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Abstract: Life detection is important in earthquake rescue, but weak vital signal is susceptible to
interference by clutters. Due to the undesirable characteristics of the hardware, there are two main
types of clutter generated by the frequency modulation continuous wave (FMCW) radar when
transmitting signals. One is generated by periodic nonlinearity during frequency modulation, and
the other is generated by the phase-locked loop spuriousness (PLLS) in frequency division. They
cause additional beat frequencies to appear beside those from the target, leading to false alarms.
Since the suppression measures for them are different, it is necessary to distinguish the types of
clutter and choose appropriate suppression methods. In this paper, the accurate theoretical modeling
of the effects of the periodic nonlinearity and phase-locked loop spuriousness on the beat signal
is performed to determine distinctions between them. The clutter occurring in the system used
is identified as originating from phase-locked loop spuriousness through fiber-optic experiments.
A method using long delay lines and cross-correlation is proposed to identify and remove it. In
experiments, the false alarm rate is reduced from over 50 percent to nearly 0 percent, providing strong
evidence for the effectiveness of the proposed method in through-wall detection.

Keywords: frequency modulation continuous wave (FMCW); periodic nonlinearity; phase-locked
loop spuriousness (PLLS); correlation coefficient; through-wall detection

1. Introduction

In recent years, non-contact respiration detection as the vital sign of human beings
by utilizing radar systems has been widely used in medical, security, disaster rescues, and
so on [1–4]. Electromagnetic waves are reflected by the human target and picked up by
the radar system. The small displacement in the chest or abdominal wall associated with
respiratory activity causes certain characteristics of the echo signal, such as amplitude
and phase, to vary with time. This feature is not present in the echoes of other stationary
subjects, and thus human targets can be recognized. Due to the penetrating nature of
electromagnetic waves, through-wall detection has been widely used in concealed target
detection behind obstacles [5,6]. The elaboration of the concept of small-displacement
detection related to human vital signs based on a radar system and the concept of through-
wall detection prompted studies to develop methods for detecting living human targets
behind walls.

The frequency modulation continuous wave (FMCW) radar has been widely used
in human vital sign detection due to its straightforward structure, high sensitivity, and
impressive range resolution [7,8]. The breathing pattern can be detected from the phase
change of the beat signal [9]. The target distance from the radar can be converted from the
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frequency of the beat signal. In through-wall detection, the presence of the wall causes
a large attenuation of electromagnetic waves. Therefore, for the same detection range,
the radar needs to have a higher power than when applied in free space. At this point,
the radar with a wideband short pulse requires higher peak power, which is difficult to
implement in hardware. However, this is not the case with the FMCW radar because of its
large time-width bandwidth product. Moreover, the FMCW radars have a higher degree
of device integration, which makes it easy to achieve miniaturization. These make the
FMCW radar more suitable for through-wall detection. However, FMCW radar suffers
from two types of clutter during transmission due to the undesirable characteristics of
the hardware. One is generated by the nonlinear frequency modulation, and the other is
generated by the phase-locked loop spuriousness that arises in system frequency division.
They cause additional beat frequencies to appear beside those from the target, leading to
false alarms.

More seriously, they are further complicated by reflections from the wall, the human
target, and other objects in through-wall detection [10]. These problems seriously impact
the correctness of human target localization [11]. It is necessary to study the solution of
removing them before performing target detection.

There are different suppression methods for these two types of clutter. For frequency
modulation nonlinearities, current research includes both hardware and software correction
methods. Hardware techniques include using predistortion technique to compensate for
nonlinearity in voltage-controlled oscillator (VCO) response characteristics [12], correcting
varactor tuning curves by a tuning voltage converter [13], using direct digital synthesizers
(DDSs) [14] and phased-locked loops (PLL) [15]. However, they not only raise the cost but
also increase the complexity of the system. Software corrections are divided into two steps:
nonlinearity estimation and correction. Using a fixed-range target echo as reference, the
estimation methods consist of coherent integration [16], homomorphic deconvolution [17],
and high-order ambiguity function [18]. This effect is partially compensated using methods
such as residual video phase (RVP) removal [16,19], time resampling [17,18], and match
Fourier transform [20].

