Graph. 2006, 5, 94–97. [CrossRef]
25. Brinkhoff, T.; Kriegel, H.P.; Schneider, R.; Braun, A. Measuring the Complexity of Polygonal Objects. In Proceedings of the

ACM-GIS, Baltimore, MD, USA, 28 November–2 December 1995; Volume 109.
26. Matsumoto, T.; Sato, K.; Matsuoka, Y.; Kato, T. Quantification of “complexity” in curved surface shape using total absolute

curvature. Comput. Graph. 2019, 78, 108–115. [CrossRef]
27. Guo, M.Q.; Guan, Q.F.; Xie, Z.; Wu, L.; Luo, X.G.; Huang, Y. A spatially adaptive decomposition approach for parallel vector data

visualization of polylines and polygons. Int. J. Geogr. Inf. Sci. 2015, 29, 1419–1440. [CrossRef]
28. Li, A.B.; Chen, Y.; Yao, M.M.; Wu, S.S. Quantitative measurement of geometrical information for sensitive features in secret-related

vector digital maps. J. Geo-Inf. Sci. 2018, 20, 7–16. [CrossRef]
29. Zhang, P.; Fan, J.F.; Zhang, P.P.; Zhang, Z.K.; Chen, Z.; Han, L.S. Comparative Study on the Effect of Shape Complexity on the

Efficiency of Different Overlay Analysis Algorithms. IEEE Access 2021, 9, 144179–144194. [CrossRef]
30. Wang, Z.J.; Lin, X.; Fang, M.E.; Yao, B.; Peng, Y.; Guan, H.B.; Guo, M.Y. Re2l: An efficient output-sensitive algorithm for computing

Boolean operations on circular-arc polygons and its applications. Comput.-Aided Des. 2017, 83, 1–14. [CrossRef]
31. Liang, Y.D.; Barsky, B.A. An analysis and algorithm for polygon clipping. Commun. ACM 1983, 26, 868–877. [CrossRef]
32. Sutherland, I.E.; Hodgman, G.W. Reentrant polygon clipping. Commun. ACM 1974, 17, 32–42. [CrossRef]
33. Weiler, K.; Atherton, P. Hidden surface removal using polygon area sorting. ACM SIGGRAPH Comput. Graph. 1977, 11, 214–222.

[CrossRef]
34. Vatti, B.R. A generic solution to polygon clipping. Commun. ACM 1992, 35, 56–63. [CrossRef]
35. Greiner, G.; Hormann, K. Efficient clipping of arbitrary polygons. ACM Trans. Graph. (TOG) 1998, 17, 71–83. [CrossRef]
36. Liu, Y.K.; Gao, Y.; Huang, Y.Q. An efficient algorithm for polygon clipping. J. Softw. 2003, 14, 845–856.
37. Martinez, F.; Rueda, A.J.; Feito, F.R. A new algorithm for computing Boolean operations on polygons. Comput. Geosci. 2009, 35,

1177–1185. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.16251/j.cnki.1009-2307.2020.11.025
https://doi.org/10.1109/MCG.1981.1673886
https://doi.org/10.1037/h0043921
https://www.ncbi.nlm.nih.gov/pubmed/13416488
https://doi.org/10.1109/MMSP.2005.248668
https://doi.org/10.3969/j.issn.1003-0158.2006.05.017
https://doi.org/10.1016/j.cag.2018.10.009
https://doi.org/10.1080/13658816.2015.1032294
https://doi.org/10.12082/dqxxkx.2018.170312
https://doi.org/10.1109/ACCESS.2021.3121753
https://doi.org/10.1016/j.cad.2016.07.004
https://doi.org/10.1145/182.358439
https://doi.org/10.1145/360767.360802
https://doi.org/10.1145/965141.563896
https://doi.org/10.1145/129902.129906
https://doi.org/10.1145/274363.274364
https://doi.org/10.1016/j.cageo.2008.08.009

	Introduction
	Data
	Methods
	Polygon Clipping Algorithm
	Construction of the Shape Complexity Model
	Data Partitioning and Parallelization
	Polygon Number Division and Parallelization
	Shape Complexity Partitioning and Parallelization

	Results
	Polygon Overlay Analysis Intersection Operator
	Polygon Overlay Analysis Difference Operator

	Discussion
	Conclusions
	References

