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Abstract: Cell and gene therapies represent promising new treatment options for many diseases, but
also face challenges for clinical translation and delivery. Hospital-based GMP facilities enable rapid
bench-to-bedside development and patient access but require significant adaptation to implement
pharmaceutical manufacturing in healthcare infrastructures constrained by space, regulations, and
resources. This article reviews key considerations, constraints, and solutions for establishing hospital
facilities for advanced therapy medicinal products (ATMPs). Technologies like process analytical
technology (PAT), continuous manufacturing, and artificial intelligence (AI) can aid these facilities
through enhanced process monitoring, control, and automation. However, quality systems tailored
for product quality rather than just compliance, and substantial investment in infrastructure, equip-
ment, personnel, and multi-departmental coordination, remain crucial for successful hospital ATMP
facilities and to drive new therapies from research to clinical impact.

Keywords: bioprocess; advanced therapy medicinal products (ATMPs); artificial intelligence (AI); cell
and gene therapies; bench-to-bedside delivery; personalized medicine; GMP facilities; quality systems

1. Introduction

Advanced therapy medicinal products (ATMPs) like cell and gene therapies are inno-
vative treatment approaches that modify patients’ genes, cells, or tissues to treat disease.
‘Academic advanced therapy’ in the context of ATMPs refers to those developed within
academic institutions, including medical centers and hospital environments. This approach
contrasts with industrial ATMP development, focusing on pioneering innovative treat-
ments and bridging the gap between basic research and clinical application. Academic
institutions play a crucial role in the translational process, emphasizing a blend of scientific
discovery and practical healthcare outcomes. These centers convert laboratory discoveries
into viable therapies, integrating innovative treatment development within academic re-
search frameworks, distinct from commercial pharmaceutical manufacturing [1]. However,
ATMPs remain experimental, requiring an initial translation from laboratories to clinical
trials to demonstrate safety and efficacy. The personalized nature of many ATMPs, using au-
tologous or allogenic patient cells, adds manufacturing complexity compared to traditional
pharmaceuticals. Each patient-specific batch must be rapidly produced in small quantities
and under stringent aseptic conditions. Strict guidelines like good manufacturing practices
(GMPs) are essential for ensuring quality. The implementation of GMPs is mandatory to
secure approval from regulatory agencies for the production and use of ATMPs.

Traditionally, pharmaceutical companies have possessed the infrastructure and exper-
tise to manufacture therapies for clinical trials under GMPs. However, the personalized
nature of most autologous/allogenic ATMPs has required academic medical centers to
develop their own in-house GMP facilities, to enable bench-to-bedside translation and
patient access within the same institution. However, constructing GMP facilities within
hospitals faces considerable constraints. Here, we review the key challenges academic
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medical centers must address in establishing ATMP manufacturing, as well as emerging
solutions to facilitate the clinical translation of innovative new therapies.

This article aims to explore the multifaceted role of artificial intelligence techniques
such as machine learning and computer vision in the ATMP manufacturing revolution. It
seeks to provide a global view of the current state of AI integration, specifically the applica-
tion of subfields such as natural language processing and predictive modelling, carrying
out a detailed search for information on the benefits that these technologies provide and the
challenges entailed, particularly in relation to GMP compliance and optimization of hospital
ATMP facilities. Through this exploration, this paper will illuminate the dynamic interplay
between specialized AI applications and ATMP manufacturing, highlighting how this
integration of specific capabilities such as automated image analysis and adaptive control
can advance the field, while ensuring safety, effectiveness, and regulatory compliance.

2. Advantages of On-Site Hospital Facilities

Having GMP facilities located directly within academic hospitals provides major
advantages for producing autologous/allogenic ATMPs. Proximity allows cell-based
therapies to be rapidly manufactured on-site and delivered directly to patients. This
avoids risks associated with transporting fragile cell products long distances between
external manufacturing sites and hospitals [2]. This closeness not only preserves the
integrity of cellular products but also simplifies logistics, reducing both the costs and risks
associated with transporting products over long distances. Furthermore, the alignment of
manufacturing with clinical schedules allows for flexible batch planning, accommodating
rapid changes due to production dynamics or patient needs [3,4]. On-site facilities also
enable the smooth translation of therapies from laboratory discovery to clinical trials. Once
safety has been established in early phase studies, hospital facilities can continue providing
patient access through expanded access programs.

One of the major disadvantages faced by hospital facilities is limited space. Hospitals
must integrate cleanrooms and manufacturing equipment into existing infrastructure not
designed for production. Facilities must be strategically designed to make optimal use
of available space. The use of isolators and closed systems can limit the need for larger
cleanrooms [5,6]. Careful planning allows the creation of multi-product facilities that
segregate therapies like viral vectors or gene-modified cells. Despite space restrictions,
on-site locations remain ideal for the frequent manufacturing of personalized cell therapies
requiring rapid delivery in small batches [3].

2.1. Implementing GMPs in Hospitals

While proximity provides clear advantages, implementing pharmaceutical manu-
facturing and GMPs within healthcare settings also poses challenges. Hospital staff are
generally unfamiliar with the extensive GMP documentation, training in bioprocesses, and
oversight required for clinical cell and gene therapy production [7]. Quality systems within
healthcare focus on ensuring optimal medical services, whereas pharmaceutical GMPs
aim to guarantee consistent product quality and safety [8]. Extensive GMP training and
ongoing specialized personnel education are essential to bridge this gap.