For the phased-locked loop spuriousness, current research focuses on hardware sup-
pression methods. They include the use of adaptive filtering techniques [21] and a charge
pump phase-locked loop architecture with dual loops [22] to suppress spuriousness to
a low level. Techniques for suppressing phase-locked loop spuriousness using software
methods are not yet available.

Since there are different methods for dealing with the above two types of clutter, it
is necessary to check the type of clutter in the system used before selecting the method.
Therefore, the difference between their effects on the beat signal has become the focus of the
study. In this paper, without using any approximation, the exact effect of periodic nonlin-
earity and the phase-locked loop spuriousness on the beat signal is established, respectively.
Their characteristics can be clearly recognized in theory. To exclude environmental effects,
a series of closed-loop experiments were conducted using different lengths of optical fibers.
Comparing the experimental phenomena with the above theory, the clutter that appeared in
the system used is confirmed to be generated by phase-lock loop spuriousness. A removal
method based on long delay lines and cross-correlation is proposed which can not only
identify the location of the clutter, but also remove it. After using the proposed method,
the false alarms are eliminated. The effectiveness of the proposed method is verified by
experiments, including the free space and through-wall situations.

The rest of the article is organized as follows. In Section 2, theories of effects of periodic
nonlinearity and phase-locked loop spuriousness on the spectrum of the beat signal are
successively established. Section 3 introduces the fiber optic experiments used to identify
the source of the clutter in the system. Section 4 presents the proposed method for removing
the clutter. In Section 5, experimental results in free space and through-wall situations are
shown to demonstrate the effectiveness of the proposed method. Finally, the conclusion is
presented in Section 6.
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2. Theory
2.1. Impact of Periodic Nonlinearity on the FMCW Radar

The transmitted signal of an ideal FMCW Radar system [17] can be expressed as

st0(t) = rect(
t

Tp
) exp[j2π( fct + 0.5Kt2)], (1)

where Tp denotes the single frequency modulation cycle, fc denotes the center frequency, K de-
notes the frequency sweep rate. To obtain frequency, the derivative operation on the phase
of the transmitted signal is performed. The result can be expressed as fc + Kt. The varia-
tion of t ranges from 0 to TP, so frequency f varies from 0 to fc + KTp, which completes
the frequency sweep. Thus, square term 0.5 Kt2 in the phase drives the frequency sweep.
Because the bandwidth of the transmitted signal is B = K × Tp, the start and end frequencies
are fl = fc, fh = fc + B, respectively.

The illustration of the radar wave propagation in free space is shown in Figure 1. The
wave is reflected from the target with a time delay of τ. The rectangular envelope limits
the time range of the transmitted signal but does not affect the phase of it. Therefore, the
rectangular envelope is generally ignored for the sake of simplicity in formulas. Ignoring
the rectangular envelope, the ideal reflected wave can be represented as

sr0(t) = exp[j2π( fc(t − τ) + 0.5K(t − τ)2)]. (2)
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Figure 1. Free space wave propagation.

The reflected signal is mixed with the transmitted signal and then filtered by a low-pass
filter (LPF) to obtain the ideal beat signal,

sIF0(t) = LPF{st0(t)× sr0(t)}
= LPF

{
exp[j2π( fcτ + Kτt − 0.5Kτ2)]

+ exp
{

j2π[(2 fc − Kτ)t + Kt2 − f τ + 0.5Kτ2]
}
}

= exp[j2π( fcτ + Kτt − 0.5Kτ2)]

, (3)

where LPF{·} represents low-pass filtering of signals.
The schematic of the above process is shown in the first line of Figure 2. In Figure 2a,

the solid and dashed lines represent the frequencies of the transmitted and received signals
over time, respectively. The transformation of frequency with time is linear, i.e., linear
modulation. After the above mixing and low-pass filtering, a single-frequency beat signal is
obtained, as shown in Figure 2b. Fast Fourier transform (FFT) is performed on sIF0(t) and
the result is denoted as SIF0(ω). SIF0(ω) is the spectrum of sIF0(t), which is illustrated in
Figure 2c.
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When the periodic nonlinearity in modulation (periodic nonlinear modulation) occurs,
a periodic phase is added to the transmitted signal. To describe that, ε(t) is defined as the
phase it brings which is assumed to follow a cosine-like pattern [11],

