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Abstract: Airport arrival and departure movements are characterized by high dynamism, stochasticity,
and uncertainty. Therefore, it is of paramount importance to predict and analyze surface taxi time
accurately and scientifically. This paper conducts a comprehensive review of existing studies on
surface taxi time prediction and analysis. Firstly, the overall research framework of surface taxi time
prediction and analysis is categorized from three perspectives: taxi time type, movement type, and
modeling method. Then, focusing on the two means of taxi time analytical modeling and simulation
modeling, the existing mainstream models and methods are categorized, and the main ideas and
scope of application of the various methods are analyzed. Finally, the paper presents the future
development direction of surface taxi time prediction prospects. The research results are aimed at
providing basic support and methodological guidance for reducing the uncertainty in airport surface
operation and enhancing the level of control and decision-making ability of airport surface operation.

Keywords: airport surface; taxi time; predictive modeling; machine learning; review

1. Introduction

The complex layout of large airports, dense traffic flow, and random external envi-
ronmental disturbances often lead to airport congestion and flight delays. Congestion is
primarily a result of either an overly dense distribution of aircraft on the surface or the
airport’s current relatively low operating capacity, which is unable to meet the high traffic
demand generated by actual operations. Currently, there are two solutions to address the
airport congestion problem. Firstly, physical measures to expand the available resources
of the airport can be taken. This can be achieved by increasing the number of stands,
expanding the terminal building, and adding new runways and taxiways, among other
strategies. However, these physical measures come with challenges, as they require signifi-
cant investments and have long completion cycles, making their implementation difficult.
Alternatively, planning measures can be employed; these focus on reasonable control or
scheduling of factors during airport surface operations, i.e., the safe and efficient deploy-
ment of aircraft operations on the field. Unlike physical measures, planning measures
offer a more practical approach to increase the relative capacity and available resources of
airports. By carefully planning critical aspects of the aircraft arrival and departure process,
these measures can effectively enhance airport operations [1]. The basis of the deployment
decision lies in the prediction of the taxi time, and accurate prediction enables effective and
efficient deployment. Surface taxi time refers to the total operating time between the airport
runway and aircraft stands for arrivals and departures; this serves as a crucial metric to
assess airport surface operation efficiency.

The airport movement area is a complex network comprising stands, taxiways, run-
ways, and the personnel and vehicles involved in flight services [2]. Upon arrival, an aircraft
follows a designated taxi route, guided by air traffic controllers, to reach its assigned stand.
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Similarly, for departures, aircraft are pushed back from the stands by tractors, they then
taxi to the runway end, join the runway queue, and finally take off. This interconnects
and constrains the runway system, taxiway system, and aircraft stands assignment system,
forming a cohesive spatial link in aircraft operations [3]. Therefore, accurate prediction of
surface taxi time can significantly reduce uncertainty in airport surface operations, optimize
aircraft scheduling, and enhance airport surface controllability and efficiency.

Moreover, precise taxi time prediction plays a pivotal role in aircraft pushback con-
trol [3–6], taxi route optimization [7–10], runway scheduling, stand assignment optimiza-
tion [5,11], and other essential aspects of aircraft arrival and departure processes. As we
pursue the advancement of intelligent civil aviation and smart airports, the scientific and
accurate prediction of aircraft surface taxi time gains tremendous importance in reducing
uncertainty in airport surface operations. This improvement can enhance the level of
control and decision-making capabilities of airport surface operations while contributing
to reduced fuel consumption and emissions from aircraft.

This paper focuses on addressing the challenge of predicting airport surface taxi time.
It conducts a comprehensive review of the current state of domestic and international
research from various angles, including movement type, taxi time type, and modeling
method. By summarizing the existing mainstream prediction models and methods, it aims
to shed light on future research directions in this domain. The ultimate goal is to offer
valuable methodological guidance and references to researchers in this field.

The rest of the paper is organized as follows. Section 2 categorizes taxi time research
perspectives in terms of both research objects and research methods. Section 3 focuses
on the modeling methods of surface taxi time and reviews the mainstream models and
methods. Section 4 provides an outlook for future research and summarizes the paper.

2. Classification of Research Perspectives

In this section, we present a comprehensive categorization of the surface taxi time
prediction research problem, taking into account three key perspectives: taxi time type,
movement type, and modeling method. This approach considers both the research object
and research method. Figure 1 shows the surface taxi time prediction and analysis research
framework.
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2.1. Type of Surface Taxi Time

As shown in Figure 2, a time mapping diagram for the taxiing phase is shown. Taxi
time is defined as the time between the actual off-block time (AOBT)/actual landing time
(ALDT) and the actual takeoff time (ATOT)/actual in-block time (AIBT).

From the perspective of taxi time type, surface taxi time prediction studies can be
categorized into two main types: reference time analysis and actual taxi time prediction.
Reference time is typically utilized as a reference for calculating additional time in taxi-
phase, and the difference between the actual taxi time and the reference time is used to
assess airport congestion and aircraft taxiing efficiency.
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There are three primary methods for estimating reference time: the FAA APO method,
the regression modeling method [12–15], and the percentile method [16–18]. The difference
between the actual taxi time and the reference time of an aircraft is then the additional time
in taxi-phase.

Furthermore, some scholars have focused on predicting taxi times for arrival and
departure aircraft, accounting for additional time in taxi-phase by calculating probability
distributions of additional time in taxi-phase and takeoff time [19–23]. These predictions
contribute to a more comprehensive understanding of taxi time variations and enable more
effective management of additional time in taxi-phase at airports.

2.1.1. Reference Time

In this section, we introduce the methods for calculating the reference time of aircraft
taxi movements, from the Aviation Policy and Planning Office (APO) within the FAA, and
the Performance Review Unit (PRU) within EUROCONTROL.

(1) FAA APO method

The FAA defines reference time as the taxi duration of an aircraft under ideal operating
conditions without any obstructions. That is, without encountering congestion on the
surface, adverse weather conditions, or other factors that might affect the normal taxi time.

FAA APO has put forth a method for estimating reference time based on queueing
theory [24]. The fundamental concept of this method involves categorizing flight data
according to various parameters such as airline, arrival or departure aircraft type, operating
season, airport, and actual gate. Subsequently, for each subgroup, a linear regression model
is constructed to estimate the reference time, utilizing the departure and arrival queues as
independent variables.

The constant term in the regression model represents the reference time; i.e., when an
aircraft is pushed back from a stand without encountering any queues of aircraft either
waiting to take off or taxi in. In other words, the regression model is established under the
condition that the aircraft is not queued.

Figure 3 shows the steps of the FAA APO method for calculating unimpeded taxi-out
time. The number of departure aircraft is usually set to one and the number of arrival
aircraft is set to zero [13].

(2) EUROCONTROL PRU method

EUROCONTROL PRU monitors and reviews the performance of pan-European air
navigation services, and utilizes saturation levels to calculate the reference taxi time from
each stand to the runway [25]. The saturation level indicates the point at which the taxi
time no longer decreases, even if the congestion level decreases.
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The method aims to calculate the reference taxi-out time for a set of similar flights.
Initially, each flight is categorized according to the type of stand, the departure runway, and
the congestion index, in which the congestion index represents the number of departures of
other aircraft between the time a departure aircraft went off-block and its actual takeoff time.
Subsequently, for each group of flights (e.g., the same stand–runway combination), the
reference time is calculated by taking the truncated average of the flights within the group
with lower congestion index values, taking into account the congestion index threshold.
This involves setting a congestion index threshold for each group, then trimming flights
within the group by applying the threshold on the congestion index. Subsequently, the
truncated mean of the remaining flights in the group is calculated, averaging taxi-out
times between the 10th and 90th percentiles. Then the surface movement delay, which
is the difference between the average taxi-out time of all flights within the group and
the previously determined reference time, is calculated. Finally, a more accurate result is
obtained by performing a weighted average of all surface movement delay groups [13,26].

In estimating the reference taxi time, this method considers taxi distance; reference taxi
time is estimated by applying the level of congestion associated with the surface travel time
to the ground travel distance and surface operating conditions of an aircraft as it moves
from a particular stand to the runway. In contrast to the FAA APO method, this approach
incorporates taxi distance when estimating reference taxi-out time. Figure 4 shows the
steps of the method used by the PRU to determine the reference time.
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(3) Regression modeling method

Several scholars have proposed heuristic improvements to the FAA APO method,
such as incorporating more independent variables to enhance the estimation of reference
time.

Simaiakis et al. [12] developed a multivariate linear regression model based on his-
torical data, providing estimates for the time it takes a departure aircraft to taxi from the
stand to the runway head. Zhang [13] proposed an econometric regression model using a
lognormal approach, resulting in more accurate predictions of reference time compared to
the FAA APO method.