The manufacturing of autologous/allogenic ATMPs integrates key hospital units, as
depicted in Figure 1, to streamline the entire production and administration process. A
clinical research and clinical trials unit spearheads the development of clinical research
projects, ensuring meticulous research support and data integrity. Close to this is the
hematology department, which is crucial for patient management in cell-based therapies,
covering diagnosis, pre-treatment assessments, and collaboration for ATMP application.
Notably, the transplantation unit within this department specializes in the preparatory
and follow-up care for stem cell therapy [9]. Research areas like translational research and
process development bridge the gap between laboratory research and clinical application,
facilitated by innovative research fields such as biomarker identification cell therapy and
genetic engineering. The apheresis unit plays a vital role in the initial collection of cellular
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materials, ensuring expert handling of apheresis and patient care. In the sphere of product
preparation, the pharmacy department is pivotal for the final formulation and storage of
ATMPs, maintaining optimal conditions until clinical use. At the heart of manufacturing is
the GMP facility, encompassing a comprehensive spectrum from manufacturing to quality
assurance, as well as adhering to strict documentation and compliance standards. The
synergy among these units, as visualized in Figure 1, is essential for the construction,
qualification, validation, and maintenance of GMP facilities. This coordinated approach
ensures that hospital activities, including the handling of biological samples and adherence
to GMP requirements, maintain product quality throughout all manufacturing phases.
Continuous communication across these units fosters an awareness of GMP regulations,
which is crucial for staff members not typically versed in pharmaceutical standards [3,10].
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Figure 1. Presents a cohesive overview of the operational framework surrounding advanced therapy
medicinal products (ATMPs). At the core of the illustration is the ‘ATMP’, with surrounding nodes
representing various specialized units. Each hospital unit is integral to the ATMP development and
application process, highlighting the collaborative nature of this advanced medicinal ecosystem.

Quality system adaptation in hospitals, specifically focusing on product quality, safety,
and efficacy, is key to implementing GMPs in hospitals. Excessive procedures solely for
regulatory compliance can impede operations. A risk-based approach (RBA) in hospitals
can concentrate quality efforts on critical factors affecting products and patients [8]. This
method facilitates translating ATMPs to clinical practice, while ensuring compliance with
pharmaceutical manufacturing standards within complex hospital environments [3,11,12].
This approach helps to identify priority areas where the quality system can be optimized
without compromising product quality or patient safety in any case. This enables hospitals
to avoid unnecessary regulatory procedures that are solely for the sake of regulatory
compliance and that do not contribute to operational efficiency or patient care. This
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balanced approach ensures that, while regulatory standards are fully met, the primary
emphasis remains on safeguarding patient health and ensuring the efficacy of ATMPs.
In essence, adapting a quality system using RBA perspectives is not only about meeting
regulatory requirements but also about enhancing the quality of healthcare delivery in the
challenging and dynamic environment of hospitals [13].

2.2. Investment in Infrastructure and Personnel

Significant investment in infrastructure, equipment, and personnel is essential when
establishing in-house GMP facilities [14]. Constructing, qualifying, and maintaining phar-
maceutical cleanrooms requires extensive capital. Specialized manufacturing and moni-
toring equipment suited for cell processing must be purchased and qualified. The costs
of infrastructure, alongside expenses for consumables and testing, highlight the value of
efficient facility designs that maximize productivity.

Recruiting personnel with appropriate backgrounds in cell therapy process develop-
ment, GMP manufacturing, quality control, quality assurance, and regulatory experience
is crucial but challenging given this field’s novelty. Finding personnel with experience in
clinical cell bioprocessing is not always simple. Staff availability can limit capacity, so man-
ufacturing strategies maximizing operator productivity can enable hospitals to meet clinical
demand within personnel constraints [5]. Extensive planning and financial investment are
critical for establishing the necessary infrastructure, staff, training, and multi-departmental
coordination for hospital ATMP facilities, to effectively transition new therapies from
research to clinical application. This transition is especially pertinent when integrating
emerging technologies like AI, where financial considerations are paramount. The study
by Harrison et al. underscored the importance of economical scalability in cell therapy
manufacturing, highlighting the potential of small-scale microfactories as a cost-effective
approach before progressing to larger-scale macrofactories [15,16]. This model calls for
careful economic assessment, particularly in automating processes to enhance efficiency
and reduce costs, while maintaining quality control and managing the variability in donor
cell characteristics. This strategy of balancing innovation with sustainability can serve as a
template for AI integration in ATMP manufacturing, and it may even promote and facilitate
clinical integration [17,18]. Infrastructure, equipment, and personnel training represent
substantial investments, especially for smaller-scale academic facilities involved in the
production of CAR-T cells, a type of ATMP. These upfront investments are pivotal due to
the high costs associated with CAR-T cell manufacturing, which can reach approximately
USD 400,000 per therapy production. However, integrating AI in this process offers a
promising opportunity to reduce these costs. AI’s ability to analyze and interpret data can
significantly improve the efficiency and cost-effectiveness of CAR-T cell production by
automating the multi-step manufacturing process, allowing comprehensive data collection.
Such automation not only directly lowers high manufacturing costs but also aids in optimiz-
ing logistics and scaling production. Moreover, AI technologies could assist in identifying
suitable patients for therapy, monitoring therapy progression, and predicting treatment
responses. However, creating an AI-based CAR-T cell therapy system also raises challenges
such as data privacy, data security, and the requirement to integrate AI systems into existing
workflows. Ultimately, reducing contamination incidents and batch failures through AI can
boost usable outputs, with forecasts suggesting that the total cost of goods may decrease
by up to 18%, thus enhancing process sustainability. These benefits cannot be realized until
there are verifiable use cases, combined with increased maturity in major capabilities such
as blockchain technology and digitalization, highlighting the clear economic incentives and
reduction in barriers to AI adoption of ATMP manufacturing [19,20].

