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Emotion Recognition through

Federated Learning: A Multimodal

Approach with Convolutional Neural

Networks. Appl. Sci. 2024, 14, 1325.

https://doi.org/10.3390/

app14041325

Academic Editor: Douglas

O’Shaughnessy

Received: 31 December 2023

Revised: 21 January 2024

Accepted: 23 January 2024

Published: 6 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Enhancing Emotion Recognition through Federated Learning:
A Multimodal Approach with Convolutional Neural Networks
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Abstract: Human–machine interaction covers a range of applications in which machines should
understand humans’ commands and predict their behavior. Humans commonly change their mood
over time, which affects the way we interact, particularly by changing speech style and facial
expressions. As interaction requires quick decisions, low latency is critical for real-time processing.
Edge devices, strategically placed near the data source, minimize processing time, enabling real-time
decision-making. Edge computing allows us to process data locally, thus reducing the need to send
sensitive information further through the network. Despite the wide adoption of audio-only, video-
only, and multimodal emotion recognition systems, there is a research gap in terms of analyzing
lightweight models and solving privacy challenges to improve model performance. This motivated us
to develop a privacy-preserving, lightweight, CNN-based (CNNs are frequently used for processing
audio and video modalities) audiovisual emotion recognition model, deployable on constrained edge
devices. The model is further paired with a federated learning protocol to preserve the privacy of
local clients on edge devices and improve detection accuracy. The results show that the adoption of
federated learning improved classification accuracy by ~2%, as well as that the proposed federated
learning-based model provides competitive performance compared to other baseline audiovisual
emotion recognition models.

Keywords: artificial intelligence; emotion recognition; federated learning; machine learning; multimodal

1. Introduction

Speech is commonly referred to as the most natural way of human-to-human commu-
nication [1]. As humans, we can distinguish how others feel based on their voices. Emotion
detection affects our interpretation of the spoken content, our behavior, and the conse-
quent actions. Emotions do not only affect our speech. They also affect our mood, facial
expressions, medical features, and body gestures. Based on someone’s facial expressions,
people can often recognize how others are feeling, even without speech content in the case
of non-verbal communication. Although people can recognize emotions only from speech
or only from facial expressions, commonly, both of these modalities are naturally used for
overall recognition [2]. Similar concepts are employed in order to design state-of-the-art
systems for human–computer interaction.

Automatic emotion recognition has been a research area for more than two decades,
and in that time frame, numerous methods based on machine learning (ML) and deep
learning (DL) have been proposed [3–5]. In the beginning, unimodal speech emotion
recognition and facial emotion recognition systems were developed due to hardware
limitations and the lack of available data for creating complex models. Some of the most
preferred speech emotion recognition algorithms throughout the years have been based
on the hidden Markov model (HMM), Gaussian mixture models (GMMs), support vector
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machines (SVMs), and artificial neural networks (ANNs). Other classification techniques
usually involve methods based on decision trees (DTs), k-nearest neighbors (k-NN), k-
means, as well as Naive Bayes classifiers. An overview of the existing methodologies can be
found in [6]. Recent efforts have been directed toward the implementation of convolutional
neural networks (CNNs), deep learning, and transformer-based networks, which commonly
require speech samples to be preprocessed and converted into spectrograms [7,8]. Besides
spectrograms that are obtained using Fourier transform, scalograms can be also found in
the literature as a visual representation of speech in the case of applied wavelet transform
for different tasks involving audio signal processing and classification using convolutional
neural networks [9]. F. Andayani et al. proposed a combination of a long short-term
memory (LSTM) and a transformer encoder network to learn the long-term dependencies
in speech signals and classify emotions [8].

Similar classifiers have been considered for facial emotion recognition, whereby CNNs
are the prevailing choice [10]. Besides audio and video modalities, an analysis of brain
electroencephalography (EEG) signals, collected using wearable devices, also attracted
researchers’ interest [11].