In a pioneering effort, Zhou et al. [14] considered runway resource utilization and
selected the number of aircraft using the same runway for departure and arrival as an
independent variable. They established a lognormal regression model to predict reference
times for different aircraft types. Balakrishnan et al. [15] treated the aircraft departure
process as a queuing system. They utilized variables such as pushback schedule, gate
location, runway configuration, and weather conditions to construct a regression model
predicting the estimated reference time. Their study revealed a significant correlation
between the number of departure aircraft in the queue and additional time in taxi-phase.

(4) The percentile method

The percentile method is another commonly used approach for estimating reference
time due to its simplicity in computation. Simaiakis et al. [16] estimated reference time as
a normal random variable, assuming it to be equal to the mean of their estimation. Lee
et al. [17] computed the reference time for an aircraft with the same combination of gates,
locations, and runways by taking 10 percent of the actual taxi time as the reference time.
Feng et al. [18], after analyzing factors influencing aircraft departure taxi time, proposed
a measure of surface traffic state. Based on this indicator, they constructed a model for
predicting reference time. The actual taxi time of aircraft within the same group with
all measures lower than the congestion value is ranked from smallest to largest, and the
aircraft ranked within 10–90% is selected. Subsequently, the average taxi time of the selected
aircraft is calculated and taken as the reference time for that specific group.

(5) Other methods from the literature

Jeong et al. [27] devised a novel model for estimating reference time, utilizing the
node-link structure of airports and Airport Surface Detection Equipment (ASDE) ground
surveillance data. The data were organized based on taxiing sections, aircraft wake, and
aircraft type. By calculating the reference time for each section and then summing them up,
the total reference time for the aircraft was determined. Mirmohammadsadeghi et al. [28]
conducted a comparative study of three methods for estimating reference time: a statistical
regression, a percentile method, and an ASDE data monitoring method. The findings
demonstrated that predictive models utilizing monitoring information were more effective
and capable of swiftly identifying taxiway locations where delays were most likely to occur.

Furthermore, meta-heuristic algorithms have been employed to estimate reference
time. Kim et al. [29] developed a meta-heuristic model using the tabu search method and
genetic algorithms to calculate the shortest route from the gate to the takeoff point for
an aircraft. They also incorporated the aircraft’s average taxiing speed in that segment
to estimate reference time. By optimizing gate assignments, they successfully minimized
additional time in taxi-phase and reference time, contributing to improved efficiency in
airport surface operations.

2.1.2. Actual Taxi Time

Using departing aircraft as an example, when an aircraft is unable to taxi unimpeded
for takeoff, it typically encounters two situations that affect the taxi time. Firstly, due to
the high number of aircraft operating on the surface, the aircraft must maintain a certain
safety interval with other operating aircraft during taxiing. This safety measure impacts
the taxiing speed, leading to prolonged taxi times. Additionally, the aircraft may encounter
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conflicts during taxiing, necessitating stops as per the controller’s instructions, and waiting
for the conflicts to be resolved. The combined effect of taxiing control restrictions and
conflicts, and the time spent waiting in this queue at the end of the runway result in
additional time (Tadditional). Therefore, as shown in Figure 5, the total taxi time of an aircraft
can be broken down into reference time and additional taxi time [30], as illustrated in
Equation (1) below:

Tactual = Tre f erence + Tadditional (1)
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The variance between the actual taxi time and the reference time of an aircraft is
referred to as the additional taxi time, which is also commonly known as additional time
in taxi-phase. Researchers have used calculations based on probability distributions of
takeoff delays and takeoff times to predict the taxi time. Welch et al. [19] employed accurate
ground monitoring data to mitigate additional time in taxi-phase and offered optimization
suggestions for runway allocation and departure sequencing to reduce taxi-out time. Futer
et al. [20] developed a queuing model for aircraft departures and utilized a quantization
matrix to compute taxi time by predicting takeoff time. Experimental results demonstrated
that the application of this quantization matrix reduced the error in takeoff time estimation.
Tu et al. [21,22] focused on estimating the degree of air traffic congestion and established
a departure delay distribution model based on a genetic algorithm. They utilized a non-
parametric estimation method to compute daily and quarterly trends of departure delays.
Laskey et al. [23] developed a stochastic model to examine the relationship between flight
delay components and the factors influencing delays. Using a Bayesian network approach,
they predicted flight delay components, including departure delays.

2.2. Type of Movement

From the perspective of the movement category, surface taxi time prediction research
is categorized into two main areas: arrival aircraft taxi time prediction and departure
aircraft taxi time prediction. The arrival aircraft follows predetermined taxi routes set by
the air traffic service unit (ATSU), resulting in relatively stable taxi times. Conversely, the
departure process for aircraft is more complex and variable, making accurate prediction of
departure taxi time vital in optimizing runway utilization and achieving flexible aircraft
pushback control. There is a close correlation between aircraft pushback control, runway
utilization optimization, and taxi time prediction. The goal of aircraft pushback control is
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to minimize taxi time, reduce fuel consumption, and improve takeoff efficiency. The goal
of runway utilization optimization is to maximize runway usage efficiency, reduce wait
time, ensure aircraft can take off and land smoothly as planned, and reduce congestion and
delays. The goal of taxi time prediction is to accurately estimate how long an aircraft will be
on the surface in order to better sequence the pushback and arrival of flights. Optimizing
aircraft pushback control may involve adjustments to taxi speeds and routes, which can
affect taxi time and runway utilization. Conversely, optimization of runway utilization may
also reduce wait time and optimize taxi routes by adjusting the aircraft pushback sequence.

The specific arrival and departure process is shown in Figure 6. The arrival process
encompasses the sequence of events in which an aircraft receives landing instructions from
the tower controller, touches down on the designated runway, exits the runway via the
fast departure route, and then taxis to the assigned parking stand under the guidance
of the ground controller. At the parking stand, the aircraft undergoes maintenance and
receives various ground services. On the other hand, the departure process involves
receiving clearance instructions from the ground controller. The aircraft is then pushed
back from its parking stand using a trolley or tractor and taxis to the runway gate along
the designated taxiway, following the controller’s instructions. Once the aircraft joins the
queue of departing flights, it awaits its turn for takeoff. Finally, the aircraft follows the
tower controller’s instructions to approach the runway and complete the takeoff task [30].

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 28 
 

Due to the high dynamics and uncertainty of the surface departure process, current 
research efforts, both domestically and internationally, primarily focus on surface taxi 
time prediction for departure aircraft. This aspect can be further divided into two catego-
ries: surface taxi time prediction, which concentrates solely on the departure process; and 
surface taxi time prediction, which takes into account the influence of arrival aircraft. 

 
Figure 6. Aircraft arrival and departure process. 

2.3. Modeling Methodology 
From the perspective of modeling methods, surface taxi time prediction research can 

be broadly categorized into two approaches: analytical modeling [2–7,30–72] and simula-
tion modeling [8–10,12,16–18,20,27–29,73–77]. 

Analytical modeling relies on historical data analysis, in which different feature var-
iables are selected to establish surface taxi time prediction models. Mainstream methods 
encompass regression algorithms, neural networks, support vector machines, integrated 
learning, fuzzy rule systems, and other machine learning techniques. 

Simulation modeling involves modeling and analyzing the surface departure pro-
cess. There are two primary aspects: (1) Fast-time simulation methods (e.g., SIMMOD, 
AIRTOP, LINOS, and other mainstream commercial software) accurately simulate the 
physical structure and topological modeling of the surface, enabling high-precision sim-
ulation of the surface running process. Statistical analysis is then performed on the simu-
lation data to determine surface taxi times. (2) Queuing theory-based prediction models. 
The departure process of aircraft is divided into two stages: taxiing from the stand to the 
runway-end waiting point (considered as unimpeded time or fixed taxi time), and waiting 
in the departure queue for takeoff. For the first phase, the average taxi time for different 
aircraft positions can be derived from historical data or established surface posture 
measures. For the second phase, appropriate queuing models are used to calculate waiting 
time at the runway end to establish a prediction model for takeoff waiting time [5]. 

In addition, there is some literature [7–10] that combines taxi time prediction with 
taxi route optimization to build taxi route optimization models with the objective of find-
ing the shortest taxi time, or solving the taxi time by the shortest route. 

3. Mainstream Models and Methods 
In this section, our focus is on exploring the various modeling methods used for surface 

taxi time prediction. We will review existing research in this area and categorize the repre-
sentative literature based on the specific types of methods employed. By doing so, we aim to 
provide a comprehensive overview of the different approaches used to predict surface taxi 
time. 

3.1. Model Feature Variables 
In this section, we present an enumeration of various common features found in the 

literature, which are categorized based on their relevance as model inputs. These features 
are divided into two main groups: airport and aircraft operational features, as well as air-
port surface traffic flow features. 

Figure 6. Aircraft arrival and departure process.

Furthermore, considering operational aspects, arrival aircraft have the advantage
of directly taxiing into the stand without requiring a tractor, resulting in shorter taxiing
durations. On the other hand, departure aircraft cannot directly face the apron during
taxiing out and need tractors for pushback, leading to longer taxiing durations [31].