ε(t) = b cos(2π fet), (4)

where b denotes the amplitude of the periodic nonlinear phase, and fe denotes the frequency
of the periodic nonlinear phase. Therefore, the actual transmitted signal [11] can be
represented as

st1(t) = exp
{

j[2π( fct + 0.5Kt2) + ε(t)]
}

. (5)

After reflection from the target with time delay τ, the periodic nonlinearity is carried
into the received signal. The actual reflected wave is expressed as

sr1(t) = exp
{

j[2π( fc(t − τ) + 0.5K(t − τ)2) + ε(t − τ)]
}

. (6)

It is mixed with the actual transmitted signal and then filtered by a low-pass filter
(LPF) to obtain the actual beat signal,

sIF1(t) = LPF{st1(t)× sr1(t)}
= exp[j2π( fcτ + Kτt − 0.5Kτ2)]× exp{−j2b sin(π feτ) sin[2π fe(t − τ)]}
= sIF0(t)× exp{−j2b sin(π feτ) sin[2π fe(t − τ)]}

. (7)

In order to carry out the derivation of the Fourier transform, the additional term in
Equation (7) other than sIF0(t) is first expanded using the Bessel function. Specifically, it
can be written as

exp{−j2b sin(π feτ) sin[2π fe(t − τ)]}
=

∞
∑

m=−∞
Jm[2b sin(π feτ)]× exp(jπm feτ)× exp(−j2πm fe)

, (8)
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where Jm(z) is the Bessel function of the first class of order m. After performing a fast Fourier
transform (FFT), the spectrum of the beat signal under periodic nonlinear modulation
is obtained:

SIF1(ω) =
∞

∑
m=−∞

Jm[2b sin(π feτ)]× exp(jπm feτ)× SIF0(ω − 2πm fe), (9)

where SIF0(ω) is the spectrum of the ideal beat signal. Under the influence of periodic
nonlinearity in frequency modulation, the beat signal generation process is shown in
the second line of Figure 2. In Figure 2d, the solid and dashed red lines represent the
frequencies of the transmitted and received signals over time, respectively. After mixing
and low-pass filtering, periodic changes in the frequency of beat signal occur, as shown
in Figure 2e. Figure 2f is the spectrum based on Equation (9). Periodic nonlinearity is
presented in its spectrum in the form of side lobes.

The above derivation of the impact of periodic nonlinearity does not rely on approxi-
mations, making it suitable for short and long distances, unlike any previous studies [11].
More deeply, the amplitude of the spectrum is determined by the magnitude of the Bessel
function from Equation (9). When m = 0, the value of the Bessel function represents the
amplitude of the main lobe. In other cases, the value of the Bessel function represents the
amplitude of the side lobe. As a matter of fact, the periodic nonlinearity in the system is not
too large. We take fe = 350 kHz based on the previous work [16]. Therefore, the amplitude
of the main lobe and each side lobe can be obtained at different target time delays. J0, J1, J2,
and J3 represent the amplitude of the main lobe, the first side lobe, the second side lobe,
and the third side lobe, corresponding to m = 0, 1, 2, 3, respectively. Their variation with
respect to target delay τ is shown in Figure 3. Since J1 is larger than J2 and J3, J1 is used
as the representative of side lobes for analysis. J0 and J1 intersect at τ = τ1. The system
can only work properly if the main lobe is larger than the side lobes, i.e., the left part of
the intersection where τ < τ1. In this region, the main lobe J0 decreases as τ increases,
while J1 increases as τ increases. In other words, ratio J0/J1 is smaller with the target
being farther.
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2.2. Impact of Phase-Locked Loop Spuriousness on the FMCW Radar

A phase-locked loop (PLL) is required for frequency division to generate signals of
different frequencies in the frequency modulation continuous wave (FMCW) radar. Figure 4
shows the schematic diagram of a phase-locked loop. Explanations of the modules can be
found at the bottom of the figure. Ideally, reference frequency fRe f generates the desired
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RF signal fRF via the PLL. The RF signal is sent through the transmitted signal. However,
the spurious phenomenon occurs during the actual process of frequency division. It is
called phase-locked loop spuriousness. This phenomenon manifests in the impact on the
transmitted signal as follows: Symmetric spurious frequencies appear on both sides of the
required frequency.
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The phase of the ideal transmitted signal in Equation (1) is noted as

φ(t) = 2π( fct + 0.5Kt2). (10)

Assuming that the partition between the spurious frequency and the required fre-
quency is fs, the actual transmitted signal under the influence of phase-locked loop spuri-
ousness can be written as

st2(t) = A0 exp[jφ(t)] + As1(t) exp[φ(t) + j2π fst] + As2(t) exp[φ(t)− j2π fst], (11)

where A0 denotes the amplitude of the required frequency, As1(t) and As2(t) denote the am-
plitude of the two spurious frequencies, respectively. Moreover,
A0 >>||As1(t)||∞, A0 >>||As2(t)||∞.