Transformer-based architectures are considered cutting-edge in the field of sequence
modeling, and they have achieved remarkable success in various domains. However, their
effectiveness is reached at the cost of quadratic computational and memory complexity [12]
and in turn they require higher energy consumption compared to traditional machine
learning techniques, making them challenging for implementation on edge devices [13].
On the other hand, sentiment analysis is considered a sensitive topic and there are privacy
concerns related to data processing, such as potential user profiling, making edge-based
applications desirable for detection. The technology proposed in this paper is developed
within the MARVEL project, whose ubiquitous edge-to-fog-to-cloud architecture and
solutions are primarily designed for smart city environments [14].

In recent research, there has been a shift from unimodal to multimodal approaches,
with a strong focus on designing audiovisual models to ensure higher accuracy. In [15],
the authors proposed an end-to-end network that incorporates LSTM besides a CNN.
In [16], the authors exploit an attention mechanism to improve the efficacy of the DL
network, whereas in [17], a multimodal emotion recognition metric learning is introduced.
A correlation-based graph convolutional network (C-GCN) for audiovisual emotion recog-
nition task is introduced in [18]. Reference [19] introduces an audio-visual fusion model of
deep learning features with a Mixture of Brain Emotional Learning. In this method, a CNN
as well as recurrent neural network (RNN) were employed.

So far, not much attention has been given to the generalization and significance of
incorporating federated learning procedures. Motivated by the COVID-19 pandemic,
Chikara et al. [20] made a first step in this direction by introducing a framework for
monitoring the emotional state of an individual without sending data to a centralized
server. The latter was achieved by incorporating federated learning techniques based on
weighted averaging and utilizing both audio and video modalities. The principal goal
of their research was to predict the state of depression during the post-processing phase,
after classifying emotions based on the outputs from the audio and video modalities.
To process video signals, Chikara et al. employed a convolutional neural network. On
the other hand, an ensemble of seven machine learning classifiers has been utilized to
process audio signals. In the end, they briefly described the procedure for combining these
modalities and employing federated learning, without providing multimodal results to
validate the approach.

Another multimodal emotion recognition model, accompanied by federated learning,
was proposed by Nandi et al. [21]. They introduced a federated learning method for
real-time classification of emotional states from multimodal streaming. Their focus was
primarily on utilizing physiological data captured from wearable sensors. Apart from
multimodal approaches from [20,21], which addressed specific objectives, there is only
a limited number of federated learning-based methods for unimodal emotion detection
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systems that consider either the video modality [22] or the audio modality [23,24]. Our
approach represents a step further in the field of privacy-preserving emotion recognition,
as we conduct an experiment focused on the application of federated learning to the
multimodal audiovisual emotion recognition task, considering relatively small classification
models that can be deployable at the edge.

1.1. Motivation and Contributions

The aim of this research is to design a privacy-preserving audiovisual emotion recogni-
tion model (AVER), capable of classifying emotions at the edge and supporting continuous
model updates within a decentralized system. Unlike the model proposed in [20], we do
not exploit an ensemble of classifiers for processing audio signals but rather implement a
convolutional neural network on the audio modality as well. This way, post-processing
could be simplified, as we do not need to train several ML classifiers, analyze their perfor-
mance, and choose a subset of classifiers for decision-making. Furthermore, we exploit
transfer learning and fine-tuning for detecting facial expressions, since training convolu-
tional neural networks on a small set of data cannot guarantee satisfactory generalization.
To validate the proposed approach, we perform experiments on the eNTERFACE’05 dataset
and provide classification accuracy, F1-score, recall, and precision results obtained using
multimodal data processing.

One of the key aspects to consider in this context is the availability of training data
and the composition of a set of speakers. There are two commonly discussed groups of
emotion recognition models: speaker-independent and speaker-dependent [25]. These
groups are related to different problems in the field. The aim of speaker-independent
emotion recognition models is to generalize well and accurately predict the emotions of
speakers that have not been seen before during the model training, i.e., to operate on
the open-set of speakers. However, due to the lack of available datasets with accurate
annotations, current models face challenges in achieving very high detection accuracy as
a general solution. On the other hand, speaker-dependent emotion recognition systems
require being trained for each user, maximizing the performance of the system for a closed
set of speakers. This way, systems could be more robust and provide higher performance
in an industrial environment compared to the general speaker-independent models. This
approach is beneficial for applications designed for specific individuals, such as voice-based
personal assistants or speech-based authentication systems. However, creating models for
such scenarios requires recording individuals of interest, which can be time-consuming and
consequently may involve acting emotions. This motivated us to make an effort to improve
the overall accuracy of such models by incorporating federated learning in a closed-set
scenario in order to leverage different data sources and minimize biases produced due to
small training sets.