Additionally, it is a fact that decentralized manufacturing has emerged as a crucial
strategy in the cell and gene therapy arena, not just revolutionizing production landscapes
but also addressing staffing and training challenges. Thus, a decentralized model refers to
distributing production across multiple hospital nodes, while on-site facilities refer to the
presence of manufacturing capabilities within each individual hospital. This decentralized
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paradigm complements on-site facilities by enabling production to occur in smaller, dis-
persed facilities across locations, rather than consolidated in one large, centralized facility.
The decentralized network model allows hospitals to reap the benefits of on-site produc-
tion, while distributing resources and sharing expertise across nodes. Through dispersing
production across multiple locations, this inherently meets the demand for personalized
treatments. The pivotal role of automation in this new paradigm complements the in-
dispensable expertise of trained human operators, ensuring the management of process
variability and adherence to stringent quality standards within ‘smart cell factories’. This
approach synergizes with the need for highly skilled personnel in cell therapy process
development, GMP manufacturing, and regulatory compliance. It also aligns with the
integration of AI and other emerging technologies, which are essential for economical
scalability, as discussed in the study by Harrison et al. Decentralized manufacturing not
only enhances operator productivity but also democratizes the value chain, generating so-
cioeconomic benefits through job creation. Additionally, it offers a strategic framework for
academic facilities involved in CAR-T cell production, addressing the substantial upfront
investments in infrastructure and training. Incorporating AI into decentralized systems
promises to reduce manufacturing costs, optimize logistics, and scale production, while
ensuring data privacy and security. This model presents a sustainable solution, balancing
innovation with efficiency, as well as setting a template for future advancements in ATMP
manufacturing [21].

3. Enhancing Hospital Facilities with New Technologies

Emerging technologies present opportunities to enhance the capabilities of hospital
ATMP facilities within ever-present space, time, cost, and personnel constraints. Pro-
cess analytical technology (PAT) is a pivotal advancement employing advanced in-line
monitoring and process control to optimize manufacturing [22]. By continuously analyz-
ing physicochemical parameters like pH, dissolved oxygen, and temperature—as well as
metabolites and nutrient concentrations, such as glucose and glutamine, and byproduct
concentrations, such as lactate and ammonia—bioreactors can be automatically controlled,
decreasing manual operations [23,24]. This approach is complemented by the application
of advanced sensory technologies, particularly fluorescent optical sensors, as highlighted
in recent research [25]. These sensors are instrumental for real-time monitoring, enabling
the quantification of analytes of interest during bioprocessing. This capability for early
detection is crucial for identifying deviations from method parameters, facilitating timely
countermeasures and ensuring consistency in individualized batches. The integration of
PAT with state-of-the-art sensory technologies underscores the increase in biomanufac-
turing efficiency for enhanced control methods in the complex cellular manufacturing
environments of cell and gene therapy. Automated cell counting and viability analysis
and product concentration reduces delays when waiting for quality control results before
proceeding to the next manufacturing step. PAT enables real-time process adjustments
and consistency between individualized batches [26]. Building upon the principles of PAT,
a recent study [27] made significant strides toward enhancing the capabilities of in-line
monitoring and process optimization in biomanufacturing. This research introduced a
pioneering automated method for creating Raman spectroscopy models using Python and
Bayes optimization. This innovation represents a significant leap in the field, dramati-
cally improving the accuracy of models and simplifying the complexities associated with
monitoring a diverse range of compounds. The study’s approach notably broadened the
scope of detectable compounds in cell cultures. It successfully constructed models for
almost every amino acid and extended this capability to components traditionally elusive
to Raman spectroscopy, such as metal ions, oxygen, and carbon dioxide. This expansion
in the range of detectable compounds is pivotal, as it enhances our understanding of cell
culture environments and allows for more precise control over the manufacturing process.
Highlighting the precision of this method, the study’s models, particularly for glucose
concentration, demonstrated remarkable accuracy, with a correlation coefficient (R2) of
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0.93 and a root mean square error of 0.23. Such precision in monitoring is critical in the
biomanufacturing sector, where the maintenance of optimal culture conditions directly
influences product quality and yield. Moreover, the method’s ability to model various
compounds, including those indicative of stress markers like BiP and oxidative glutathione,
opens up new possibilities for monitoring a wide array of culture characteristics. This
capability is instrumental for real-time monitoring and feedback control, ensuring the
continuous adaptation and optimization of culture conditions. It aligns directly with the
objectives of PAT, whose fundamental focus is to maintain consistency and quality across
batches through real-time process adjustments. The integration of this method with ad-
vanced AI technologies further underscores its potential. Exploiting the power of AI, this
approach can create more comprehensive and precise models for a broad spectrum of
parameters, extending beyond traditional medium components and metabolites. This syn-
ergy between Raman spectroscopy modelling and AI technologies provides sophisticated
and efficient monitoring and control mechanisms in biopharmaceutical manufacturing,
aligning with the industry’s move towards more automated, precise, and intelligent process
management systems.