Due to the high dynamics and uncertainty of the surface departure process, current
research efforts, both domestically and internationally, primarily focus on surface taxi time
prediction for departure aircraft. This aspect can be further divided into two categories:
surface taxi time prediction, which concentrates solely on the departure process; and surface
taxi time prediction, which takes into account the influence of arrival aircraft.

2.3. Modeling Methodology

From the perspective of modeling methods, surface taxi time prediction research
can be broadly categorized into two approaches: analytical modeling [2–7,30–72] and
simulation modeling [8–10,12,16–18,20,27–29,73–77].

Analytical modeling relies on historical data analysis, in which different feature
variables are selected to establish surface taxi time prediction models. Mainstream methods
encompass regression algorithms, neural networks, support vector machines, integrated
learning, fuzzy rule systems, and other machine learning techniques.

Simulation modeling involves modeling and analyzing the surface departure process.
There are two primary aspects: (1) Fast-time simulation methods (e.g., SIMMOD, AIRTOP,
LINOS, and other mainstream commercial software) accurately simulate the physical
structure and topological modeling of the surface, enabling high-precision simulation of
the surface running process. Statistical analysis is then performed on the simulation data to
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determine surface taxi times. (2) Queuing theory-based prediction models. The departure
process of aircraft is divided into two stages: taxiing from the stand to the runway-end
waiting point (considered as unimpeded time or fixed taxi time), and waiting in the
departure queue for takeoff. For the first phase, the average taxi time for different aircraft
positions can be derived from historical data or established surface posture measures. For
the second phase, appropriate queuing models are used to calculate waiting time at the
runway end to establish a prediction model for takeoff waiting time [5].

In addition, there is some literature [7–10] that combines taxi time prediction with taxi
route optimization to build taxi route optimization models with the objective of finding the
shortest taxi time, or solving the taxi time by the shortest route.

3. Mainstream Models and Methods

In this section, our focus is on exploring the various modeling methods used for
surface taxi time prediction. We will review existing research in this area and categorize
the representative literature based on the specific types of methods employed. By doing so,
we aim to provide a comprehensive overview of the different approaches used to predict
surface taxi time.

3.1. Model Feature Variables

In this section, we present an enumeration of various common features found in the
literature, which are categorized based on their relevance as model inputs. These features
are divided into two main groups: airport and aircraft operational features, as well as
airport surface traffic flow features.

3.1.1. Airport and Aircraft Operational Features

Table 1 lists several common aircraft and airport operational features, including
categorical features such as runway configuration mode, airline category, aircraft type, and
operating hours; numerical features such as aircraft taxiing distance, turning angle/count
of turns; and binary variables such as arrival or departure.

Table 1. Features of airport and aircraft operational information.

Features Type Literature

Runway configuration mode Categorical [3,32,40–42,48,55,56,60,61,63,70]
Airline category Categorical [3,31,32,34,41]

Aircraft taxiing distance Numerical [2,4–6,31,38,41,45,47,50,51,56,57,60,61,63,67,68]
Aircraft type Categorical [3,30,31,44,51,60,66]

Arrival or departure Binary [45–47]
Turning angle/count of turns Numerical [45,47,56,68]

Operating hours Categorical [6,31,32,38,53,59,60,66]

3.1.2. Airport Surface Traffic Flow Features

Table 2 lists the features related to traffic flow at the airport surface. Departure/arrival
queue size refers to the number of aircraft at the head of the runway waiting to take off
or waiting to land during the current aircraft taxi time period. Number of arrivals and
departures refers to the number of aircraft taxiing in or out during the current aircraft taxi
time period.

Table 2. Features of airport surface traffic flow information.

Features Type Literature

Departure queue size Numerical [4,32,33,36,39,40,42,49,57]
Arrival queue size Numerical [33,40,66]

Number of arrivals and departures Numerical [2,4,41,42,44,45,53,61,63]
Number of aircraft pushed back in the same time slot as the aircraft Numerical [67–69]

Number of departure and arrival aircraft taxiing on the same segment as the
aircraft Numerical [67,69]
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3.2. Analytical Modeling
3.2.1. Linear Regression Model

Linear regression models determine the parameters of the model by fitting the rela-
tionship between multiple independent and dependent variables, thus regressing back to
the original equation to predict the trend of the dependent variable. As shown in Table 3,
the domestic and international literature on the application of regression models to surface
taxi time prediction over the last 20 years is summarized.

Table 3. Features of airport surface traffic flow information.

Literature Authors Approach Features Considered in the Model

[36] Idris et al.
(2001) Multiple linear regression

Surface traffic flow: departure queue size, scheduled/actual delay time,
takeoff/landing time, gate arrival times

Surface operation rules: departure/arrival runways, downstream
restrictions, capacity

[38] Kistler et al.
(2009)

Simple linear and logarithmic
regression

Airport layout: taxiing distance
Surface traffic flow: combined surface traffic flow

Surface operation rules: number of stands

[40] Chauhan et al.
(2010) Multiple linear regression Surface traffic flow: queue size, scheduled takeoff time

Surface operation rules: runway configuration mode

[41] Jordan et al.
(2010) Multiple linear regression

Airport layout: taxiing distance, runway orientation
Surface traffic flow: congestion variables

Surface operation rules: airline

[42] Clewlow et al.
(2010) Multiple linear regression

Surface traffic flow: departure queue size, number of arrival aircraft
Surface operation rules: departure terminal, runway configuration

Others: weather

[44] Deshpande et al.
(2012) Multiple linear regression

Surface traffic flow: congestion variables
Surface operation rules: the route, destination, and departure airports

Others: aircraft type

[45] Ravizza et al.
(2013) Multiple linear regression

Airport layout: taxiing distance
Surface traffic flow: amount of traffic on the surface of the airport while

the aircraft is taxiing
Surface operation rules: departure or arrival

Others: angle of turn

[48] Lordan et al.
(2016) Log-linear regression

Surface traffic flow: this takes into account the effect on the taxi time of
surface operations carried out during the taxi time period of the aircraft,

such as queuing before takeoff
Surface operation rules: these take into account factors related to taxi
time operations and define a set of binary variables representing the

combination of the start and end points of each run, including the
combination of the fast exit and the stand (for arrivals) and the

combination of the stand and the runway (for departures).

[49] Zhao et al.
(2016) Multiple linear regression Surface traffic flow: number of aircraft in the departure queue, number

of arrival and departure aircraft

[53] Liu et al.
(2018) Multiple linear regression

Surface traffic flow: number of arrival aircraft, number of
departure aircraft

Surface operation rules: operating hours

[54] Yin et al.
(2018)

Linear models, support vector
machines, integrated learning

Surface traffic flow: 21 characteristics such as surface instantaneous flow
indices (SIFIs), surface cumulative flow indices (SCFIs), aircraft queue

length indices (AQLIs), and slot resource demand indices (SRDIs).

[61] Li et al.
(2021) Lasso regression

Airport layout: taxiing distance
Surface traffic flow: number of arrival aircraft, number of

departure aircraft
Surface operation rules: runway operating pattern

[63] Li et al.
(2021) Stepwise regression method

Airport layout: taxiing distance
Surface traffic flow: number of arrival aircraft, number of departure

aircraft, actual capacity sorties, flow control information
Surface operation rules: runway operation mode

The impact of departure queue size on taxi time was initially considered a significant
factor and incorporated into the characteristic variables of the model. Subsequently, re-
searchers also introduced the number of arrival aircraft to study the combined effects of
these two influencing factors on taxi-out time. In 2001, Idris et al. [36] pioneered the study
of surface traffic flow characteristics’ influence on taxi time and proposed the concept of the
departure queue. They published the first paper on predicting taxi time based on a multiple
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linear regression model. Their analysis revealed that the departure queue size had the
strongest correlation with the change in taxi-out time. However, the model’s limitations in
strategic ground traffic management arose from the lack of consideration of the relationship
between additional time in taxi-phase and capacity constraints resulting from the runway
service process. Building upon this foundation, Clewlow et al. [42] in 2010 employed the
number of arrival aircraft as an important predictor variable and characterized departure
traffic using the number of departing aircraft rather than the number located on the sur-
face. They established a multiple linear regression model to assess the factors affecting
aircraft taxi-out time. Experimental results indicated a correlation between the number of
arrival aircraft and taxi-out time, which grew stronger with increased interactions between
departure and arrival aircraft on the airport surface. However, the correlation between
the number of arrival aircraft and taxi-out time was found to be weaker than that between
the departure queue and taxi-out time. By replacing the number of departing aircraft on
the surface with departure traffic characteristics, the prediction accuracy of the model
significantly improved. In 2016, Zhao et al. [49] further enhanced the FAA APO method
by simultaneously considering both the number of aircraft in the departure queue and the
number of arrival aircraft. They developed a multivariate linear regression model, which
aimed to capture a more comprehensive understanding of the factors influencing taxi-out
time.