The rest of this paper is organized as follows: In Section 2.1, we provide a description
of the proposed audiovisual emotion recognition model. Section 2.2 provides an overview
of federated averaging, which accompanies the model described in Section 2.1. The ex-
periment is described in Section 2.3 while results are presented in Section 3. Comparison
with other state-of-the art methods is provided in Section 4. Finally, the advantages and
disadvantages of the proposed model are summarized and discussed in Section 5.

2. Materials and Methods
2.1. Audiovisual Emotion Recognition Model

In our study, a multimodal model is proposed, designed to process signals from two
different modalities: facial expressions, given as a sequence of images, and speech, given
as a set of image spectrograms created in the pre-processing phase. To process facial
expressions, a MobileNetV2 model is utilized [26], pre-trained on the ImageNet [27], a
large-scale dataset widely used for image classification tasks. The idea of transfer learning
is introduced due to the fact that available audiovisual emotion-capturing datasets are
relatively small, and it is often impossible or at least highly impractical to record large
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datasets for speaker-dependent emotion recognition tasks. To adapt the MobileNetV2
model for our specific task (described further ahead in Section 2.3), we introduce a new
prediction layer consisting of six classes corresponding to different facial expressions.

While incorporating key frame detection could potentially enhance the overall accu-
racy of emotion recognition in video signals [28], this approach is computationally intensive,
which contradicts our objective of creating a simple model suitable for deployment on
edge devices. Consequently, we made the decision to proceed with a uniform extraction of
frames from the video. In the pre-processing phase, we extracted frames from the original
videos with a step size of 8 and resized each frame to the resolution of 224 × 224 pixels,
so that our inputs would be compatible with ImageNet resolution used in MobileNetV2.
Considering the chosen input shape and the aforementioned output layer, we designed a
neural network model for analyzing facial expressions, which comprised approximately
2.63 million parameters. The overall size of the model is approximately 10.3 MB, with
0.37 million trainable parameters. Since the number of trainable parameters is relatively
small and the impact of federated learning on such a small parameter set yielded negligible
changes in our experiments, we opted to further simplify the proposed system by applying
federated learning to the audio (i.e., speech) modality only. By focusing on federated
learning solely for the audio modality, we aimed to simplify the system and reduce the
computational requirements, aligning with our objective of creating an efficient model
suitable for edge devices.

For the task of emotion detection from the audio modality, we propose a model
inspired by the network from [29]. However, we simplify the method by excluding one
fully connected layer from the 2D CNN network, reducing its complexity. The proposed
model is described in Table 1.

Table 1. The proposed CNN model for speech emotion recognition.

Layer Arguments Number of Parameters

Convolution2D Filters = 64; kernel size = (7, 7); stride = (2, 2);
input shape = (128, 170, 1) 3200

MaxPooling2D
Convolution2D Filters = 128; kernel size = (7, 7); stride = (2, 2) 401,536

AveragePooling2D
Convolution2D Filters = 256; kernel size = (3, 3); stride = (2, 2) 295,168

AveragePooling2D
Convolution2D Filters = 512; kernel size = (3, 3); stride = (2, 2) 1,180,160

Flatten
Dense_1 Nodes = 4096 4,198,400
Dropout Rate = 0.5
Dense_2 Nodes = 6 24,582

Total number of parameters 6,103,046

Unlike the method proposed in [29], we do not utilize MFCC (Mel frequency cepstral
coefficients) as inputs. Instead, we adopt the approach of generating spectrograms using
short-time Fourier transform (STFT), following the methodology described in [30].

We decided to choose spectrograms, as their computing is straightforward and there
are efficient algorithms and libraries for further deployment, whereas scalogram computa-
tion might be more computationally intensive. Recent studies have shown that spectro-
grams and scalograms lead to the similar performance on the speech emotion recognition
tasks [9], so we decided to continue with the STFT approach.