Continuous manufacturing, producing therapies in an uninterrupted flow rather than
individual batches, shows promise for integration into hospital facilities. One example that
has been demonstrated is interrupted cell culture production of viral vectors [28,29], as well
as perfusion systems that enable constant harvesting of cellular products [30]. Ongoing
downstream processing steps are also being integrated, to develop end-to-end production.
Compared to batch manufacturing, continuous processes require smaller equipment foot-
prints, allowing hospitals to increase productivity within the given space constraints. The
verification and validation methods enabled by PAT support can ensure quality control
in real time. The research by Williams et al. [31] exemplified the profound impact of PAT
in biopharmaceutical manufacturing, particularly in the optimization of cell and gene
therapy processes. Their study employed the Ranger system, a novel refractometry-based
PAT, which demonstrated its efficacy in real-time monitoring of metabolic activity within
HEK293T cell cultures during the production of lentiviral vectors. This system’s ability to
rapidly discern the relationship between bioreactor pH and culture metabolic activity, and
to adjust the pH accordingly, resulted in a notable 1.8-fold increase in metabolic activity
compared to an unoptimized process. However, it also revealed a particular aspect of cellu-
lar response: increased metabolic activity did not correspond to increased lentiviral vector
production, highlighting the complexity of these biological systems and the importance of
sophisticated process control. Furthermore, through metabolic flux modelling, Williams
et al. uncovered how low-pH environments caused a significant metabolic shift in cells,
redirecting cellular resources from growth towards managing environmental stress and
adverse conditions. These insights underscore the capacity of PAT, not only in enhancing
process efficiency, but also for enriching our understanding of the underlying biological
mechanisms, thus contributing to a continuous improvement in quality control and process
optimization in real time [31].

Artificial intelligence (AI) and machine learning (ML) have the potential to facilitate
and enhance the analysis of the vast amount of data generated during PAT monitoring
and throughout manufacturing steps [20,32]. By detecting patterns and correlations, AI
models can identify critical bioprocess parameters, predict deviations, and determine po-
tential actions, aiding biotechnologist personnel. Intelligent algorithms can also support
the automation of elements of batch record reviewing, equipment maintenance, prevention
campaigns, and contamination risk analysis. AI-based automation of cell and gene therapy
manufacturing, sample tracking, and environmental monitoring of the cleanroom will
increase hospital facilities’ consistency and oversight. Recent research has exemplified AI’s
aptitude for tackling personalized medicine’s intricacies. Schmitt et al.’s study described
predictive machine learning algorithms that can anticipate individual patient-specific
therapy response rates based on biomarker and genomic data analysis [19]. Meanwhile,
Li et al., [33] discussed an AI digital platform that automates cell therapy production track-
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ing and shows enhanced consistency between autologous batches. This concept is in line
with advanced AI-powered microfluidic technology, which has significantly enhanced both
fundamental biological research and translational clinical diagnosis. The implementation
of AI in microfluidic technology, as highlighted in a recent study, enables the processing
of the large-scale data obtained in high-throughput assays. These AI models can analyze
multimodal datasets including images, videos, electric signals, and sequences from mi-
crofluidic devices. They offer the capability not only to collect data, but to understand
and interpret it, ultimately facilitating fundamental and translational research in fields
like single-cell genomics, cell signaling, and cell type discovery. Beyond mere planning,
real-time learning systems, as demonstrated in microfluidics, can dynamically optimize
continuous bioreactor parameters, adjusting to variability between patient cell samples.
This capability is especially crucial in single-cell biology, where AI models extract cellular
features from various modalities and use deep learning algorithms for more intuitive data
processing and uncovering hidden connections among data. These advancements in AI
model development tailored for single-cell biology signify a new era, where AI not only en-
hances data processing and feature extraction, but also aids in interpreting the underlying
structure of big data in cell analysis, including cell counting, sorting, and classification. The
integration of AI into cell therapy manufacturing, as explored by Li et al., [33] has led to
the creation of an automated high-throughput genome editing platform that revolution-
izes the consistency and efficiency of producing autologous batches. This cutting-edge
platform leverages AI to streamline the gene editing process in mammalian cells, radically
transforming the traditional labor-intensive methods into a rapid, high-throughput, and
error-minimized operation. The pivotal achievement of this innovation is the chromatin ac-
cessibility enabled learning model (CAELM), an AI learning model that accurately predicts
the efficiency of cytosine base editors (CBEs). By integrating both chromatin accessibility
and sequence information, CAELM offers a profound enhancement in predicting in situ
base editing outcomes [33].

This advanced model stands out for its precision and reliability, surpassing existing
predictive tools like BE-Hive in its correlation with actual base editing efficiencies. The
strength of CAELM is evident in its Pearson’s correlation values, which range from 0.42
to 0.87, demonstrating a high level of predictive accuracy critical for the development of
genome editing-based therapeutics. This transformative approach not only accelerates the
scientific research in base editing, but also permits more accurate and efficient therapeutic
applications, marking a significant step in the intersection of AI and biomedicine [33,34].

4. Scaling Gene and Cell Therapy ATMPs from Research to the Clinic with AI

Gene and cell therapies show immense potential as advanced medicinal therapies,
but scaling initial proof-of-concepts into robust clinical processes poses difficulties and
limitations. The sensitivity of living systems means research protocols often fail when
directly applied at the larger volumes required for patient treatments. Healthcare centers
developing gene therapy ATMPs must optimize this scale-up, to progress from early studies
to clinical manufacturing. AI and real-time metabolomics analysis can allow enhanced
process understanding, to bridge the research-to-clinic scale-up gap.