The selection of characteristic variables for studying taxi time encompasses a wide
range of factors, from basic arrival and departure traffic characteristics such as departure
queue size to more diverse elements such as runway configuration, turn angle, weather
conditions, taxi route, and taxiing distance. In 2010, Chauhan et al. [40] expanded the scope
of characteristic variables by incorporating runway configuration patterns and expected
takeoff time, in addition to the departure queue size factor. They developed a multivariate
regression equation to better predict taxi time. In 2012, Deshpande et al. [44] brought
innovation to the field by introducing new characteristic variables such as route, carrier,
destination and origin airports, congestion levels, and aircraft type. These variables offered
a more comprehensive understanding of the factors influencing taxi time. In 2013, Ravizza
et al. [45] analyzed variations in taxi time from the perspective of aircraft taxiing speed.
They classified the aircraft departure taxiing distance into three sections: the pushback
section, straight-line taxiing section, and turn section. Furthermore, they introduced the
concept of the turn angle characteristic for the first time. The turning angle, distance, and
surface traffic volume of aircraft passing through these three sections were identified as
factors affecting taxiing speed. To predict taxi time accurately, they proposed a prediction
model that combined taxiway structural characteristics with historical taxi time information
using multiple linear regression analysis. Actual data from experiments demonstrated a
strong correlation between the number of arrival aircraft and taxi-out time, with higher
correlation levels observed in runway operation modes where the arrival and departure
runways crossed more frequently.

To improve the accuracy of surface taxi time estimation, researchers have delved into
comparing different surface taxi time prediction methods and have employed more complex
functions to model the factors affecting taxi time. In 2009, a study by two scholars [38]
explored the application of two functional forms: simple linear regression and logarithmic
regression, to analyze the relationship between macro-traffic factors and taxi time. The
test results revealed that the simple linear model performed better than the log-linear
model, with differences staying within 1 min of the observed data. In 2021, Li et al. [61]
conducted a comparative analysis of two prediction models; one based on traditional
statistics and the other on Lasso regression, a machine learning approach. The results
demonstrated the superiority of the machine learning approach, as it provided a higher
model fit. Moreover, by employing the DBSCAN clustering algorithm to segment the time,
the model’s performance further improved.

In order to discuss the relevance of the characteristic variables and the degree of
influence on the model, in 2010, Jordan et al. [41] proposed a statistical method to extract
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key variables from a large number of characteristic variables. The interactions between
the factors affecting the taxi time were considered to form new variables with the factors
themselves, and then the sequential forward floating subset selection method (SFFSS)
was used to select the optimal set of variables from the combination of variables in order
to construct the multivariate linear regression model. In 2016, Lordan et al. [48] used a
log-linear regression analysis method to develop a predictive model for aircraft taxi time.
The model considered two sets of independent variables: one set of route-specific (route-
related) variables and one set of interaction-specific variables. The experimental results
show that the route-related variables are effective characteristic variables and the inclusion
of interaction variables can increase the predictive ability of the model; in addition, the
route-related variables affect the model to a greater extent than the interaction variables
affect the model. In 2018, Liu et al. [53] used a multiple regression model to discuss the
magnitude of the correlation between each influencing factor and taxi time. Through the
analysis of the regression coefficients in the regression equation, it was found that the
number of arrival and departure aircraft, the operation time period, and the taxi-out time
had a significant correlation, and the correlation increased with the increase of the number
of arrival and departure aircraft. In 2021, Li et al. [63] used the stepwise regression method
to establish the taxi time prediction model to study the effects of these parameters on taxi
time at different airports.

3.2.2. Neural Network

Table 4 provides a summary of the representative literature from the last 10 years that
utilizes the neural network method to predict and analyze taxi time, both domestically
and internationally. In 2012, Chatterji et al. [43] developed a taxi time prediction model
by employing state data indicators of the airport surface as inputs to the neural network.
In 2019, Dalmau et al. [59] created a prediction model using a combination of gradient
boosting trees and neural networks. They further conducted an analysis to determine
the importance of feature variables. In 2020, Li et al. [60] proposed a novel prediction
model called spatio-temporal environmental deep learning (STEDL). They considered three
major feature variables, namely time, space, and environment, as inputs to the model. The
STEDL model consists of three sub-models, namely the time flow sub-model, the spatial
sub-model, and the environmental sub-model. Comparatively, this model outperformed
other machine learning algorithms in terms of predictive performance. In 2022, He [33]
extended the consideration of feature variables and classified 12 of them into numerical
and categorical variables. Analyzing the magnitude of correlation between these variables
and taxi time, they constructed a taxi-out time prediction model based on a deep multilayer
feed-forward neural network. To accurately predict flight delays, Shao et al. [71] proposed
a vision-based solution that leverages various vehicle trajectories and environmental sensor
data in the airport apron area. By constructing a situational awareness map and employing
the end-to-end deep learning architecture TrajCNN (Convolutional Neural Network),
they captured spatial and temporal information, achieving high-precision forecasting of
departure delays. This framework has demonstrated successful results, with a prediction
error of approximately 18 min, at Los Angeles International Airport. This is crucial for
airlines as traditional methods struggle to accurately predict departure delays.

In order to discuss the influence of the strength of the correlation of feature variables
on the prediction accuracy of the model, in 2022, Huang et al. [67] proposed a taxi time pre-
diction model based on the BP neural network to analyze the influence of weak, medium,
and strong correlation factors on the prediction, and the results show that the 5-element
combination model (medium and strong) has the best fit, and the addition of weak correla-
tion factors reduces the accuracy of the prediction. However, the stability and accuracy of
the model are not good, and the neural network is not sensitive to the initial thresholds
and weights in prediction. Aiming at the above problems, on the basis of previous research,
Huang et al. [69] proposed an improved BP neural network method prediction model based
on SSA (Sparrow Search Algorithm), which improves the accuracy of model prediction by
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using the Sparrow Search Algorithm to obtain the optimal thresholds and weights for the
neural network. Subsequently, Xia [68] constructed a taxi-out time prediction model based
on correlation analysis, classified the influencing factors into significant correlation factors
and moderate correlation factors, and also comparatively analyzed the model prediction
results based on SVR and BP neural network. The experimental results show that for both
models the prediction accuracy of the seven-element combination (significantly correlated
factors and moderately correlated factors) model is the best, and the prediction accuracy of
the SVR-based model is higher than the prediction accuracy of the BP neural network-based
model.

Table 4. Summary of representative literature on neural networks.

Literature Authors Approach Features Considered in the Model

[43] Chatterji et al.
(2012) Neural network

Airport layout: gate to runway distance
Surface traffic flow: average taxi-out delay in the previous 15 min,

number of departure aircraft on the surface during departure taxiing,
average taxi-out delay on the same runway in the previous 15 min,

average taxi-out delay to the same fix in the previous 15 min
Others: wind angle, airport arrival rate set by ATC

[5] Yin
(2018)

Support Vector
Regression—BP neural

networks

Airport layout: taxiing distance
Surface traffic flow: number of arrival and departure aircraft during the
average pre-departure taxi time at the same stand, surface congestion

Others: minimum taxi time at the same stand

[59] Dalmau et al.
(2019)

Gradient-boosted trees and
neural networks

Surface traffic flow: congestion, delay status
Others: weather, time of day

[60] Li et al.
(2020)

Spatio-Temporal
Environment Deep Learning

(STEDL)

Surface traffic flow: airport capacity, number of taxiing aircraft, air
traffic control

Airport layout: taxiing distance
Surface operation rules: runway configurations

Others: different time periods, weather, aircraft type

[67] Huang et al.
(2022) Neural network

Airport layout: the taxiing distance of departure aircraft
Surface traffic flow: Number of departure aircraft taxiing at the same
time, number of arrival aircraft taxiing at the same time, number of

departure aircraft pushed back from a stand at the same time, average
taxi time in half-hour time slices, average taxi time in 1 h time slices

[33] He
(2022) Neural network

Surface traffic flow: departure instantaneous traffic index, arrival
aircraft queue length, departure aircraft queue length, departure slot

resource requirement index, departure cumulative traffic index
Others: flight arrival-to-departure ratio, visibility, cloud base height,

temperature, dew point, wind direction, wind speed

[68] Xia
(2022)

Support Vector Regression,
neural network

Surface traffic flow: number of aircraft pushed back from a stand at the
same time, number of aircraft taking off at the same time, number of

arrivals at the same time, the average taxi time within 1 h, delays
Airport layout: taxiing distance, number of turns, number of corners

Others: time slots where departure aircraft are taking off

[69] Huang et al.
(2022)

Improved BP neural network
based on SSA

Surface traffic flow: number of departure aircraft taxiing at the same
time, number of arrival aircraft taxiing at the same time, number of

departure aircraft pushed back from a stand at the same time,
half-hourly average taxi-out time

Aircraft taxi time is influenced by a myriad of complex and diverse factors, encom-
passing both linear features such as taxiing distance and nonlinear features such as surface
congestion patterns. Due to this complexity, the relationship between taxi time and char-
acteristic variables cannot be entirely explained by a linear or nonlinear model alone.
Consequently, using a single prediction method with one model may fail to capture the
different behavioral characteristics present in the actual data. To overcome the limitations
of a single model and harness the strengths of various models, a combined model approach
can be employed to enhance prediction capabilities. In 2018, Yin [5] introduced a Support
Vector Regression-BP neural network-based taxi time prediction model. This combined
model utilized a feature vector set consisting of variables such as the number of arrival
and departure aircraft during the average pre-takeoff taxi time of the same aircraft stand,
taxiing distance, minimum taxi time of the same aircraft stand, and the degree of surface
congestion. The model applied Support Vector Regression (SVR) to uncover linear relation-
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ships within the feature vector set, while using the BP neural network to explore nonlinear
relationships. The results demonstrated that employing this combined model significantly
improved prediction accuracy compared to using a single SVR model or a single BP neural
network model in isolation. By integrating the complementary aspects of SVR and the BP
neural network, the combined model effectively addressed the challenges posed by the
diverse factors affecting taxi time and offered more accurate predictions.

