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Abstract: Query optimization is one of the key factors affecting the performance of database systems
that aim to enact the query execution plan with minimum cost. Particularly in distributed database
systems, due to the multiple copies of the data that are stored in different data nodes, resulting
in the dramatic increase in the feasible query execution plans for a query statement. Because
of the increasing volume of stored data, the cluster size of distributed databases also increases,
resulting in poor performance of current query optimization algorithms. In this case, a dynamic
perturbation-based artificial bee colony algorithm is proposed to solve the query optimization
problem in distributed database systems. The improved artificial bee colony algorithm improves
the global search capability by combining the selection, crossover, and mutation operators of the
genetic algorithm to overcome the problem of falling into the local optimal solution easily. At the
same time, the dynamic perturbation factor is introduced so that the algorithm parameters can be
dynamically varied along with the process of iteration as well as the convergence degree of the whole
population to improve the convergence efficiency of the algorithm. Finally, comparative experiments
conducted to assess the average execution cost of Top-k query plans generated by the algorithms
and the convergence speed of algorithms under the conditions of query statements in six different
dimension sets. The results demonstrate that the Top-k query plans generated by the proposed
method have a lower execution cost and a faster convergence speed, which can effectively improve
the query efficiency. However, this method requires more execution time.

Keywords: query optimization; distributed database; artificial bee colony algorithm; dynamic
perturbation factor; genetic operators

1. Introduction

Due to the continuous development of the information age, people’s daily production
of data and lifetime data volume have resulted in explosive growth, and the traditional
centralized database has been unable to meet the massive data storage and computational
processing needs [1–3]; therefore, distributed databases have emerged. Compared with
centralized databases, distributed databases have more powerful storage and computation
performance. In general, a distributed database cluster includes a coordinated control site
and multiple data storage sites, and the stored data are sliced and distributed in different
data storage sites through a certain rule [4,5]. Meanwhile, in order to ensure the high
availability of the distributed database cluster, the data shardings usually have several
backups that are distributed across different sites [6–9]. Therefore, a query statement has
multiple corresponding query execution plans (QEPs), and the query execution cost of
each query plan is different [10,11]. In order to reduce the execution overhead of retrieving
data and to speed up the query response, it is important to choose an appropriate query
execution plan. When it comes to high-dimensional join queries, the space of the feasible
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query plans will also be very huge [12], and it is impossible to calculate the query execution
cost for each query plan. Therefore, the core goal of distributed database query optimization
is to find the one with the lowest execution cost among many query execution plans [13,14].

As an NP (non-deterministic polynomial) problem, the process of query optimization
for distributed databases can be transformed into the problem of exhaustive search [15]
and hence can be solved by heuristic-based techniques such as the ant colony optimization
algorithm [16–18], greedy algorithms, particle swarm optimization algorithms [19], the
genetic algorithm [20–23] and random search algorithms [24–26].

Ozger et al. [27] proposed a discrete artificial bee colony (dABCSPARQL) algorithm
based on a novel heuristic approach for reordering SPARQL queries. The method first
performs syntax tree parsing on the query statements to classify them into chained, star,
cyclic, and chain-star queries; converts the statements into pre-ordered vectors based on
different types of queries; and then further optimizes them using the discrete artificial bee
colony algorithm to obtain a better execution plan. Although this algorithm performs well
with the small number of relations, this situation is inverted when the query has more
relations and requires excess memory and processor consumption. Moreover, this method
increases the runtime.

Kumar et al. [28] proposed a distributed database query optimization method based on
the ant colony algorithm by simulating the process of ants searching for food by iterating
the pheromone mechanism left on the pathway that ants search for food to carry out
optimal pathway planning. This has a certain optimization effect, but it consumes more
computation time when the query involves a larger number of data sites. At the same time,
there exists the problem of falling into the local optimal solution.

Zhou et al. [29] proposed a distributed database query optimization method based on
the multi-ant colony genetic algorithm. The method first uses the characteristics of rapid
convergence of the genetic algorithm to obtain a set of relatively optimal query execution
plans, and then the execution plan is transformed into the initial routing pheromone value
of the multi-ant colony algorithm. This improves the overall algorithm’s computational
efficiency, but the method reduces the computation time due to the two algorithms of the
parallel computation greatly increasing the cost of the computer’s computation.