After reflection from the target with time delay τ, the reflected wave is expressed as

sr2(t) = A0 exp[jφ(t − τ)]
+As1(t − τ) exp[φ(t − τ) + j2π fs(t − τ)]
+As2(t − τ) exp[φ(t − τ)− j2π fs(t − τ)]

. (12)

Transmitted signal st2(t) is mixed with received signal sr2(t) and then processed
through a low-pass filter. After that, the beat signal can be expressed as

sIF2(t) = A2
0 exp

{
j[2π( fcτ + Kτt − 0.5Kτ2)

}
+A0 As1(t − τ) exp

{
j[2π( fcτ + (Kτ + fs)t − 0.5Kτ2)]

}
+A0 As2(t − τ) exp

{
j[2π( fcτ + (Kτ − fs)t − 0.5Kτ2)]

} . (13)

Using FFT, the spectrum of the beat signal can be obtained:

SIF2(ω) = A2
0SIF0(ω) + A0 As1(t− τ)SIF0(ω + 2π fs) + A0 As2(t− τ)SIF0(ω − 2π fs). (14)

As a result, the beat signal generates spikes at frequencies Kτ, Kτ + fs and Kτ − fs,
respectively. Due to the contrast in magnitude, Kτ corresponds to the main lobe and the last
two correspond to the side lobes. On the one hand, the amplitude of the main lobe,

∣∣∣∣A2
0

∣∣∣∣
∞,

is much larger than that of the side lobes, ||A0 As1(t − τ)||∞, ||A0 As2(t − τ)||∞. On the
other hand, the amplitude of the main lobe is independent of target time delay τ, and side
lobes vary with τ.

From the above derivation, it is evident that both the periodic nonlinearity during
frequency and the phase-locked loop spuriousness during frequency division lead to the
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generation of side lobes in the beat signal. And the amplitude of the side lobe is related
to target time delay τ. The difference between them is that the amplitude of the side lobe
generated by the periodic nonlinearity increases with τ, i.e., the ratio of the amplitude of the
side lobe to the main lobe increases. However, the statistical pattern of the amplitude of the
side lobe generated by the phase-locked loop spuriousness is not obvious. The distinction
is used to identify the cause of clutter in the system.

3. Experiments with Optical Fibers

From the above, the major difference between periodic nonlinearity and phase-locked
loop spuriousness is the clutter generated by them has different trends with the target
delay. To investigate this tendency of the clutter used in the system and exclude environ-
mental interference, a series of closed-loop experiments were carried out. In particular, the
transmitted and received ports of the system were directly linked using different lengths
of connecting wires to simulate target echoes. The physical picture of the closed-loop
experimental used is shown in Figure 5a.
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Optical fiber has the characteristics of long transmission distance, high anti-interference
ability, and very low signal attenuation. Therefore, the optional fiber was selected as the
connecting line for the closed-loop experiment. Figure 5b is the physical picture of the
fiber optic module whose model number is R0F006GEM-MA (It first appeared at Corning,
NY, USA). Port RF_in is the RF input port for connecting to the transmitted port, and
port RF_out is the RF output port for connecting to the received port of the radar system.
The specific connection between the radar system and the fiber optic module is shown in
Figure 5c. The length of the accessed optical fiber was varied to simulate changes in the
target time delay.