3.2.3. Support Vector Machine

Table 5 shows a compilation of recent research on the application of Support Vector
Machine (SVM) in taxi time prediction. Scholars commonly approach taxi time prediction
in two stages, or they utilize the improved Support Vector Regression (SVR) method for
modeling. SVR, being the regression version of SVM, finds application in both nonlinear
and linear regression, making it a widely used technique in taxi time prediction.

Table 5. Summary of representative literature on support vector machines.

Literature Authors Approach Features Considered in the Model

[2] Meng et al.
(2015) KNN (K Nearest)-SVR

Airport layout: taxiing distance
Surface traffic flow: number of aircraft taxiing out from the same

runway at the off-block time, number of aircraft using the same runway
for takeoff and landing during the taxi-out time, average taxi-out time
from the same runway in the 15 min before the off-block time, number
of aircraft expected to take off and number of aircraft expected to arrive

during the taxi-out time

[50] Feng et al.
(2017) KNN (K Nearest)-SVR

Airport layout: taxiing distance
Surface traffic flow: number of arrival and departure aircraft on the

same runway, average taxi time on the same runway for 15 min before
the off-block time

[54] Yin et al.
(2018)

Linear models, support vector
machines, integrated learning

Surface traffic flow: 21 characteristics such as surface instantaneous
flow indices (SIFIs), surface cumulative flow indices (scfi), aircraft

queue length indices (AQLIs), and slot resource demand indices (SRDIs)

[4] Lian et al.
(2018) Support Vector Regression

Airport layout: taxiing distance
Surface traffic flow: Length of departure queue on the taxiway, number

of arrival aircraft during the taxi-out time
Others: scheduled takeoff time

[5] Yin
(2018)

Support Vector
Regression—BP neural

network

Airport layout: taxiing distance
Surface traffic flow: number of arrival and departure aircraft during the
average pre-departure taxi time at the same stand, surface congestion

Others: minimum taxi time at the same stand

[57] Lian et al.
(2018)

Two Improved Support
Vector Regression Methods

Surface traffic flow: departure queue length, number of aircraft that
may arrive during taxi time, departure delay

Airport layout: taxiing distance
Others: planned takeoff time, actual pushback time

[65] Liu et al.
(2021)

ARIMA (differential
autoregressive moving

average)—SVR

Surface traffic flow: number of aircraft taxiing on the same runway
during taxiing out, the sum of departure and arrival aircraft using the
same runway during taxiing out, the sum of the number of aircraft that
were taxiing and the number of departure aircraft when the aircraft was
pushed back form a stand, sum of aircraft taxiing out when the aircraft
was pushed back from a stand, the sum of aircraft pushed back from a

stand during taxiing out and aircraft arriving on the same runway

[68] Xia et al.
(2022)

Support Vector Regression,
neural network

Surface traffic flow: number of aircraft pushed back from a stand at the
same time, number of aircraft departing at the same time, number of

aircraft arriving at the same time, delays
Airport layout: taxiing distance, number of turns, number of corners
Others: average taxi time in 1 h, time slots in which departure aircraft

are at the takeoff time

In previous studies, the characteristic variable of the number of arrival and departure
aircraft during the taxi time period is usually estimated using the expected takeoff or
landing time of the aircraft. This method is reasonable when the airport surface traffic is
more stable, but in the case of more flight delays, the number of aircraft calculated by this
method may differ significantly from the actual number of arrival and departure aircraft.
Therefore, in order to predict the taxi time more accurately, the set of feature variables in
the model needs to be optimized, and the number of arrival and departure aircraft during
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the taxi time period can be predicted by using statistical or machine learning methods with
actual data. In 2015, Meng et al. [2] conducted real-time and static prediction of taxi time,
respectively, and used K-nearest-neighbors and Support Vector Regression methods to
forecast the taxi time in real-time. That is, firstly, the K-nearest neighbor (KNN) method is
used to predict the number of aircraft taking off from the same runway during the taxi-out
time period, which is combined with other influencing factors to form a set of feature
variables as model inputs, and the Support Vector Regression method is used to predict
the taxi-out time. On this basis, in 2017, Feng et al. [50] similarly divided the taxi time
prediction into two stages but optimized the previous study. In contrast to the method
of directly constructing the SVR model in the literature [2], this literature grouped the
data according to the aircraft’s off-block time. The experimental structure shows that the
prediction model using the KNN-SVR method is superior to the direct construction of the
SVR nonlinear regression prediction model, and KNN is more suitable for predicting the
number of aircraft departing from the same runway during the taxi-out time period than
the SVR method, while SVR is more suitable for predicting the taxi-out time than KNN,
and it has a higher prediction accuracy after grouping the data.

The above-mentioned studies have demonstrated the effectiveness of combined mod-
els and improved SVR methods in optimizing taxi time prediction. However, some scholars
have achieved even greater advancements in prediction accuracy by focusing on enhancing
the SVR method itself. In 2019, Lian et al. [4] utilized the least squares Support Vector
Regression method to predict taxi-out time and further optimized its parameters using the
improved firefly algorithm. Building upon this research, in the same year, Lian et al. [57]
established a taxi-out time prediction model employing two improved Support Vector
Regression (SVR) methods based on swarm intelligence algorithms: the particle swarm al-
gorithm (PSO) and the firefly algorithm. Historical data validation revealed that departure
delay significantly influenced taxi-out time. The improved SVR methods, particularly the
optimized SVR method based on the improved firefly algorithm (IFA), exhibited enhanced
prediction accuracy. Additionally, these methods demonstrated strong performance in
handling abnormal taxi-out time states. Through the application of advanced optimization
techniques, such as the improved firefly algorithm and swarm intelligence algorithms,
researchers have effectively improved the accuracy of taxi time prediction and enhanced
the ability to handle complex and challenging prediction scenarios.

From the existing studies on aircraft taxi time, it becomes evident that taxi time exhibits
continuity, linearity, and autocorrelation within its time series. However, the intricate nature
of airport surface operations often leads to nonlinear fluctuations in taxi time. To address
these challenges, Liu et al. [65] conducted an analysis of the time series and modeled its
linear components using the ARIMA (Autoregressive Integrated Moving Average) method
to obtain predicted values and residuals. They further applied Support Vector Regression
(SVR) to model the nonlinear behavior of the residuals. The experimental results revealed
that this method significantly improved the prediction accuracy, which reached up to 90%.
By adopting a hybrid approach that combines ARIMA for linear modeling and SVR for
nonlinear modeling, the researchers effectively captured both the continuous and linear
aspects of taxi time series while also addressing the nonlinear fluctuations.

3.2.4. Ensemble Learning

Ensemble learning accomplishes the task by constructing multiple learners; the two
most common types of ensemble learning are Bagging and Boosting. Table 6 summarizes
research on the application of ensemble learning algorithms in taxi time prediction over
the last five years. In 2018, Yin et al. [54] established a macro network topology from the
perspective of aggregation, and compared the accuracy of the linear regression, support
vector machine, and random forest three machine learning methods; and the results show
that the prediction accuracy of the random forest model is significantly better than the
other two models under one month training samples. In 2021, Zhao et al. [6] combined the
takeoff rate saturation curve to establish a departure aircraft taxi-out time prediction model



Appl. Sci. 2024, 14, 1306 15 of 26

based on random forest to optimize the control of pushback rate. Wang et al. [64] for the
first time considered the runway operation mode, cheap/non-cheap airlines and aircraft
speed characteristics, compared five prediction models, Multi-Layer Perceptron (MLP),
Linear Regression (LR), Polynomial Regression (PR), Gradient Boosting Regression Trees
(GBRT), and Random Forest (RF), and the results showed that the random forest-based
prediction model was superior to other prediction models. In addition, the important
features are extracted from the random forest model using backward exclusion, which
is a quantitative analysis of the importance of features that is rarely seen in previous
studies. Pham et al. [72] considered the controller’s decision preferences and achieved
high-precision taxi-out time prediction using both random forest regression and linear
regression. In 2022, Zhang et al. [66] established a prediction model based on random forest
regression and kernel density estimation, and used the kernel density estimation method to
fit the set of results predicted by the decision tree with probability distributions, to obtain
the probability density function of the taxi time; this method can analyze the probability
distribution of the taxi time of a single aircraft while predicting the uncertainty of the taxi
time. Zhao et al. [32] selected the XGBoost algorithm to construct the arrival and departure
aircraft taxi time prediction model, this algorithm is better than the random forest and
support vector machine algorithms and at the same time, the impact of the sample data
volume on the accuracy of the prediction time is analyzed for the first time.