Mohsin et al. [30] designed a quantum-inspired ant colony-based algorithm to op-
timize large join queries and improve the cost of query joins in distributed databases.
Quantum computing has the ability to diversify and scale so that a larger query search
space can be covered in the search. In this way, it speeds up convergence and helps to avoid
falling into local optima. With such a strategy, the algorithm aims to determine an optimal
order of connections to reduce the total execution time. Experimental results show that the
convergence speed is higher using this method. However, for relatively small queries, it
performs terribly and easy to precocity.

Zheng et al. [31] proposed an adaptive genetic algorithm based on double entropy for
distributed database query optimization. The two types of entropy are genotype entropy
and phenotype entropy. Genotype entropy is used to optimize the distribution of the initial
population, ensuring a diverse set of initial solutions. Phenotype entropy, on the other
hand, optimizes the genetic strategy and consists of individual entropy and population
entropy. The algorithm improves the diversity of the population to prevent the algorithm
from falling into local optima easily, but the algorithm lacks local search capability, which
leads to slower convergence at a later stage.

Ragmani et al. [32] proposed a hybrid fuzzy ant colony optimization algorithm (FACO)
for distributed database query optimization. The proposed FACO algorithm incorporates
a fuzzy module that uses historical information to calculate the pheromone value and
select the appropriate ACO parameters while maintaining optimal computing time. The
algorithm sets different algorithm parameters for different input query statements by
leveraging the advantages of ant colony optimization and fuzzy logic. This improves the
query efficiency, but the use of a single search algorithm means that the method still has
the problem of easily falling into local optimum.
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Table 1 shows some of the advantages and limitations of the related works.

Table 1. A side-by-side comparison of the discussed join query optimization mechanisms.

Mechanism Approach Advantages Weaknesses

Ozger et al. [27]
Proposed a discrete artificial
bee colony algorithm based on
a novel heuristic approach.

•Performing well with a small
number of relations

•Terrible performance for a large
query
•Excess memory and processor
consumption

Kumar et al. [28]
Proposed an ant colony algo-
rithm optimization for query
optimization.

•Improving the average
•Quality of query plan

•High overhead
•High response time

Zhou et al. [29] Proposed a multi-ant colony ge-
netic algorithm.

•Increasing the convergence
speed
•Low execution time

•Low variety population
•Drop to local optima

Mohsin et al. [30] Designed a quantum-inspired
ant colony-based algorithm.

•High convergence speed
•High effectiveness

•Terrible performance for a
smaller query
•Easy to precocity

Zheng et al. [31]
Proposed an adaptive genetic
algorithm based on double en-
tropy.

•High population diversity
•Avoiding getting stuck in local
minima

•Low convergence speed
•Suffers from long execution
time

Ragmani et al. [32] Proposed a hybrid fuzzy ant
colony optimization algorithm.

•Decreasing the time
•High efficiency

•Easily falls into local optimum
for large join query

As the cluster size of distributed databases continues to expand, the data shardings
and storage nodes will also increase, resulting in exacerbating the complexity of data query
in distributed databases and further leading to the current query optimization algorithms
suffering from problems of low optimization efficiency and easy to precocity in the face of
high-dimensional join queries. Therefore, in this paper, a dynamic perturbation artificial
bee colony algorithm combined with genetic operators is proposed to solve the distributed
database problem. The main contributions of this paper are as follows:

(1) A new artificial bee colony algorithm optimization strategy is used to solve the
optimization problem of discrete feasible domains without the concept of distance;

(2) A dynamic perturbation factor is proposed so that the parameters of the algorithm
can change dynamically with the iterative process and the convergence degree of the whole
population in order to improve the convergence efficiency of the algorithm;

(3) The global search ability of the artificial bee colony algorithm is improved by
combining the selection, crossover, and mutation operators of the genetic algorithm to
overcome the problem of falling into the local optimal solution easily.

The remainder of this paper is organized as follows: The design of the cost function and
the proposed algorithm are expressed in Section 2. The data and results of the experiment
are delivered in Section 3. Finally, Section 4 demonstrates conclusions and future work.

2. Proposed Method

Distributed databases usually include a coordinator site and multiple data sites. The
data are sliced and distributed to different sites according to certain rules, usually using
the consistent hashing method according to the keyword of tuples to balance the data
storage capacity of each site. The query execution plan determines the selection and join
order of sites. In a distributed database, the query execution cost mainly consists of the
resource cost of the site’s local disk data scanning and the network communication expense
of data transmission between different sites. Due to the current limitations of the network
bandwidth, the data transmission communication expense between sites is much larger
than the resource expense of the local data scanning, so the optimal query execution plan



Appl. Sci. 2024, 14, 846 4 of 20

for a distributed database is that which has the minimum communication cost. The four
main phases of query optimization applied to distributed databases are shown in Figure 1.