During initial studies, gene delivery mechanisms and editing efficiency are evalu-
ated at laboratory scale. However, small-scale conditions rarely translate directly to the
larger volumes required for patient doses. Cell growth kinetics, vector productivity, and
other critical quality attributes commonly diverge during scale-up. Extensive empirical
optimization trials have traditionally been needed to adapt processes to clinical scale. AI
technologies offer tools to accelerate scale-up by revealing key biological factors affected
by production volume. ML algorithms integrating multivariate data can identify patterns
linking process parameters to cell health across scales [35]. This model-driven approach
rapidly highlights stress factors impairing growth or productivity when scaling up batches.
AI control systems can then automatically optimize dynamic feeding, pH, dissolved oxygen,
and other bioreactor parameters based on continuous metabolite monitoring.
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Cellular metabolism provides integral indicators of the biological effects of gene engi-
neering and culture environment. High-throughput metabolomics profiling coupled with
AI analysis elucidates metabolic phenotypes and clarifies discrepancies between research
and clinical protocols. Tracking key metabolites and pathways disrupted during scale-up
highlights target areas for process improvements. For instance, glutamine limitation or
build-up of lactate may only occur above certain volumes. AI modelling can integrate
multi-omics datasets with process data to reveal the metabolic shifts responsible for reduced
clinical-scale productivity. This understanding enables tailored nutrient supplementation
or gene modifications, to restore a favorable metabolism. Additionally, real-time biosen-
sors monitoring metabolites allow adaptive AI control systems to dynamically optimize
nutrients and parameters throughout production. Maintaining cultures in ideal metabolic
regimes enhances process robustness during scale-up.

5. Analysis of the Role and Potential Impact of AI in Academic ATMP Manufacturing,
with Additional Details on the Key Advantages AI Can Provide
5.1. Process Monitoring

The personalized nature of autologous ATMPs results in inherent variability between
patient cell samples used for manufacturing. This variability in starting material can propa-
gate through the process, making achieving consistency between individualized batches
challenging. Conventional bioprocess monitoring typically relies on manual and periodic
offline sample analysis. AI enables improved real-time process oversight through advanced
sensor instrumentation coupled with intelligent algorithms continuously analyzing data
for patterns predictive of critical quality attributes.

Multivariate AI models imply that machine learning algorithms can integrate data
streams from arrays of in-line sensors and bioreactors probe analyzers, to identify inter-
relationships between bio-parameters and product quality. This higher-resolution view
allows slight process deviations to be detected earlier and corrections to be made through
automated feedback control, rather than periodic and manual sampling. Thus, AI process
monitoring provides complete tracking and mapping of the multidimensional course of
cell bioproduction. ML techniques can also incorporate spectroscopic [36], imaging, and
other process data, to build predictive models of final product critical quality attributes
such as identity, purity, and potency [37]. This real-time predictive capability facilitates
standardized quality and reduced variability within and between batches, as well as
reduced batch failures.

In the exploration of AI’s impact on ATMP production, we can observe distinct ad-
vantages and challenges, as outlined in Table 1. Enhanced process monitoring and the
automation of manufacturing tasks are among the key benefits, leading to increased effi-
ciency and reduced workload for biotechnologists. Moreover, AI’s dynamic control and
adaptability allow fine-tuning cell culture conditions, thus ensuring batch consistency,
which is critical for patient-specific treatments. On the other hand, issues such as data secu-
rity concerns and the requirement for specialized personnel present noteworthy obstacles,
potentially hindering AI’s integration.

A further analysis is presented in Table 2 of the ATMP production process with and
without AI integration. It is evident that AI integration significantly enhances process
monitoring and manufacturing efficiency, offering a more sophisticated approach to data
management, which traditional methods lack. The enhanced quality and consistency
afforded by AI contribute to better control of product integrity; nonetheless, there are
higher investment and costs required for implementing such advanced technologies. The
need for personnel training and expertise remains an essential consideration to fully realize
the potential of AI in this field.
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Table 1. Advantages and disadvantages of AI in ATMP production.

Advantages of AI in ATMP Production Disadvantages of AI in ATMP Production
Enhanced Process Monitoring Data Security Concerns
Real-time oversight and data analysis for
maintaining consistency and quality.

Risks associated with patient data privacy and
data integrity in AI systems.

Automation of Manufacturing Tasks High Initial Investment
Increases efficiency, precision, and scalability,
reducing the workload of biotechnologists.

Significant upfront costs for AI integration and
infrastructure development.

Dynamic Control and Adaptability Limited Data in Early Development
AI systems can adjust to the variability in
patient cell samples, optimizing
batch consistency.

AI models may lack accuracy in early stages
due to insufficient data for machine learning.

Improved Data Management Requirement for Specialized Personnel
Effective handling of large datasets, enhancing
process comprehension and decision-making.

Need for staff with expertise in AI and
bioprocessing, who can be scarce.

Systems Biology Integration Regulatory Challenges
AI aids in understanding complex biological
relationships, enhancing predictive medicine.

Ambiguity in regulatory compliance for
emerging AI applications in healthcare.

Table 2. Comparison of ATMP production with and without AI integration.

Aspect of ATMP Production With AI Integration Without AI Integration

Process Monitoring Enhanced real-time monitoring and
analysis using AI algorithms.

Relies on manual and periodic
offline sample analysis.

Manufacturing Efficiency Higher efficiency and scalability due to
automation and dynamic control.

Less efficient, often limited by manual
operations and static processes.