Table 6. Summary of representative literature on integrated learning.

Literature Authors Approach Features Considered in the Model

[54] Yin et al.
(2018)

Linear models, support vector
machines, random forest

Surface traffic flow: 21 characteristics such as surface instantaneous
flow indices (SIFIs), surface cumulative flow indices (scfi), aircraft

queue length indices (AQLIs), and slot resource demand indices (SRDIs)

[55] Diana
(2018)

Ensemble Machine Learning,
Least Squares, Penalty

Algorithms

Surface traffic flow: number of aircraft ready to take off, takeoff
requirements, available airport capacity

Surface operation rules: runway configurations
Others: approach conditions

[6] Zhao et al.
(2021) Random forest

Surface traffic flow: number of surface operation periods, number of
arrival and departure aircraft

Airport layout: taxiing distance
Others: minimum taxi times for the same stand

[64] Wang et al.
(2021) Random forest

Surface operation rules: characterization of aircraft and airport
operations

Surface traffic flow: characterization of airport congestion
Others: characterization of average aircraft speed, characterization of

weather information

[72] Pham et al.
(2021) Random forest

Airport layout: taxiing distance
Surface traffic flow: traffic density mapSurface operation rules: runway

configurationsOthers: weather features, aircraft type, estimated taxi
time

[66] Zhang et al.
(2022) Random forest

Surface traffic flow: traffic flow related variables (surface departure
instantaneous flow/surface departure cumulative flow/takeoff time
gap demand index/departure queuing index/entry queuing index)

Others: pushback time related variables (pushback month/pushback
period), surface flight related variables (flight number/aircraft

type/stand)

[32] Zhao et al.
(2022) XGBoost algorithm

Surface traffic flow: number of aircraft taxiing at the same time on the
surface, length of departure queue

Surface operation rules: runway number, stand
Others: the airline, type of aircraft, time period, inclement weather,
whether or not crossing the runway, whether or not cross-taxiing,

number of passes through the HS, whether or not cross-taxiing, number
of passes through the HS

3.2.5. Fuzzy Rule System

Currently, the majority of taxi time predictions focus on representing the dynamics
and complexity of taxi time. Among machine learning methods, the fuzzy rule system
has shown higher accuracy in taxi time prediction compared to statistical methods and
other machine learning approaches. Table 7 summarize some of the studies applying fuzzy
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rule system in taxi time prediction. In 2014, Ravizza et al. [47] compared and analyzed the
results of multivariate linear regression, least median squared linear regression, Support
Vector Regression, M5 model tree, and TSK fuzzy model, and the results showed that the
TSK fuzzy rule system model outperforms the other models in terms of prediction accuracy.
In 2017, Obajemu et al. [51] utilized a type-2 fuzzy logic system to establish a taxi time
prediction model with the innovative introduction of speech information and, compared
to the traditional one-layer fuzzy system, the method improves the taxi time prediction
accuracy and generalization ability, with stronger robustness and accuracy. Subsequently,
Chen [56] improved the previous work; after mathematically processing the influencing
factors of taxi time delays, a multi-objective fuzzy rule-based system was added to the
uncertainty factors in the aircraft taxiing process in the historical data in order to reduce the
delays and conflicts in the taxiing process, which in turn made the taxi time prediction more
accurate and resilient. For the uncertainty of taxi time, in 2018, Brownlee et al. [7] proposed
the Fuzzy-QPPTW flight taxi route assignment method, which is based on the fuzzy system
method and time window algorithm to estimate the taxi time and its uncertainty, so as to
combine the taxi route assignment with the taxi time prediction.

Table 7. Summary of representative literature on fuzzy rule systems.

Literature Authors Approach Features Considered in the Model

[47] Ravizza et al.
(2014) TSK fuzzy rules

Airport layout: taxiing distance, taxiing turn angle
Others: departure or arrival, flight number characteristics, and some

less important factors

[51] Obajemu et al.
(2017) Type-2 fuzzy logic system

Surface traffic flow: number of aircraft stopped during taxiing, total
number of taxiing aircraft,

Airport layout: taxiing distance
Others: arrivals/departures, large aircraft/small aircraft

Surface operation rules: mode of operation at the airport when the
aircraft starts taxiing

[56] Chen
(2017)

The multi-objective fuzzy rule
system

Surface operation rules: mode of airport operation (one/two runways
used)

Airport layout: total taxiing distance and its logarithmic transformation,
distance on a straight-line segment, total angle of turn along the route

and its logarithmic transformation
Surface traffic flow: the number of aircraft taxiing on the surface at the

time of commencement of taxiing by an aircraft, and the number of
aircraft stopping to taxi while an aircraft is taxiing on the surface
Others: type of movement (arrival/departure), whether or not a

pushback maneuver has been performed

3.2.6. Other Methods

Some other advanced machine learning methods have also shown excellent perfor-
mance in taxi time prediction. As can be seen from Table 8, the research methods have
gradually evolved from linear models in the early years to machine learning methods such
as reinforcement learning and decision trees.

In 1995, Shumsky et al. [34] first proposed the correlation between different influencing
factors and taxi-out time, taking the categories of airlines, surface traffic flow, runway selec-
tion, and arrival and departure capacity demand as the characteristic variables, of which
surface traffic flow and the number of departure aircraft are the most critical influencing
factors, based on which dynamic and static linear models were established to predict the
taxi time, respectively. The results show that the dynamic linear model has better prediction
performance. In order to better realize the dynamic estimation of taxi time, in 2018, Xing
et al. [58] established a dynamic estimation model of the taxi time of departure aircraft
based on Bayesian nets by real-time processing of new data. The experimental results
show that compared with the static Bayesian net model, the dynamic estimation model has
higher accuracy, and the change rule of the taxi-out time can be derived from the analysis
of the changes in the indicators.
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Table 8. Summary of representative literature on other methods.

Literature Authors Approach Features considered in the Model

[34] Shumsky et al.
(1995) Linear model

Surface operation rules: runway selection
Surface traffic flow: surface traffic flow, arrival and departure

capacity requirements
Others: airline category

[39] Balakrishna et al.
(2010) Intensive learning

Surface traffic flow: the number of aircraft, departure traffic
flow, and departure queue size

Others: average taxi time, time of day

[46] Diana et al.
(2013)

Survival and vulnerability
analysis

Surface traffic flow: blockage delays, departure/arrival delays,
capacity utilization

Others: good or bad weather

[55] Diana et al.
(2018)

Ordinary least square
(OLS)

Surface traffic flow: number of aircraft ready to take off, takeoff
requirements, available airport capacity

Surface operation rules: runway configuration
Others: approach conditions

[58] Xing et al.
(2018) Bayesian net

Surface traffic flow: flight density, flight delays, surface traffic
conditions, traffic distribution

Surface operation rules: aircraft stand groups
Others: variable taxi times for departure flights

[70] Herrema et al.
(2018) Decision tree

Surface traffic flow: congestion level, saturation level, number
of departures in the last 20 min

Surface operation rules: de-icing station, departure station,
runway heading

Others: reference time, month, actual takeoff time, actual gear
removal time

[3] Qian
(2019) Gradient boosted tree

Surface traffic flow: number of aircraft taxiing in the same time
period, number of aircraft arrive and departure during the

taxiing period
Airport layout: taxiing distance

Surface operation rules: runway number, terminal, aircraft
stand number

Others: scheduled takeoff time, airline, destination, registration
number, aircraft type, average taxi time for the first 15 min

[30] Lin
(2020)

Gradient boosting
regression algorithm

Airport layout: taxiway length
Surface traffic flow: dynamic departure demand, simultaneous

arrival and departure flights
Others: average taxi time of departure aircraft 15 min before

pushback, aircraft type

[62] Chen et al.
(2021) Decision tree

Airport layout: taxiing distance
Surface traffic flow: congestion variables (number of aircraft

departing from the same runway and the instantaneous flow of
arrivals and departures)

Others: average taxi time of departure aircraft 15 min before
pushback, aircraft type category, airline category, aircraft stand

impact index

[31] Tang et al.
(2022)

Gradient boosting
regression algorithm

Airport layout: taxiing distance
Surface traffic flow: surface traffic, arrival runways,

Surface operation rules: inter-area operations
Others: operating hours, aircraft type, carrier attributes

In 2010, Balakrishna et al. [39] proposed a method that is suitable for the stochastic
nature of departure operations, using a nonparametric reinforcement learning algorithm
to predict the trend of the average taxi-out time 30–60 min before takeoff. Compared to
the traditional parametric regression-based approach, this method has better robustness
against stochastic factors during aircraft departure operations. Since the factors affecting
taxi time may not be expressed in parametric and semiparametric models, in 2013, Diana
et al. [46] developed a survival and vulnerability analysis model to analyze the relevant
factors related to excessive taxi time. The results showed that two factors: obstruction



Appl. Sci. 2024, 14, 1306 18 of 26

delays and high airport capacity utilization were more likely to contribute to excessive taxi
times than other influencing factors.