In the first step of the spectrogram creation, a speech file is divided into 1.0 s long
segments with an overlap of 0.5 s as shown in Figure 1. If the last segment is shorter than
0.7 s, it is expelled from the training set. If the last segment’s length falls between 0.7 and
1.0 s, it is extended to a 1.0 s length by replicating samples from the end of that segment.
Spectrograms are calculated using an 11.6 ms Hanning window with a time shift of 5.8 ms.
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The obtained STFT coefficients are then converted to PNG image of size 128 × 170 pixels.
It was demonstrated in the literature that Hanning and Hamming windowing functions
usually provide better performance than the other in the case of speech emotion recognition
task [31]. A similar approach of using spectrograms of fixed size can be found in the
literature as a common choice for processing speech in the case of speaker verification [32].
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Figure 1. Example of spectrograms extracted from a single speech stream.

The final speech processing model consists of approximately 6.1 million trainable
parameters, resulting in a size of around 23.3 MB. We also experimented with larger
VGGish-like architectures [33,34], but found that their performance on the small client
subsets was either similar or inferior.

In order to maximize classification accuracy at the utterance level, we apply a sequen-
tial voting procedure in the post-processing phase for both modalities, inspired by the
approach described in [33]. Similar approaches for video processing are already available
in the literature [35], simplifying the overall complexity, avoiding a need to utilize LSTM or
3D-CNN for a sequence of frames. In the case of facial expression analysis, after training a
classifier to make decisions for individual input video frames, we buffer the outputs for
all frames corresponding to a single utterance and make an utterance-level decision using
average probability voting. Similarly, for audio signals, neural networks are trained to
make decisions for individual 1.0 s long spectrograms. The outputs corresponding to a
single utterance are buffered, and average probability voting is applied. Previously, we
found that the average probability voting is a preferable choice comparing to the maximum
probability voting and the majority voting for a scenario related to the CNN-based speech
emotion recognition [33].

The outputs from both modalities are fused at the decision level, and the final decision
is made by averaging scores of these two outputs. The decision fusion process allows us
to leverage the complementary information from both facial expressions and speech for a
more robust emotion recognition decision. The architecture of the proposed audiovisual
emotion recognition model is presented in Figure 2, with an accompanied inference exam-
ple. Without loss of generality, we present an example where three different classes are
analyzed, whereas the outputs for other classes tend to be zero. In the next subsection,
we explain the federated learning protocol applied to the audio modality of the proposed
audiovisual emotion recognition model.
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2.2. Federated Learning and Averaging

The purpose of federated learning is to enable the training of machine learning models
in a decentralized manner while preserving data privacy. Federated learning aims to
leverage the collective knowledge from multiple devices or clients without requiring them
to share their raw data with a central fog or cloud server. In a typical federated learning
setup, a large number of client devices, such as smartphones or IoT devices, participate in
the training process [36]. Each client holds its local dataset, which may contain sensitive or
private information. Instead of uploading their data to a central server, clients collaborate
by sharing model updates. This approach helps to overcome data privacy concerns and
reduces the need for a large-scale data transfer, as only model updates are communicated
between clients and the central server.

The popularity of this technique started after the introduction of the federated aver-
aging (FedAvg) algorithm proposed by Google’s researchers in 2016 [37]. If we consider
that N clients are indexed by i, the fraction of clients that perform each round is F, the local
minibatch size is B, the number of local epochs is M, and the learning rate is η, the FedAvg
algorithm could be defined using the following steps [37]:

(1) Initialization: a global model is initialized on a central server (initialize w0).
(2) Client selection: a subset St of max(F × N, 1) clients is randomly or strategically

selected for participation in each round of training.
(3) Model distribution: The current global model is sent to the selected clients in parallel.

For each client i ∈ St in parallel :
wi

t+1 ← ClientUpdate(i, wt)

wt+1 ←∑N
i=1

ni
n

wi
t+1 (1)

(4) Local training: Each client trains the model on its local dataset using the received model
parameters. This training can involve multiple local iterations to improve accuracy.