We collected data from the radar operating for a certain period, during which time
more than one piece of data was obtained by constantly transmitting and receiving. The
steps for processing the echo signal (also known as the beat signal) are as follows:

• Signal pre-processing includes Hilbert transform and direct current signal removal
operation on each piece of data;

• FFT is performed along range direction to obtain the range-slow time spectrum. This
step is still included for every piece of data. Each piece of data is arranged into a matrix
by column as the range-slow time spectrum. Figure 6a shows the range-slow time
spectrum plot of a fiber with a length of 24 m. The maximum position of each column
of data corresponds to the distance of 24 m;

• Two adjacent columns of the range-slow spectrum along the slow time direction are
subtracted. The information of the clutter is highlighted due to its own instability. The
energy of the main lobe is canceled out due to its stability. The processed result of the
fiber with a length of 24 m is shown in Figure 6b where only clutter remains.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 18 
 

 
(a) (b) 

 
(c) 

Figure 6. Results of closed-loop experiments on an optical fiber with a length of 24 m. (a) The initial 
range-slow time matrix; (b) The range-slow time matrix with only clutter remaining; (c) The distri-
bution of clutter along the distance. 

To observe the characteristics of the clutter more clearly, the above-processed data 
were accumulated along the slow time direction. The cumulative result is shown in Figure 
6c. The positions of the two spikes in it are located at 18.69 m and 28.73 m. Both are exactly 
symmetric, about 24 m. This indicates that the positions of the clutter on both sides of the 
main lobe are symmetrical about the peak position of the main lobe. The clutter is defined 
as left clutter and right clutter based on its front-to-back position with the main lobe. 

Closed-loop experiments are conducted using optical fibers with lengths of 12 m, 16 
m, 24 m, and 40 m, respectively. The above processing is performed for the echo signals 
and the results are plotted in Figure 7a. It is evident that the positions of left clutter and 
right clutter are symmetric about the corresponding optical fiber length. Peaks of the clut-
ter on both sides are extracted and plotted as separate lines in Figure 7b. The magnitude 
of the clutter on both sides decreases as the length of the fiber becomes longer. 

  
(a) (b) 
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To observe the characteristics of the clutter more clearly, the above-processed data were
accumulated along the slow time direction. The cumulative result is shown in Figure 6c.
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The positions of the two spikes in it are located at 18.69 m and 28.73 m. Both are exactly
symmetric, about 24 m. This indicates that the positions of the clutter on both sides of the
main lobe are symmetrical about the peak position of the main lobe. The clutter is defined
as left clutter and right clutter based on its front-to-back position with the main lobe.

Closed-loop experiments are conducted using optical fibers with lengths of 12 m, 16 m,
24 m, and 40 m, respectively. The above processing is performed for the echo signals and
the results are plotted in Figure 7a. It is evident that the positions of left clutter and right
clutter are symmetric about the corresponding optical fiber length. Peaks of the clutter on
both sides are extracted and plotted as separate lines in Figure 7b. The magnitude of the
clutter on both sides decreases as the length of the fiber becomes longer.
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If the clutter is generated by periodic nonlinearity, its normalized mean value should
increase with the target delay according to Section 2.1. However, experiments with optical
fibers have the opposite phenomenon. Also, because its features match phase-locked loop
spuriousness, the system’s clutter is identified as phase-locked loop spuriousness.

4. Clutter Suppression Method

The process of eliminating clutter is divided into two distinct steps: first, discriminat-
ing the location of the clutter, and second, removing the clutter.

4.1. Identification of Clutter Position

Since the clutter is the side lobe of the echo signal, its energy is much weaker than
that of the main lobe. In through-wall detection, the energy of the human target’s echo
signal is very small, in which means that its side lobes can be neglected. In this case, the
main causes of clutter are the directly coupled wave from the transceiver antenna, the
reflected echo from the wall and the reflected wave from a strongly reflected stationary
target. The energy of these three waves is strong, so their side lobes, i.e., the clutter
on their sides, are pronounced. As shown in Figure 8, T represents the transmitting
antenna and R represents the receiving antenna. They are all placed against the outer wall.
Paths l1, l2, l3 and l4 correspond to different echoes: the direct coupling of the transceiver
antenna, reflection from the inner wall, reflection from a strong stationary target, and
reflection from a human target, respectively.

Except for the echo of the human target, the other three exhibit strong energy resulting
in significant clutter on either side. This seriously interferes with the detection of the human
target. Since the location of the clutter is unknown, it should first be distinguished from the
signal of human target before removal. The process of identifying the position of the clutter
requires using long delay lines and cross-correlation.
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• The use of long delay lines.