Through comparative experiments, Diana et al. [55] and Herrema et al. [70] found
that with different models, the same feature variable inputs may also lead to different
perspectives of predicted time result outputs. Diana et al. [55] analyzed the ordinary least
squares and ridge models and concluded that the ordinary least squares and ridge models
performed better than the other integrated learning models in predicting the taxi-out time.
Herrema et al. [70] compared four machine learning methods—neural networks, decision
trees, reinforcement learning, and multilayer perceptual machines—for taxi time prediction,
and the results of the model evaluation showed that the decision tree-based prediction
model had the best accuracy and the smallest mean error.

Previous studies have shown that the combined model has a greater propelling effect
on the accuracy of taxi time prediction. In 2019, Qian [3] first built models based on search-
ing for improved K-nearest neighbors and based on a non-parsimonious Bayesian classifier
to predict the taxi route of aircraft surface and the number of flights with short takeoff
times, respectively. After the results obtained from the prediction and other influencing
factors constituting the set of feature variables, the aircraft taxi time is then predicted based
on the gradient boosting tree method.

From the perspective of feature selection, some scholars have improved the taxi time
prediction model. In 2020, Lin [30] divided the aircraft departure process into the process
from the ramp to the taxiway to the runway to the final takeoff, and then analyzed the
factors affecting the taxi time in terms of the reference time, taxiway congestion waiting
time, and departure queuing and waiting time involved in these processes, so as to select
the feature variables. By comparing the four regression algorithms, it can be seen that the
prediction model based on the gradient boosting regression algorithm has the best fitting
effect. Existing studies rarely consider the effect of the interaction between features on taxi
time. However, in 2021, Chen et al. [62] innovatively introduced interaction features; that is,
the use of the product of two features with one-time feature to constitute a candidate feature
set. They then compared the K nearest neighbor, Support Vector Regression, and decision
tree methods. They found that the decision tree algorithm was the best method to construct
a taxi time prediction model, compared with using only one-time feature. In 2022, Tang
et al. [31] introduced “cross-region features” to construct a feature set. They compared six
commonly used machine learning methods, and selected the gradient boosting regression
tree with the highest degree of model fit to construct a taxi time prediction model. They then
analyzed the importance level of each feature. After analyzing the degree of importance of
each feature, it was concluded that the surface flow feature is the most important, with the
highest correlation with the taxi time, and the newly introduced “cross-area feature” ranks
third in importance among all the features. This indicates that this feature is meaningful
for the prediction of taxi time.

3.3. Simulation Modeling

Compared with machine learning methods based on historical data analysis and other
methods, simulation modeling methods are relatively weak in terms of both efficiency and
convenience. Table 9 counts the research of this method in the last 20 years in terms of taxi
time prediction, and the main methods include constructing a prediction model based on
queuing theory or using a fast time simulation method to simulate the actual operating
state of the surface.
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Table 9. Summary of representative literature on simulation modeling.

Literature Authors Methodology

[74] Pujet et al.
(1998) Queuing theory

[73] Gotteland et al.
(2001) Genetic algorithm

[75] Carr et al.
(2002) Stochastic parametric simulation

[20] Futer
(2006) Queuing theory

[76] Gao et al.
(2007) Queuing theory

[8] Gupta et al.
(2010) Mixed-integer linear programming

[16] Simaiakis et al.
(2010) Queuing theory

[9] Dong et al.
(2011) Subdivision and delimitation (math.)

[17] Lee et al.
(2015) Fast time simulation methods

[18] Feng et al.
(2016) Queuing theory

[12] Simaiakis et al.
(2016) Queuing theory

[2] Meng et al.
(2016) Queuing theory

[10] Dong
(2018) Taxi route optimization model

[77] Postorino et al.
(2019) Mixed-integer linear programming model

[27] Jeong et al.
(2020) Node-link model

To research the model based on queuing theory, in 1998, Pujet et al. [74] used a
stochastic queuing model to predict the taxi time, defined the departure taxi time as the
fixed time of taxiing on the taxiway and the time of waiting in the departure queue of
the runway, estimated the fixed taxi time and focused on the prediction of the time of
the aircraft waiting in line in the departure queue by using a stochastic queuing model.
In 2007, Gao et al. [76] developed a simulation-based aircraft departure queuing model
to test different emission scenarios related to taxi-out time, and the results of the study
showed that congestion is an important factor contributing to the long taxi-out time. In
2010, Simaiakis et al. [16] divided the aircraft departure taxi-out time into three parts—the
reference time, the time spent queuing up in the departure queue time, and delay time due
to congestion caused by ramp and taxiway interactions—modeling the aircraft departure
process as a queuing system. In 2016, Feng et al. [18] divided the departure aircraft taxiing
out process into two phases: from the stand to the runway end waiting point and waiting
for takeoff at the runway end waiting point. On the basis of analyzing the factors affecting
the departure aircraft taxi-out time, a measure of surface traffic state is proposed, based on
which a reference time prediction model is constructed, and the process of aircraft waiting
at the runway end and runway providing service is simulated as a M/G/1/∞ stochastic
service system in order to predict the waiting time for takeoff of the aircraft. Meng et al. [2]
performed real-time prediction and static prediction of taxi-out time, respectively. For the
static prediction, a queueing theory-based taxi-out time prediction model was developed.
Simaiakis et al. [12] modeled the aircraft departure process, and the model consists of two
main parts: one is the estimation of the distribution of the reference time, which is the
estimation of the time for the departure aircraft to pushback to the head of the runway from
the stand based on historical data. One is a runway system queuing model based on the
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D/E/1 queuing system, where the aircraft taxi-out time is considered as a function of the
size of the departure queue in order to predict the takeoff time of the aircraft and estimate
the taxi time. The above prediction of taxi time based on the queuing model theoretically
investigates the estimation method and principle of taxi time, but the model does not have
good robustness in terms of the treatment of random factors, the prediction accuracy needs
to be improved, and the experimental results differ greatly from the actual ones.

In 2002, Carr et al. [75] established a parameter matrix by considering airport through-
put, departure congestion, average taxiing delay time, etc., and simulated aircraft departure
queuing process through stochastic parameters as a way to predict taxi time under the flow
restriction. In 2015, Lee et al. [17] applied the linear optimization sequencing method to
develop a discrete-event fast simulation tool, LINOS, to simulate the current airport state
and during each run of the simulation, the simulated taxi time of each aircraft is calculated
by LINOS. In order to assess the performance level of the method, the prediction results
were compared with the results of using a machine learning approach based on historical
data and with the results of a reference time-based trajectory projection method, which
showed that the model prediction accuracy was comparable to that of the support vector
machine method, and outperformed the linear regression algorithm and the reference time
based trajectory projection method. This method, which relies on simulation software to
predict the taxi time, requires simulation software with very high simulation capability
to realize, and the parameters of the software need to be constantly adjusted according to
the actual operation status of the surface to realize the simulation requirements. Therefore,
although the prediction accuracy of this method is high, it has the disadvantages of high
cost and time-consuming adjustment of parameters.

In order to dynamically predict the taxi time so as to better control the taxiing process
to reduce carbon emissions, in 2019, Postorino et al. [77] established a mixed-integer linear
programming model containing an uncertain set of taxi times from the perspective of
flight sequencing and runway scheduling. The taxi-out time is predicted by simulating the
taxiway queue during aircraft departure. In 2020, Jeong et al. [27] established an reference
time model based on the airport node-link model. The data were categorized according
to taxiing section, aircraft wake, and flight type; and the total taxi time of the aircraft was
obtained by calculating the reference time of each section on the node-link model.