Data Management
Advanced handling of large and

complex datasets, facilitating
better decision-making.

Traditional data management, potentially
leading to slower and

less informed decisions.

Quality and Consistency
Improved product quality and batch

consistency through predictive models
and real-time adjustments.

Potential variability and quality issues due to
lack of real-time monitoring and control.

Investment and Costs
Higher initial investment but potential

long-term cost savings through efficiency
and reduced error rates.

Lower initial costs but potentially higher
long-term operational expenses.

Personnel Training and Expertise Requires staff trained in
AI and data science.

Relies more on
traditional bioprocessing skills.

5.2. Automation

The manufacturing of ATMPs involves numerous supplementary operations beside
the bioprocess itself, including supply chain management, sample tracking, the changeover
between batches, contamination control, equipment maintenance, regulatory compliance
adherence, quality control, batch record reviewing, and data management. AI enables
automation of many tasks, to enhance precision and consistency, increase efficiency, al-
low scalability according to production demands, improve cost-effectiveness, and reduce
biotechnology personnel workloads. Robotic process automation can replicate and mimic
administrative and repetitive activities like data entry, basic data manipulation, and re-
port generation. ML algorithms can schedule planned equipment calibration, preventive
maintenance, and cleaning procedures based on the runtime. Cleanroom environmental
monitoring data analyzed by AI models can provide alerts on contamination risks and
suggest corrective actions, to avoid batch losses or disruptions to production.

Automated microscopy employing computer vision techniques permits precise char-
acterization of cells. The searching of batch records by an AI makes use of natural language
processing and provides appropriate results related to valuable data. Augmented reality
helps operators carry out critical manual operations, in order to minimize mistakes. Multi-
faceted AI-driven automation can be used to address the spatial and staffing limitations
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that academic ATMP facilities often experience. Flexible cell-factories able to manufacture
multiple individualized therapies in accordance with the specific requirements of a health-
care center can also be encompassed within ML methods, instead of following large-scale
production. With intelligent automation, workforces can become more productive using
limited staffing, while facilities can be made more efficient.

5.3. Dynamic Control

Adaptive bioprocess control systems are critical for ATMP manufacturing, given the
inevitable variability between patient cell samples. Traditional bioreactors rely on feedback
and control loops tracking setpoint values [38,39]. However, the optimal parameters and
tolerances may differ for each autologous batch’s unique biologic characteristics. AI allows
more advanced control schemes that continuously recalculate in real time the ideal setpoint
based on multivariate analysis. ML algorithms can discover relationships between sensor
data, bioprocess parameters, and critical quality attributes of the products in bioreactors.
Through this approach, a prediction model of the final product’s quality can guide dynamic
adjustments of process variables in real time, leading to maximized batch consistency
and robustness.

Hybrid AI strategies combine mechanistic first-principles models of cell growth and
metabolism with data-driven ML models that capture the existing variability in the data.
These models are commonly used for research and learning purposes, to gain insights
into the intrinsic behavior of biological systems. Thus, adaptive model predictive control
integrates these models to continuously re-optimize process parameters based on current
state measurements of the process. Thus, as more batches are produced, semi-supervised
ML can improve the controller model. AI control systems are particularly well-suited for
handling the high variability and lack of expertise that are frequently experienced during
early ATMP process development and technology transfer, because of their capacity for
self-learning. The capability of AIs in handling complexity allows flexible and sophisticated
adaptive control, especially when dealing with the specific needs of tailored batches [40].

5.4. Data Management

ATMP manufacturing fundamentally relies on synthesizing various databases, starting
from the clinical status of the incoming patient sample and ending with the final product
testing results. The correlation between clinical indicators and production factors can have
an impact on product quality and treatment outcomes. Traditional data infrastructure faces
challenges due to the vast amount of data produced. This data comes from various sources:
sensors in process arrays, omics analyses, and electronic records. Additionally, the need to
track and trace this data adds to the complexity, creating stress and pressure on existing
systems. In this regard, AI can provide tools suited for managing and handling heteroge-
neous structured, unstructured, and semi-structured data. ML is efficient for identifying
imperceptible patterns and correlations within massive datasets. AI can integrate electronic
batch records, processing data, laboratory results, clinical data, and other sources into con-
textualized knowledge that enhances process comprehension. Well-known techniques such
as natural language processing permit mining unstructured textual records. AI can enhance
data management through dimensionality reduction, noise filtering, missing data impu-
tation, and real-time data cleansing, to consolidate relevant information from discordant
sources and that is apparently unrelated into usable and applicable models, guiding deci-
sion making and controlling adjustments to optimize each personalized batch. Thus, the
integration of AI’s multifaceted capabilities, including knowledge contextualization, data
mining, dimensionality reduction, and real-time data management, highlights its strengths
for advancing process understanding and facilitating optimal real-time decision-making
for the production of personalized gene therapy ATMPs.
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5.5. Systems Biology and AI

The aim of systems biology is developing complex models that integrate data from
multiple disciplines, in order to explain complex biologic relationships or transactions. This
is contrary to the reductionist approach of the twentieth century that gave insight into
some areas but not in full regarding the comprehension of complexities and interpretation
of non-structured elements. In addition to other methods, systems and network biology
offer a unique approach to analyze multi-omics data. This method integrates various data
types to uncover new patterns and behaviors in complex molecular and cellular networks.
It does this by utilizing machine learning (ML) algorithms, which helps in understanding
these complex biological systems more effectively. Network biology empowered by AI is
important for describing the associations within normal and dysfunctional phenotypes. It
aspires to clearer, explicit, and deterministic models, in order to further predictive, preven-
tive, and personalized medicine. The large volume of multi-omics data makes functional
integration impracticable manually, necessitating advanced analytics like network analysis,
Bayesian methods, and multivariate techniques—now powered by AI.