The symmetry of the left and right clutter of the main lobe is analyzed in Section 2.2
and verified in Section 3. It is critical to distinguish it from the signal of the human target.
Moreover, the clutter located on both sides of the main lobe is at a certain distance from the
main lobe of the signal. The forward-most signal of the echo is the direct coupling of the
transceiver antenna. Its main lobe itself is very close to the zero point of distance. The left
clutter at a certain distance in front of it appears to the left of the zero point. It is not visible
in the results. Therefore, long delay lines are accessed before the transmitting antenna and
after the receiving antenna to move the signal to the right overall. After that, symmetric
left-side and right-side clutter all appear in the observation region.

• The cross-correlation of signal.

The range corresponding to the maximum value of the echo spectrum needs to be
found. This range serves as the dividing line for the range-slow time matrix. In through-
wall detection, the most powerful echo is the reflection from the inner wall, which is
path l2 in Figure 8. Therefore, the range corresponding to the maximum value is the
position of the inner wall. The matrix of range-slow time echoes is divided into upper and
lower parts bounded by it. As shown in Figure 9, the upper matrix contains M rows and
the lower matrix contains N rows. Rows and columns represent the range dimension and
the slow-time dimension. The two matrices are denoted as S1 and S2, respectively. Row i of
matrix S1 and row i′ of matrix S2 can be expressed as{

s1i = x1i + n1i
s2i′ = x2i′ + shi′ + n2i′

, (15)

where x1i and x2i′ are the clutter in two matrices generated by the phase-locked loop
spuriousness, n1i and n2i′ represent background noise, and shi′ is the echo of the human
target in the second matrix which does appear in the first matrix. The cross-correlation
coefficient r(s1i, s2i′) of s1i and s2i′ can be calculated as

r(s1i, s2i′) =
cov(s1i, s2i′)√
D(s1i)

√
D(s2i′)

, (16)

where cov(·) denotes covariance calculation and D(·) represents variance computation.
The clutter and background noise are independent of each other and uncorrelated with the
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echo from the human target. Cross-correlation coefficient r(s1i, s2i′) can be equated to the
correlation coefficient of clutter r(x1i, x2i′), namely

r(s1i, s2i′) =
cov(x1i, x2i′)√
D(x1i)

√
D(x2i′)

= r(x1i, x2i′). (17)
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The specific operation is shown in Figure 9 using the position of the inner wall as the
dividing line. The two pairs of bands, consisting of red and blue dots, represent two sets of
symmetric clutter located on either side of the dividing line. The distance between them
and the dividing line is labeled in the figure. In the calculated correlation matrix, the red
dot represents the correlation coefficient of the two red bands, while the blue dot represents
the correlation coefficient of the two blue bands. They signify the correlation between the
front and back clutter originating from the same echo, so their values are situated near the
maximum value. The orange dots denote the correlation between the left and right clutter
from different echoes. Their values are not the largest but larger than the mean value.

4.2. Clutter Removal

For the correlation coefficient matrix, the Ostu algorithm [23] is used to extract the
location of the clutter. First, initial threshold T0 is set, dividing the correlation coefficient
matrix into two parts, C0 and C1, where the value of pixels in C0 is smaller than that of T0,
and pixels in C1 are opposite. The between-cluster variance is defined by

δ2
B = ω0ω1(µ0 − µ1)

2, (18)

where ω0 and ω1 are the rations of the pixels of C0 and C1 to the total pixels of the
matrix, µ0 and µ1 are separately the weighted averages of C0 and C1. We adjust the value
of T0 to maximize δ2

B. When between-cluster variance δ2
B is maximized, threshold T0 is

adjusted to optimal value Ta.
The positions of elements with values greater than Ta are extracted and divided

into D parts through the K-means clustering algorithm.
They are denoted by Cd = [xd, yd]

T , d = 1, 2, . . . , D, i.e.,
xd = 1

Nd

Nd
∑

n=1
xnd

yd = 1
Nd

Nd
∑

n=1
ynd

, (19)

where [xd, yd]
T , d = 1, 2, . . . , D is the centroid of the d-th cluster, Nd denotes the number of

pixels of the d-th cluster, and [xnd, ynd]
T is the n-th point of the d-th cluster.
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We correspond positions xd and yd back to the original range-slow time matrix, which
correlate, respectively, with row d in S1 and row d′ in S2. This is where a pair of symmetric
clutter appears. Their pairwise elimination can be expressed as

s̃2d′ = s2d′ − s1d, (20)

where s2d′ denotes row d′ in S2 and s1d denotes row d in S1.