In addition, some scholars combined taxi time prediction with taxi route optimization.
In 2010, Gupta et al. [8] used Dijkstra’s algorithm to solve for the shortest paths on the
runway and taxiway operation network, and used mixed-integer linear programming
methods to generate flight routes that satisfy a given time window with minimum total
delays and no conflicts, and solved for the taxi time by shortest paths. In 2011, Dong
et al. [9] considered the airport surface as a network structure of nodes and arcs and
comprehensively considered factors such as conflict avoidance, safety intervals, and taxiway
operation rules to find the optimal taxi route with the objective of minimizing the sum
of taxi time and waiting time by using the branch-and-bound method. In 2018, Dong
et al. [10] established a taxi route optimization model based on the conflict-point selection
and avoidance mechanism and used an heuristic algorithm to solve the optimal taxi route
with the objective of minimizing the taxi time by using the heuristic algorithm for dynamic
and static planning of taxi routes. The experimental results show that the algorithm can
reduce the conflicts of aircraft on the optimal taxi route in order to reduce the taxi time.

3.4. Performance Metrics

Regarding the evaluation metrics of prediction, Root Mean Squared Error (RMSE),
Mean Squared Error (MSE), and Mean Absolute Error (MAE) are commonly used error
metrics to assess the deviation between predicted and actual values. Among them, RMSE
is the root mean square value of the difference between the predicted value and the actual
value, MSE is the mean value of the square of the difference between the predicted value
and the actual value, and MAE is the mean value of the absolute value of the difference
between the predicted value and the actual value, and the smaller the value of the three
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indicates that the prediction accuracy is higher. Furthermore, a smaller error is usually
acceptable in actual taxi time prediction. The prediction accuracy in three ranges of 1, 3, and
5 min is also used to measure the accuracy of the prediction results as well. Table 10 lists the
model predictors from the literature [4,17,61,64,65]. Models in the selected literature include
Multilayer Perceptron (MP), Linear Regression (LR), Polynomial Regression (PR), Gradient
Boosting Regression Trees (GBRT), Random Forest (RF), Generalized Linear Model (GLR),
Support Vector Regression (SVR), Adaptive Least Squares Support Vector Regression based
on improved Firefly algorithm (IFA-LSSVR), Support Vector Machine (SVM), k-Nearest
Neighbors (kNN), Linear and Linear Optimized Sequencing (LINOS), Multi Regression
(MR), Spatial—Temporal—Environment Deep Learning Model (STEDL), Autoregressive
Integrated Moving Average (ARIMA).

Table 10. Evaluation of model prediction accuracy.

Performance Metrics Range of Values

MAE [0.26, 2.81]
RMSE [0.901, 3.98]

<1 min (%) [26.04, 33.80]
<3 min (%) [53.98, 84.71]
<5 min (%) [76.77, 95.66]

In the literature [64], compared to the other four models, the RF model has the best
predictive performance, its handling of outliers is better, and it shows better generalization
ability on various datasets. Additionally, the RF model is less prone to overfitting compared
to some other models due to the voting of multiple trees. Meanwhile, the literature [64] uses
feature importance selection in RF to provide a quantitative measure of the contribution
of model features, and also provides guidance for optimizing the model and improving
explanatory and predictive performance. For the application of the discrete-event fast-time
simulation tool to predict the taxi time, it can be seen that the LINOS prediction accuracy is
comparable to that of the SVM [17]. In the literature [4,61,65], the combined model showed
higher prediction accuracy. For the treatment of abnormal glide time states, the SVR
algorithm based on IFA optimization shows good prediction performance. The use of IFA
allows the model to learn the data features more efficiently, which improves the accuracy
and robustness in predicting the abnormal glide time states [4]. The three main sub-models
of the STEDL model consist of a spatial-temporal model and an environmental model (based
on a convolutional neural network), and a fully connected spatial model. This structure
allows the STEDL model to predict aircraft taxi times more comprehensively and accurately.
The spatial-temporal model takes into account the spatial-temporal variations of the aircraft,
the environmental model takes into account external factors such as weather and airport
traffic, and the convolutional neural network and fully-connected layer help to efficiently
learn and integrate the various features, thus improving the prediction performance [61].
Compared with a single prediction model, the slip time prediction model based on the
combination of ARIMA and SVR methods can better cope with the linear and nonlinear
features of the data. The characterization role of SVR function for nonlinear data is used,
and the machine learning approach is applied to the combined model, which effectively
reduces the error of single ARIMA model in predicting the time series and improves the
prediction accuracy [65].

4. Discussion and Conclusions

This paper documents the problem of taxi time prediction in airport operations. Firstly,
from the perspectives of taxi time type, movement type, and modeling method, the research
framework for taxi time prediction is systematically organized. This includes a review
of the relevant literature on reference time and actual taxi time. From the analysis and
simulation modeling aspects, the main focus is on categorizing and summarizing the
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current mainstream taxi time prediction models and methods, both domestically and
internationally.

Currently, the predominant analysis and modeling approaches for taxi time prediction
are based on machine learning methods including linear regression, neural networks,
support vector machines, ensemble learning, and fuzzy rule systems. Linear regression
is a simple yet effective model that assumes a linear relationship between input features
and output. In the context of taxi time prediction, it can be used to capture the linear
correlation between input features and taxi times. It is suitable for situations where a linear
relationship exists between input features and output, yielding favorable results for simple
datasets and problems. Neural networks, being a powerful model capable of learning
complex nonlinear relationships, are particularly advantageous in taxi time prediction. In
this context, neural networks can automatically learn the intricate relationships among
input features, making them suitable for various data patterns. They excel in addressing
complex taxi time prediction problems characterized by strong nonlinear relationships.
However, it is important to note that neural networks require substantial amounts of data
and parameter tuning for optimal performance. Support vector machines, on the other
hand, leverage the identification of an optimal hyperplane in feature space for classification
or regression. In taxi time prediction, support vector machines demonstrate efficiency
in handling high-dimensional feature spaces. They are applicable to scenarios involving
high-dimensional feature spaces and complex boundaries, performing well even with
small sample sizes. Ensemble learning, which is a methodology involving the combination
of predictions from multiple models such as random forests or gradient boosting trees,
enhances overall performance in taxi time prediction. This approach is versatile, suitable
for various data patterns and problems, and it mitigates overfitting risks while improving
generalization capabilities. Fuzzy rule systems employ fuzzy logic to model systems with
inherent fuzziness. In the context of taxi time prediction, these systems consider uncertainty
and fuzziness, providing a more flexible approach to address complex traffic situations.
Fuzzy rule systems are particularly suitable for problems requiring the handling of fuzzy
and uncertain information, offering adaptable modeling techniques.

Similarly, the selection of data is crucial for the performance and generalization ability
of machine learning models. Regardless of how powerful a model is, if the quality of
input data is poor, the model’s performance will be adversely affected. In the feature
selection process, highly correlated features can be excluded by correlation analysis to
reduce redundant information. Then, feature selection techniques, such as statistical
methods (ANOVA and correlation tests) and model-based methods [64] (LASSO regression
and feature importance of decision trees), are applied to identify the features that have the
greatest impact on the target variable. This allows for more accurate selection of features
that are relatively independent and provide independent information without reducing
predictive effectiveness, while controlling the number of features and reducing model
training costs.

To improve the reference for further research on taxi time prediction and analysis, the
future research outlook is as follows:

(1) Research on scientific feature extraction methods for taxi time prediction: Existing
studies mainly consider input features such as surface arrival/departure flow rates,
taxiing distance, pushback time, and departure queue length for predicting taxi
time based on historical data. However, other factors such as surface congestion,
human factors [72,78], and traffic management strategies that influence taxi time have
received limited attention. Future studies should conduct in-depth analyses of factors
affecting taxi time to determine the characteristic variables for the prediction model.
Additionally, when grouping the data, researchers can explore different classification
bases, such as grouping historical data into scenarios for different weather conditions,
to establish prediction models for surface taxi time under specific weather conditions.
This can enhance feature refinement and improve the predictability of arrival and
departure taxiing processes. At the same time, consideration should be given to how
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to select features more accurately without reducing the effectiveness of forecasting.
When selecting features, there is a trade-off between the number of features and the
cost of model training. Too many features may lead to dimensionality catastrophe,
increasing the training complexity and computational cost of the model. Moreover,
choosing appropriate and highly relevant features is crucial for improving prediction.

(2) Improvement of prediction performance under incomplete data conditions: The
quality of the data is critical to the performance of the model, but the current surface
data suffer from low quality and missing data, and consideration should be given
to how to improve the accuracy of predictions under incomplete data conditions. In
addition to improving data quality through handling outliers and imputing missing
values, another viable approach is to focus on constructing more informative features
to enhance the model’s interpretability. Furthermore, when it comes to model selection,
considering the incompleteness of the data, it is advisable to opt for robust models
such as tree-based models and deep learning models.

(3) Research on distributional uncertain taxi time prediction methods: Current research
on surface taxi time prediction mainly revolves around deterministic prediction,
providing a single fixed value as the prediction result. However, considering the high
dynamics and uncertainty of the surface taxiing process, future research can explore
probabilistic prediction methods to address uncertain taxi time distribution [66]. This
approach can enhance the robustness and flexibility of surface operation control by
considering the probabilistic nature of taxi time predictions.
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