5.6. Advanced Control Systems Leveraging AI

Recently, bioreactors have employed automatic proportional-integral-derivative (PID)
control for parameters like temperature, while others require manual regulation [41]. The
progress in control strategies, optimization algorithms, and software systems has been
significant. Contemporary bioreactors often incorporate SCADA systems requiring a
human–machine interface [42,43]. Newer systems are starting to implement adaptive
model-based controllers, providing two key advantages: (i) optimizing constraints and
control signal ranges; (ii) dynamically adjusting actions based on control outcomes and sys-
tem changes. Their strength is in continuously recalculating the optimal next steps during
operation. The development of distributed control systems in communication protocols is
gradually progressing. The combination of increased computing power and a wider array
of algorithms now allows the implementation of iterative control techniques. This employs
an extensive pool of data obtained during monitoring and a deeper understanding of cell
culture behavior, facilitating the creation of more precise and sensitive AI-driven models
using systems that integrate ML algorithms, computer vision, and the other AI techniques
described above. Basically, AI plays a central role in managing the variability and complex-
ity within the ambit of ATMP manufacturing. It is undeniable that AI can greatly benefit
academic ATMP production, but previously it required proficient control over different
facets. As previously discussed, AI can enhance process monitoring, automation, control,
and data integration for personalized therapies. However, implementing AI in this sector
clearly demands rigorous oversight of technology capabilities, data accuracy, personnel
competencies, and regulatory adherence.

A cross-functional understanding of AI maturity is crucial. Models like the Artificial
Intelligence Optimization Team’s [40,44,45] AI maturity level characterization model allow
an organization to evaluate its current AI proficiencies across manufacturing categories,
identifying gaps [46]. This assessment enables strategic roadmaps for developing capabili-
ties required for AI tools. Rather than algorithm development, the focus is on integrating AI
into operational functions. Structured maturity evaluation also tracks progress over time.

AI depends on quality data [47] and data integrity, which are critical for patient infor-
mation. Systems that ensuring privacy and effective data governance are essential before
launching any AI initiatives. Data security vulnerabilities require specific and exhaustive
risk analysis, as well as controls for AI/ML applications. For instance, the authentication
of data provenance, quality, and security as just as important a qualifier for infrastructure.
AI models continue to stay in line with changing processes by constantly curating and
maintaining data. High-quality data and its integrity are crucial in AI implementation
in a clinical environment as this entails sensitive patients’ information. As the basis of
any health AI-driven initiative, it is essential to establish strong systems, which will also
guarantee privacy safety and management procedures. AI and machine learning apps that
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deal with medical data contain a high level of data security vulnerabilities, which require
comprehensive risk assessment and customized controls specific for AI/ML in medicine.

However, within the scope of processes controlled by AI, especially the initial steps
such as academic ATMP process development, this may be considered a disadvantage
of applying ML techniques. The batches of data mined and collected from industries
such as pharmaceuticals manufacturing can train and improve numerous ML models.
Nevertheless, when the number of batches is limited, such as in academic production, the
quality of training a better model becomes limited.

Therefore, in this scenario, ML algorithms may not be able to take all possible scenar-
ios into consideration, resulting in inaccuracies in application. Under such circumstances,
predictions become inaccurate, there is less adaptability to changing conditions, adaptabil-
ity is low, and the insight into underlining processes is minimal, since this depends on
insufficient data. Consequently, in order to improve the effectiveness of ML applications, it
is imperative to increase the quantity of manufacturing batches or find alternative means
to increase data collection. One available alternative is consolidation of a Healthcare center
network established to, not only to improve health outcomes among patients, but also en-
hance ATMP quality. Within this network of hospitals, various nodes would collaborate by
exchanging information and sharing expertise, to advance ATMP manufacturing without
compromising on quality and safety.

Focusing on data sharing between the nodes in a network via the implementation and
usage of blockchain technology for secure data sharing can enable an encrypted system for
data distribution, which can be a tool for information exchange that is suitable for being
validated by regulatory agencies. This immutable and private process would ensure that
both raw or processed data are available for ML analysis and enhanced cell processing.
This innovative application of blockchain’s immutable and private framework could not
only enhance data security but also update the process of data sharing, ensuring accuracy
and integrity in the handling of sensitive data across the network [48–50].

Reskilling biotechnologist staff to implement augmented intelligence, while managing
additional risks, is critical. AI success requires personnel fluent in its applications and
limitations, especially for regulated manufacturing. Cross-functional collaboration between
biotechnologists and AI experts can promote effective adoption of AI and ML. Thus, institu-
tional cybersecurity defense requires a deep bench of talent specialized in AI/ML data risks.
Specialized personnel combining computational proficiency with bioprocessing expertise
remain scarce yet essential for overseeing responsible AI adoption. Most researchers lack
formal data science training, while data analysts are often detached from manufacturing
realities. Fostering collaborative groups between bioengineers, computer scientists, and
clinicians could promote the development of truly tailored systems. Academic curriculums
must also evolve, integrating statistics and bioinformatics skills with traditional knowl-
edge. Some leading educational institutions have already implemented introductory data
science courses into cell and gene therapy majors. For current personnel, institutions could
offer continuing education programs through partnerships with technical universities
(https://www.theattcnetwork.co.uk, accessed on 14 January 2024). Proactive reskilling
builds the competencies needed to securely apply AI towards enhancing ATMP translation,
rather than simply reducing costs. Therefore, investment in people and expertise is crucial,
along with cutting-edge technology.