5. Experimental Data

The experimental scenario includes free space detection and through-wall detection.
In free space, the result verifies the correctness of using the position of the echo’s maximum
value as the dividing line. In addition, the validity of the clutter suppression method
is demonstrated. In through-wall detection, the experimental result also confirms the
correctness of the clutter analysis and the effectiveness of the suppression method. The con-
figuration of the computer is a 64-bit 2.1-GHz Intel Core I7-12700F CPU. All the operations
of software are realized by MATLAB (R2021b) codes.

5.1. Free Space Detection

First, the radar shines directly on a metal wall. The front view and the side view of
the experimental scenario are shown in Figure 10. The radar transmits the FMCW, and the
frequency range is 1.2 GHz to 3 GHz. Transmitting and receiving antennas use Vivaldi
antennas. They are parallel to each other and placed towards the metal wall. In this case,
the metal wall is obtained by fixing a large metal plate to the wall of the room. The distance
between the metal wall and the center of transmitting and receiving antennas is 0.9 m.
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(b) The side view of the experimental scenario.

Ideally, the beat signal consists of two parts: the directly coupled wave from the
transceiver antenna and the reflected wave from the metal wall. The former is greater than
the latter. Because of the phase-locked loop spuriousness in the system, the beat signal
contains two pairs of clutter in addition to the two parts. A pair of clutter is generated
along with the directly coupled wave, located on both sides of its main lobe. The other pair
of clutter is generated along with the reflected wave from the metal wall, located on both
sides of its main lobe.

The beat signal is processed according to the steps in Section 3. Only time-varying
clutter is left. After accumulating along the slow time, the clutter is highlighted, as shown
in Figure 11a. The red dashed axis in Figure 11a is the position of the main lobe of
the directly coupled wave from the transceiver antenna, and the green dashed axis is
the position of the main lobe of the wave reflected from the metal wall. They are elim-
inated in the treatment of highlighting the clutter. The locations of the two axes are
denoted as Rred = 0 m, Rgreen = 0.9 m. Only two spikes are observed in Figure 11a,
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which are clutter waves located to the right of the main lobe. The clutter symmetri-
cal to it does not appear. The positions corresponding to the two peaks are denoted
as Rc1 = 3.6 m, Rc2 = 4.5 m, respectively.
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Accessing long delay lines before the transmitting antenna and after the receiving
antenna which has an equivalent range of ∆R = 4.6 m, four peaks are observed, as shown
in Figure 11b. The distances corresponding to these four peaks are Rd1 = 1 m, Rd2 = 1.9 m,
Rd3 = 8.2 m and Rd4 = 9.1 m, from left to right. The positions of the two axes be-
come Rred

′ = ∆R and Rgreen
′ = Rgreen + ∆R. The two pairs of clutter waves are symmetric

about each of the two axes, i.e., Rred
′ = Rd1+Rd3

2 , Rgreen
′ = Rd2+Rd4

2 . And the distances
of the left and right sides clutter to the corresponding symmetry axes are both equal
to Rx = 3.6 m.

Using the proposed method, the result obtained by calculating the correlation co-
efficients of this range-slow time matrix by rows is shown in Figure 11c. Four bright
spots appear, arranged in a rectangular shape. The primary diagonal is the correlation
coefficient between pairs of clutter before and after. The secondary diagonal is the corre-
lation coefficient between different pairs of clutters. The result shows that the strongest
correlation is between pairs of clutter before and after, and there is also some correlation
between different pairs of clutter. Figure 11d shows the result after clutter removal using
the proposed method. There are no more visible protrusions, indicating that the clutter has
been removed.
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Additionally, the radar is moved backward in steps of 0.3 m away from the metal wall.
As the metal wall becomes farther away from the radar, the position of the main lobe of
its echo moves backward and the amplitude becomes weaker. The clutter waves located
on either side of it are similarly shifted backward and become weaker. When the distance
between antennas and the metal wall is far enough, the clutter is drowned in background
noise. Therefore, the range of distances at which the presence of clutter generates false
alarms can be measured by varying the distance between antennas and the metal wall.
When the radar moves back to a spacing of (Rgreen)max = 3.3 m from the metal wall, the
clutter on both sides of the main lobe of the metal wall echo is so weak that it is submerged
in the background noise. At this point, the green axis in Figure 11b moves to the position
of (Rgreen