Figure 1. Query execution process in a distributed database.

The first stage is query decomposition: receive query requests submitted by users and
parse the query, then recognize the syntactic structure and semantics of the query. Then,
transform the query statement (e.g., SQL statements) into a corresponding parse tree. The
second stage is data retrieval: determine the data tables involved in the query by analyzing
the parse tree, retrieve the location of the sites where the required data are located via a
metadata table, and construct a storage site matrix. The third stage is global optimization:
the query optimizer generates the query execution plan from the parse tree as well as the
data storage matrix. Since a statement can have multiple equivalent execution plans, a
cost function is needed to find the least costly query execution plan. The cost of the query
plan is calculated using the cost function (CPU cost + I/O cost + communication cost), and
the optimal order of query operations is calculated based on the calculation. If it is in a
wide-area network, the communication cost will be large and is called the trade-off factor.
Then, the query is decomposed into multiple subqueries based on the query-optimized
execution plan and distributes the decomposed subqueries to various distributed sites for
execution. The fourth stage is local optimization: after the query request is assigned to the
local processing site according to the upper layer, it is equivalent to a centralized database
environment. Therefore, at this time, the centralized database method can be used for
query optimization. Finally, the results of the subqueries executed on each site are merged
and return the final merged query results to the user. In this paper, we focus on the third
stage of global optimization, using the cost function to calculate the execution cost of the
query plan, and find the query plan with the smallest query cost as the optimal query plan.

2.1. Improved Artificial Bee Colony Algorithm

The bees in the artificial bee colony (ABC) algorithm are categorized into three
groups [33–35] including leader bees, follower bees, and scout bees. Half of the colony con-
sists of leader bees, and the other half consists of follower bees. Leader bees are responsible
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for finding available food sources, collecting information, and passing food information to
the follower bees. The follower bees select good food sources from the information passed
on by the leader bees to further search for food. When the quality of a food source does not
improve by a predetermined number of iterations, the corresponding leader bee abandons
the food source, and then the leader bee becomes a scout bee and starts searching for a
new food source in a location farther away. The location of a food source corresponds to
a possible solution to the optimization problem, which in this paper is a feasible query
execution plan (QEP), whereas the amount of food from each food source represents the
quality (fitness) of the solution in question. Meanwhile, the number of leader bees is equal
to the number of food sources. The specific steps are as follows:

The first step is data preprocessing. The input to the algorithm is the data sharding-site
matrix (DSM) generated from the metadata table of the database system during the query
process. However, this input matrix is not yet directly usable by the algorithm, so it also
needs to be de-zeroed and transposed to generate a search domain matrix executable by the
artificial bee colony algorithm. As shown in Figure 2, in the data sharding-site matrix, “1”
represents that the data sharding exists in the corresponding site, and “0” is the opposite.
In the feasible domain matrix, each row represents the site number that stores a certain
data sharding; for example, the first row shows that the sites that store data sharding 1 are
site 1, site 2, and site 5.

Figure 2. Data preprocessing.

In the second step, each leader bee searches for a food source. The initial position of
the food source Xi = {Xi1, Xi2 , . . . , Xid} is randomly generated in the search domain matrix
according to the equation below:

Xid = Random(Ld) (1)

where d = 0, 1, 2 . . . D, with D being the dimension of the feasible solution. In this paper,
D represents the data site where one of the required data shardings of a feasible query
execution plan is located; Random(Ld) denotes the random selection of a data site with
the d -th data sharding in the row where the d-th data sharding is located in the search
domain matrix.

The fitness value of a food source is measured as the execution cost of a feasible query
execution plan. In distributed databases, the cost of a query is mainly the communication
cost incurred by the transmission of data among sites. In order to minimize the cost
of a query, the transmission of data among sites should be minimized. Therefore, the
concentration of data sites selected in the query execution plan should be as high as
possible, as expressed in equation below:

Fit =
M

∑
i=1

Si
N
(1− Si

N
) (2)



Appl. Sci. 2024, 14, 846 6 of 20

where M is the number of sites involved in the query plan, N is the number of data
shardings involved in the query plan, Si is the number of times the i-th site is used in the
query plan, and the query cost Fit between 0 and (N − 1)/N. 0 means optimal, that is to say,
that the query plan involves data shardings in the same site, with no need to carry out the
site-to-site data transfer. Additionally, (N−1)/N; that is to say, the data shardings involved
in query plan are all from different sites, and all the data need to carry out the transmission
of site-to-site transfer.