ClientUpdate(i, w): //run on client i
B← (split partition Pi into batches of size B)
for each local epoch j from 1 to M do
for batch b ∈ B do

w ← w− η∇ℓ(w, b) (2)

In the previous expression, ℓ represents the loss term of a chosen loss function for
training a neural network model, which varies based on the task the model is set
up for.

(5) Model aggregation: After the local training, updated client models are sent back to the
central server, which aggregates the models’ parameters by computing their average;
return w to server.

(6) Global model update: The aggregated model becomes the updated global model for
the next round of training.

Iterative process: Steps 2–6 are repeated for multiple rounds until convergence is
reached, or until a desired performance level is achieved.

The loss function used in both audio and video modalities is the categorical cross-
entropy loss function, commonly used in image classification tasks. Since the audio data
were pre-processed to visual form (spectrograms), we were able to use the same loss
function. Each of our three separate clients owns local weights (w), which are unique
to the client. These weights represent all trainable model parameters (i.e., layer weights
and biases) that local models use. Since the models are trained in a federated fashion, the
weights of the local models are also affected by other clients’ parameters (global model).
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2.3. Experimental Setup

We consider the eNTERFACE’05 audiovisual emotion dataset as an example, given
within a speaker-dependent scenario described in Section 1.1. The dataset encompasses six
distinct emotions: anger, disgust, fear, happiness, sadness, and surprise [38]. It comprises
recorded utterances from 42 individuals representing 14 different nationalities. Although
the utterances in this dataset were recorded in the English language, the involvement of
people from different cultural backgrounds increases the complexity of the experiment
as it is well known that emotion semantics show both cultural variations and universal
structure [39].

During the experiment, the participants were presented with short stories carefully
designed to elicit specific emotions. Subsequently, the participants were required to re-
spond with a predefined set of utterances corresponding to the emotions they experi-
enced. The collected reactions were then evaluated by two experts, who discarded any
ambiguous responses.

To facilitate the federated learning experiment and simulate different clients, we
divided the eNTERFACE’05 dataset into three separate non-overlapping parts, each one
containing an equal number of speakers. This means that each client consisted of utterances
recorded by 14 different speakers. The aim of such an experimental setup is to emulate
distinct data sources or clients in a federated learning scenario by leveraging diverse
speaker data from multiple sources.

3. Experimental Results

In this section, we provide detailed classification results obtained using the proposed
audiovisual emotion recognition model, specifically observing the influence of implement-
ing the federated averaging described in Section 2.2. Firstly, let us observe the performance
of the proposed model without the accompanied federated learning considering the experi-
mental setup described in Section 2.3. The results of classification accuracy are presented in
Table 2 whereas detailed results of unimodal video and audio classifiers, without applied
sequential voting strategy, are presented in Tables 3 and 4, respectively.

Table 2. Classification accuracies of the proposed AVER model without federated learning.

Classification Accuracy (%)

Audio Video
Multimodal

Single Spectrogram Voting Single Frame Voting

Client 1 45.95 57.14 82.04 88.10 89.29

Client 2 48.44 61.90 78.70 85.71 91.66

Client 3 44.08 55.95 87.94 91.66 92.86

It can be noticed that the proposed model for the video modality provides relatively
good performance, achieving classification accuracy in the range of 78.70–87.94 (%) on a
single frame of test video signals. Similarly, we can notice from Table 3 that the achieved av-
erage precision, recall and F1-score are relatively high, following the results of classification
accuracy. However, detailed analysis leads us to the observation that there are differences
among clients and among emotions. The best performance is achieved in the case of Client
3, whereas classification accuracy in the case of Client 2 is about 9% less in the case of a
single spectrogram.

After applying the proposed sequential voting strategy, the accuracy significantly
increased. The achieved performance is in the range of 85.71–91.66 (%). As we use a
lightweight model with only 0.37 million trainable parameters, pre-trained on the ImageNet,
there is not so much space for further improvement in the case of the video modality. Also,
the expected tradeoff between possible improvement and an increase in complexity led us
to the decision not to implement federated averaging to the video modality.
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Table 3. Detailed performance–video modality.