′)max = (Rgreen)max + ∆R. Therefore, (Rgreen
′)max = 7.9 m is the maximum range

at which clutter from a strongly reflected target like a metal wall cannot be ignored. At this
limit, the position of the green clutter is on the left if (Rgreen

′)max − Rx < Rred
′. This means

that the farthest position of the left clutter generated by the strongly reflected target still
remains to the left of the red axis. Therefore, the left half of the clutter is located to the left of
the dividing line and the right half is located to the right of the dividing line. It ensures that
the correlation of a pair of symmetric clutter can be calculated. This verifies the correctness
of the proposed method to divide the matrix with the boundary of this position.

5.2. Through-Wall Detection

The photo and the top view of the experimental scenario for through-wall detection
is shown in Figure 12. A concrete wall separates the radar from the targets. The concrete
wall is made of solid bricks cast in cement. The thickness and relative permittivity of the
concrete wall used are 0.37 m and 4, respectively. The radar is placed against the outside of
the wall, and a human body is standing stationary facing the radar at the distance of 1.6 m
from the inside of the wall. A square metal plate is placed to the left of the radar and its
direct distance from the inside of the wall is 0.8 m. The metal plate is used to simulate the
echo from a strongly reflected stationary target. In this case, the components of the beat
signal include the directly coupled wave from the transceiver antenna, the reflected wave
from the inner wall, the reflected wave from the metal plate, and the reflection from the
stationary human target. The reflected wave from the inner wall is the strongest. Because
of the presence of phase-locked loop spuriousness, clutter is generated on both sides of the
first three echoes.
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Figure 12. The experimental scenario of through-wall detection. (a) The photo of the experimental
scenario; (b) The top view of the experimental scenario.

The reflection from the inner wall is the strongest, so the position of the main lobe of
the echo from the inner wall is taken as the coordinate origin. The beat signal is processed
according to the steps in Section 3. The main lobe of each echo that does not vary with
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time is eliminated, while the vital signal of the human target and clutter that vary with
time are left. After accumulating along the slow time, the clutter is highlighted, as shown
in Figure 13a. As can be seen from the figure, in addition to the vital signal from the
human target, clutter is present at three other locations. They seriously interfere with the
detection of the vital signal, causing false alarms. After accessing long delay lines which
have an equal length of 4.6 m, the symmetrical parts of these clutters are revealed, as shown
in Figure 13b. The clutter from the reflected wave from the inner side of the wall is the
largest, as shown in the red dashed box. They are symmetric about the red dashed line
which corresponds to 4.6 m. The other two pairs of clutter are generated by the directly
coupled wave of the transceiver antenna and the echo of the metal plate, respectively. The
range-slow time matrix is divided into upper and lower parts according to the dividing
line with a range equal to 4.6 m.
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Using the calculation of the proposed correlation coefficient, the results are obtained
as shown in Figure 13c. The horizontal and vertical axes represent the difference in
range between the rows of the two matrices and the dividing line, respectively. A strong
correlation between the before and after of paired clutter signals is evident from the main
diagonal. Other highlights show that there is also some correlation between unpaired
clutter. However, there is no correlation between the clutter and the vital signal. Using the
proposed method, the location of the clutter is recognized and then eliminated. Figure 13d
shows that the clutter is eliminated clearly and only the vital signal is left.

6. Conclusions

This paper analyzes the effects of periodic nonlinearity during frequency modulation
and phase-locked loop spuriousness during frequency division on the beat signal of the
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FMCW radar. The results of the closed-loop experiments prove that the clutter in the
radar system used is generated by phase-locked loop spuriousness. A clutter identification
and removal method based on long delay lines and cross-correlation is proposed. The
experiments in free space and through-wall detection verify the effectiveness of the pro-
posed method. As for the specific statistical characterization of the amplitude of the clutter
generated by phase-locked loop spuriousness, it needs to be studied further.
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