The traditional artificial bee colony algorithm starts the searching phase with leader
bees searching around the food source Xi according to Equation (3) to produce a new food
source Yi = Yi1, Yi2 , . . . , Yid:

Yid = Xid + δ · (Xid − Xjd) (3)

where d is a random integer in [1, D], denoting a dimension of the random selection search
by the leader bees; j ⊆ 1, 2, . . . , N, j ̸= i, denotes a random selection of a food source not
equal to i among the current N food sources; and δ = [−1,1] is a uniformly distributed
random number that determines the magnitude of the random selection perturbation.

However, in this study, the problem to be solved by query optimization is to find a
query execution plan with the fewest number of sites involved, which is equivalent to the
highest site concentration, and where each dimension in each food source X only represents
the label of a data site, with no size. Therefore, there is no concept of distance between
food sources in this problem. Following the traditional search method, it is equivalent
to re-performing a random search at each iteration, which leads to an algorithm without
directional optimization, making the convergence speed extremely slow. In this paper, a
greedy artificial bee colony algorithm in the face of a discrete feasible domain without the
concept of distance is proposed to improve the optimization strategy of the traditional
artificial bee colony algorithm.

The strategy for leader bees to generate a new food source Yi based on food source Xi
in the search initiation phase of the improved artificial bee colony algorithm is as follows:
first, calculating and sorting the number of times that the sites involved in the food source
Xi were used. The sites with a high number of use times are retained according to the
perturbation coefficient δ by using the greedy idea, and the sites with a low number of
use times are perturbed. Then, the data shardings corresponding to the lesser-used sites
re-select data sites according to Equation (1). Finally, the obtained new food source Yi
is compared with Xi. If the fitness value of Yi is better than Xi, then replace Xi with Yi;
otherwise, keep Xi unchanged. The details are shown in Algorithm 1:

Algorithm 1 Improved Optimization Strategy Logical Pseudo-Code

Input: Xi and δ ▷ A food source in the population and the perturbation coefficient
Output: Yi ▷ A new food source generated by Xi

1: N← the number of sites used in Xi;
2: (n1, n2, . . . , nN)← the number of each site used in Xi ▷ Calculate the number of times

each site is used
3: sort(n1, n2, . . . , nN); ▷ sort them from largest to smallest
4: N’← [N · δ]; ▷ the number of sites that need to be updated is calculated as based on

the perturbation coefficient δ
5: re-select (N’ sites); ▷ reselect the [N · δ] sites for data shardings corresponding to sites

with smaller usage counts in Xi by Equation (1), and the rest remain unchanged
6: Yi ← the new food source;
7: return Yi

For example, suppose a food source X = {1, 1, 1, 1, 1, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 6} is
a query plan involving 15 data shardings across 6 sites, and the number of times each site
has been used is sorted in descending order as {S1:4; S5:4; S3:3; S4:2; S2:1; S6:1}, with the
perturbation coefficient δ = 0.5. Then, retain the three most used sites (S1, S5, S3), perturb
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the remaining three sites (S4, S2, S6), and re-select the used sites in the corresponding search
domains for the data shardings using the perturbed nodes according to Equation (1). In
this way, the lesser-used sites are perturbed in each iteration in order to increase the site
concentration of the query plan.

Meanwhile, a dynamic perturbation factor η is proposed so that the perturbation
coefficient changes dynamically with the change in the whole population state during the
iteration of the algorithm. Since the fitness values of food sources in the population are
converging as the population iteration progressing, i.e., the concentration of sites in each
query plan is increasing, a food source with a better fitness value for the population should
be updated using a lower perturbation coefficient. If the perturbation coefficient is too large,
the sites that are originally used more may be re-randomized as well, which is detrimental
to the optimization of the food source. The specific dynamic perturbation factor η is shown
in Equation (4):

η = 1 + (Fiti − Fitbest) ·
L− t

L
(4)

where L is the parameter for the maximum number of iterations of the algorithm, t is
the current number of iterations, Fiti is the fitness value of honey source Xi in the popu-
lation under the current number of iterations, and Fitbest is the fitness value of the best
honey source in the population under the current number of iterations. The perturbation
coefficient δ for each specific food source is obtained as in Equation (5):

δ = δ′ · η (5)

where δ′ is the perturbation coefficient set during the initialization of the algorithm, and η is
the perturbation factor of the current food source calculated according to the Equation (4).