Emotion Client 1 Client 2 Client 3

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

Anger 0.91 0.76 0.83 0.84 0.70 0.76 0.97 0.84 0.90

Disgust 0.75 0.92 0.83 0.79 0.78 0.79 0.69 1.00 0.82

Fear 0.85 0.81 0.83 0.89 0.75 0.81 0.97 0.73 0.83

Happiness 0.68 0.95 0.79 0.72 0.87 0.79 0.87 0.81 0.84

Sadness 0.95 0.65 0.77 0.92 0.75 0.82 0.97 0.93 0.95

Surprise 0.82 0.89 0.85 0.65 0.90 0.75 0.90 0.96 0.93

Average 0.83 0.83 0.82 0.80 0.79 0.79 0.89 0.88 0.88

Weighted average 0.84 0.82 0.82 0.80 0.79 0.79 0.90 0.88 0.88

Table 4. Detailed performance–audio modality.

Emotion Client 1 Client 2 Client 3

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

Anger 0.54 0.55 0.55 0.60 0.69 0.64 0.55 0.69 0.61

Disgust 0.42 0.48 0.45 0.44 0.34 0.39 0.33 0.38 0.35

Fear 0.45 0.37 0.40 0.43 0.38 0.40 0.27 0.27 0.27

Happiness 0.38 0.42 0.40 0.52 0.47 0.49 0.45 0.41 0.43

Sadness 0.56 0.59 0.57 0.47 0.53 0.50 0.67 0.53 0.59

Surprise 0.34 0.30 0.32 0.41 0.45 0.43 0.35 0.28 0.31

Average 0.45 0.45 0.45 0.48 0.48 0.47 0.43 0.43 0.43

Weighted average 0.46 0.46 0.46 0.48 0.48 0.48 0.44 0.44 0.44

The obtained results for the classification accuracy in the case of the audio modality
(Table 2) indicate that the proposed classifier could not generalize well as the one in the
case of the video modality. Similar behavior was also observed in the literature [15,17].
By observing Table 4, it can be noticed that the average results for precision, recall, and
F1-score are in accordance with the results for classification accuracy. This motivated us
to apply federated learning framework to the clients in the case of the audio modality in
order to provide better generalization. These results are presented in Tables 5 and 6. The
performance of the video modality in Table 6 is omitted as we do not apply federated
learning for this modality. For the purpose of multimodal inference, we consider the
performance of the video modality from Table 2.

In order to compare the achieved accuracy improvement using the federated learning
model, we define classification accuracy gain as an improvement of the proposed federated
model over the non-federated model as:

Gain f [%] = CA f − CAn f , (3)

where CA f represents the classification accuracy of the observed client achieved using
federated learning, whereas CAn f represents the classification accuracy of the same client
achieved by training the model without client federation. The achieved gains in the case of
the audio modality and multimodal inference are presented in Figure 3.
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Table 5. Detailed performance–audio modality in federated learning setup.

Emotion Client 1 Client 2 Client 3

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

Anger 0.60 0.57 0.59 0.68 0.67 0.67 0.61 0.59 0.60

Disgust 0.44 0.57 0.50 0.45 0.36 0.40 0.50 0.35 0.41

Fear 0.41 0.38 0.39 0.39 0.44 0.41 0.44 0.48 0.46

Happiness 0.43 0.64 0.51 0.58 0.69 0.63 0.69 0.44 0.54

Sadness 0.76 0.46 0.57 0.49 0.55 0.52 0.54 0.69 0.61

Surprise 0.39 0.38 0.38 0.45 0.36 0.40 0.39 0.52 0.45

Average 0.51 0.50 0.49 0.51 0.51 0.51 0.53 0.51 0.51

Weighted average 0.52 0.49 0.50 0.51 0.51 0.51 0.53 0.52 0.52

Table 6. Classification accuracy of the proposed AVER model with federated learning.

Classification Accuracy (%)

Audio Video
Multimodal

Single Spectrogram Voting Single Frame Voting

Client 1 49.29 67.86 / / 92.86

Client 2 51.27 64.29 / / 92.86

Client 3 51.89 71.43 / / 94.05
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approach accompanied with federated learning, compared to the non-federated learning approach.