Regulatory authorities encourage AI when the benefits are demonstrated with proper
GMP governance. However, ambiguity exists around emerging applications. Continuous
communication, documented risk management, and a focus on enhancing quality help
ensure compliance. Ultimately, AI for ATMPs requires synchronized integration across
technology, data, people, regulation, and health care objectives—comprehensive manage-
ment of this convergence would allow a controlled evolution toward more intelligent
manufacturing [51].

Furthermore, a focus on product quality improvement must be a priority in AI inte-
gration. However, if appropriately designed and adjusted, AI systems can make processes

https://www.theattcnetwork.co.uk
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more efficient, less prone to error, and consistent, thus improving product quality and safety.
This is a proactive approach that guarantees compliance, while ensuring the healthcare
system provides safe and quality services to patients.

Achieving the successful implementation of AI in relation to the manufacturing of
ATMPs relies on the synchronous integration of various spheres. These areas include the
implementation of cutting-edge technological solutions in healthcare, responsible data
management, health practitioner cooperation, strict regulation compliance, and the align-
ment of AI strategies with other academic and public health players. Proper management
of this diverse convergence is a challenge, as each requires explicit leadership, operational
procedures, and well-defined roles and responsibilities that are coherent in a complex
academic–hospital ecosystem [52].

In synthesizing the critical factors for the successful implementation of AI within
the domain of ATMP manufacturing, we must acknowledge the intricate network of
interdisciplinary collaboration. This involves the integration of advanced technological
solutions, meticulous data management, healthcare professionals’ engagement, adherence
to rigorous regulatory frameworks, and strategic alignment with academic and public
health initiatives. Managing this multifaceted convergence demands clear management,
precise operational protocols, and well-articulated roles within the complex academic–
hospital ecosystem. Furthermore, in the advanced control systems section, we elaborated on
how these systems build upon previously described AI capabilities like process monitoring,
automation, and dynamic control, to implement more sophisticated control algorithms.
While those previous AI applications provided valuable data analysis, adjustments, and
modelling, advanced control systems leverage that foundation to continuously recalculate
optimal parameters using hybrid mechanistic and machine learning models. This enables a
higher level of adaptive and model predictive control that goes beyond basic feedback loops
to provide fully customized bioreactor optimization tailored to the unique characteristics
of each individual batch in real time. Thus, the distinguishing features of advanced AI
control were clarified compared to the other previous functionalities of AI discussed in the
paper. Figure 2, ‘AI in ATMP production’, provides a structured visual overview of these
interdependencies and outlines the dynamic roles of AI throughout the ATMP production
cycle. It is presented here as a precursor to our concluding thoughts, reaffirming the
transformative impact and the multifarious challenges of AI integration in advancing the
field of ATMPs.
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6. Conclusions

The emerging field of advanced therapy medicinal products represents a new frontier
in personalized and innovative treatments, with enormous therapeutic potential. However,
manufacturing customized cellular and gene therapies poses profound challenges, requir-
ing extensive adaptation of conventional biopharmaceutical production paradigms. The
intrinsic constraints of hospital-based facilities further intensify the difficulties in clinically
translating these novel ATMPs. Constructing on-site modular GMP infrastructure can
enable bench-to-bedside delivery but demands substantial optimization of design, quality
systems, staffing, and coordination across hospital departments. While a monumental
undertaking, the integration of academic research, pharmaceutical manufacturing, and
clinical medicine made possible by hospital ATMP facilities can drive scientific discoveries
toward direct patient impact.

Emerging technologies like process analytical monitoring, continuous production,
and AI can further enhance process control, automation, and oversight, to overcome
limitations. In this regard AI holds tremendous promise for allowing academic ATMP
facilities to overcome constraints of limited space, staffing, patient-specific variability, and
decentralized manufacturing. Intelligent algorithms can monitor processes in real time,
automate ancillary tasks, enact sophisticated adaptive control, and synthesize the breadth
of data involved in patient-specific production.

Early applications have demonstrated AI’s utility for automated analysis and enhanced
productivity. Visionary initiatives will make AI a transformational technology, ensuring
these innovative personalized medicines realize their full therapeutic potential. However,
fully realizing the clinical promise of personalized ATMPs ultimately relies on synergistic
partnerships across disciplines, to pioneer new treatments while maintaining demanding
quality standards. Improving patient outcomes should motivate explorations into AI-driven
automation. Beyond operational metrics, focusing innovation on maximizing therapeutic
safety and efficacy requires integrating manufacturing data with clinical databases through
processes that maintain privacy safeguards.

Real-world evidence can help us understand how the quality of a cellular product im-
pacts how it works. Using advanced analysis, connections can be made between treatment
procedures and side effects, or how changes in cellular phenotype during production can
affect their survival after being transplanted. By contextualizing technical data into patient
impacts, development can shift from simply engineering robotic bio-factories toward pur-
poseful design tailored for healing. Focusing on clinical outcomes can continually re-center
personalized medicine innovations on whole persons rather than products. The accelerat-
ing advancement in novel biotherapeutics in hospital-based manufacturing facilities can
allow continued progress in providing patients access to transformative medicines tailored
to their unique needs.
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