As already described in Section 2, we do not apply federated learning to the video
modality as we exploit transfer learning and there is only a small number of trainable
parameters. By observing Figure 3, we can see that the implementation of federated learning
significantly improves classification accuracy in the case of the audio modality, both for
making decisions using the single spectrogram (the blue line) and after the sequential voting
process (the red line), demonstrating the importance of implementing such a technique. It
can also be noticed that there is a gain in the range of 1.19–3.57 (%) in the case of multimodal
inference, which is significant, considering that the non-federated learning audiovisual
model provides a relatively high classification accuracy in the (already high) range of
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89.29–92.86 (%). This is mainly due to the good performance of the classifier in the case
of the video modality, whereas the audio modality behaves like a supporting modality
within this experiment. However, such behavior could be different when analyzing other
datasets, and federated learning application to the video modality may lead to a significant
multimodal performance increase.

Finally, we provide comparison of the average values of precision, recall, and F1-
score in the case of the multimodal inference in Table 7, in order to observe the influence
of applied federated learning framework. It is evident that the approach incorporating
federated learning clearly outperforms the case of training on single clients as well as cases
of unimodal inference, comparing to the results in Tables 3–5.

Table 7. Detailed average performance of the proposed AVER model.

AVER AVER + FL

Precision Recall F1-Score Precision Recall F1-Score

Client 1 0.90 0.89 0.89 0.94 0.93 0.93

Client 2 0.88 0.87 0.87 0.93 0.93 0.93

Client 3 0.93 0.93 0.93 0.95 0.94 0.94

4. Discussion

The aim of this section is to provide a performance comparison of the proposed audio-
visual emotion recognition model accompanied by federated learning with other available
state-of-the-art methods described in the literature and analyzed for the eNTERFACE’05
dataset. As already mentioned, there is a lack of multimodal audiovisual emotion recog-
nition models that exploit federated learning. Consequently, similar experiments and
dataset partitioning into such clients in the case of audiovisual emotion recognition are
not described in the literature, which makes a comparison challenging. However, as the
average performance per client in the case of a federated learning-based approach should
not exceed the performance of the same non-federated model trained on the whole dataset,
we compare average results with the performance of other non-federated learning-based
methods available in the literature. The results are shown in Table 8. To highlight the
importance of introducing federated learning techniques, we also provided the averaged
results obtained by training the model for each client separately in a non-federated manner.

Table 8. Performance of the state-of-the-art audiovisual emotion recognition methods.

Classification Accuracy (%)

Model Audio Modality Video Modality Multimodal

CNN + LSTM [15] 58.95 83.21 85.43

DL + attention [16] / / 88.11

MERML on AV [17] 55.9 77 91.50

C-GCN [18] / / 97.07

AV + MoBEL [19] 67.7 62 81.70

AVER 58.33 88.49 91.27

AVER + FL 67.86 / 93.29

By observing the results of the proposed model, we can conclude that the federated
learning implementation increased multimodal accuracy by about 2% on average, whereas
its influence is much more emphasized in the case of the audio modality. The performance
of several state-of-the-art methods, tested in a non-federated manner in the case of the
eNTERFACE’05 dataset is also provided.
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The methods [15–19] are designed using different approaches compared to the pro-
posed method. By analyzing the performance of methods [15–17,19], and by comparing
them with the results of the proposed model, we can notice that the proposed method pro-
vides better multimodal accuracy. Also, the proposed method achieves better classification
accuracy in the case of unimodal recognition compared to models [15,17,19]. Although the
model given in [18] outperforms the proposed model in terms of the average classification
accuracy, these observations should be considered carefully, as the performance of the
proposed model is obtained by averaging the performance of each client after the federated
learning procedure, unlike the procedure performed for other listed methods. In order to
observe the achieved performance in detail, we provide a confusion matrix of the proposed
AVER + FL model in Figure 4.
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By observing the results from Figure 4 and comparing them to the results from Figure 9
of the C-GCN model [18], we can observe that the proposed model provides better perfor-
mance in the case of disgust and happiness, whereas the model from [18] outperforms the
proposed model for other emotions. Additionally, we should highlight that the method
proposed in this paper is based on the usage of lightweight CNN models following the
objective of creating models capable of operating on edge devices. Therefore, an additional
discussion about the tradeoff between classification accuracy and computational complex-
ity, as well as the time required for pre-processing in the case of the graph convolutional
network from [18] would be required for making any precise conclusions. Also, as the
method we propose exploits transfer learning in the case of the video modality, the appli-
cation of the federated learning approach in the case of C-GCN network might be more
complex. Such considerations could be a part of our future research.

5. Conclusions

We studied the implementation of federated learning to the multimodal audiovisual
emotion recognition task by designing two separate audio and video classifiers using
convolutional neural networks, whose outputs are fused using late fusion. The proposed
classifiers are relatively small, requiring 10.3 MB in the case of the video modality and
23.3 MB in the case of the audio modality, making them suitable for potential implemen-
tation on edge devices. Federated averaging is applied only to the audio modality since
the analyzed audio models do not generalize well on the small, federated clients, whereas
transfer learning provided good results in the case of the video modality, which required
only 0.37 million trainable parameters. We demonstrated that implementation of federated
learning significantly improves classifier performance in the case of the audio modality,
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both in the case of single spectrogram classification (4.66% higher classification accuracy on
average) and decision-making after sequential voting on the utterance level (9.53% higher
classification accuracy on average). This further led to an overall improvement of ~2%
in the case of multimodal emotion recognition compared to the non-federated scenario,
making the proposed AVER model competitive and preferable to other state-of-the-art
models. However, such comparison with other models has its limitations due to the fact
that there are differences among federated and non-federated scenarios and there is a lack
of similar experiments for comparison purposes.

In the future, we intend to extend the research from a proof of concept to the real recording
scenario, involving real-time monitoring and monitoring of dialogues. Such scenario would
require additional analysis involving the selection of edge devices, device connectivity and
latency measurement, in order to understand limitations of a service deployment and provide
audiovisual model as well as federated learning framework upgrades accordingly.

Author Contributions: Conceptualization and methodology, D.B. and N.S.; software, N.S., N.M.,
S.S. and V.S.; validation, N.S. and N.M.; formal analysis, N.S., N.M. and S.S.; investigation, N.S. and
S.S.; resources, S.S., T.N. and B.P.; data curation, S.S., T.N., B.P. and N.S.; writing—original draft
preparation, N.S., V.S., S.S. and N.M.; writing—review and editing, D.B., N.S., S.S., N.M., B.P. and
T.N.; visualization, S.S. and N.S.; supervision, D.B.; project administration, D.B.; funding acquisition,
D.B. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the European Union’s Horizon 2020 research and innovation
program MARVEL under grant agreement No 957337. This publication reflects the authors’ views
only. The European Commission is not responsible for any use that may be made of the information
it contains.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data analyzed in this paper are available in a publicly accessible reposi-
tory (the eNTERFACE ’05 audiovisual emotion database): http://www.enterface.net/enterface05,
results section (accessed on 13 February 2023).

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

ANN Artificial neural network
AVER Audiovisual emotion recognition model
CNN Convolutional neural network
C-GCN Correlation-based graph convolutional network
DL Deep learning
DT Decision tree
EEG Electroencephalography
FedAvg Federated averaging algorithm
GMM Gaussian mixture model
HMM Hidden Markov model
k-NN k-nearest neighbors
LSTM Long short-term memory
MFCC Mel frequency cepstral coefficients
ML Machine learning
PNG Portable network graphics
RNN Recurrent neural network
STFT Short-time Fourier transform
SVM Support vector machine

http://www.enterface.net/enterface05


Appl. Sci. 2024, 14, 1325 13 of 14

References
1. Malik, M.; Malik, M.K.; Mehmood, K.; Makhdoom, I. Automatic speech recognition: A survey. Multimed. Tools Appl. 2021, 80,

9411–9457. [CrossRef]
2. Campanella, S.; Belin, P. Integrating face and voice in person perception. Trends Cogn. Sci. 2007, 11, 535–543. [CrossRef]
3. Wu, C.; Lin, J.; Wei, W. Survey on audiovisual emotion recognition: Databases, features, and data fusion strategies. APSIPA Trans.

Signal Inf. Process. 2014, 3, E12. [CrossRef]
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