The third step is the follower bee search phase. Based on the food source information
shared by the leader bees, the probability that the leader bees are followed by the follower
bees is calculated by Equation (6):

Pi =
Fiti

N
∑
i

Fiti

(6)

where Fiti is the fitness value of the i-th food source. Then, the follower bees adopt the
roulette method to follow a leader bee. Equivalently, a uniformly distributed random
number r is generated in [0, 1] and, if Pi is greater than r, this follower bee generates a new
food source based on the food source i according to Algorithm 1. Then, the retained food
source is determined by the greedy selection method used in the leader bee phase.

The fourth step is the scout bee search phase. When a leader bee searches for a food
source Xi, if the food source is not updated, the number of searches for this food source trail
is recorded, plus 1. If the food source Xi reaches the threshold limit after trial iterations of
search and no better food source is found, then this food source Xi will be abandoned, and
the corresponding leader bee will be changed to a scout bee. The scout bee will generate
a new food source Zi based on this food source Xi, according to Algorithm 1, but with a
larger perturbation coefficient. The same greedy selection method will be used to determine
the retained food source, while the number of searches of this food source is reset to 0, as
shown in the equation below:

Xt+1
i =

{
Algorithm1(Xi, δ · 1.5), triali > limit

Xi
t, triali < limit

(7)

where t is the current number of iterations and triali is the number of times the food source
Xi has been searched for.

2.2. Genetic Operators

In this paper, the three operators of selection, crossover, and mutation in the genetic
algorithm [36] are introduced to overcome the problem that the traditional artificial bee
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colony algorithm has a slow convergence speed and easily falls into local optimization. The
chromosome in the genetic algorithm consists of “genes”, in which the chromosome and
the food source in the artificial bee colony algorithm are consistent, both representing a
feasible solution, i.e., a query execution plan. The genes represent the sites where the data
shardings are located in the query; the value of the genes represents the location of the sites
where the data are located; and the length of the chromosome represents the length of the
data shardings involved in the from statement in the query.

Selection operator: this operation is based on the selection rate to determine the
individuals to be subjected to crossover and mutation operations. In this method, the
parameters will be initialized at the beginning of the algorithm, where Pselect is the selection
rate. In the leader bee and follower bee search phase, for the food source Xi currently being
searched, a uniformly distributed random number r is generated in [0, 1], and the crossover
and mutation operations are performed on the food source Xi if Pselect is greater than r.

Crossover operator: the crossover operation is the key to improving the global search
capability of the overall algorithmic model, which can improve the diversity of the solution
set to avoid falling into local optimal solutions. This operation randomly selects multiple
crossover points in the two chromosomes, and crossover interchanges the two chromosomes
according to the gene values corresponding to the selected positions in order to generate
two new chromosomes. Shown in Figure 3 is the two-point crossover operation, and the
number of specific selections of crossover positions is obtained from Equation (8):

Ncross = Pcross · Len(X) (8)

where Ncross is the number of crossover points in the crossover operation, Pcross is the
crossover rate, and Len(X) is the length of the chromosome, i.e., the food source.

Figure 3. Two-point cross-operator example.

Mutation operator: this operation changes the values of multiple random genes in a
chromosome to produce a new chromosome. Shown in Figure 4 is a two-point mutation
operation, with the number of crossover points obtained from Equation (9):

Nmutation = Pmutation · Len(X) (9)

where Nmutation is the number of variant points in the mutation operation, Pmutation is the
mutation rate, and Len(X) is the length of the chromosome. The mutation operation is
shown in Equation (10):

Xid
′ = Random(Ld − Xid). (10)

In the equation, d is the mutation point position selected for the food source Xi, Xid
is the value of the corresponding mutation point, Xid′ is the value of this point after the
mutation operation, and Random(Ld − Xid) denotes that a data site with this data sharding
that is not equal to Xid is randomly selected in the row where the d-th data sharding is
located in the search domain matrix.

Figure 4. Two-point mutation operator example.
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Similarly, the selection rate, crossover rate, and mutation rate of the genetic operator
corresponding to each food source dynamically change with the iterative process of the
overall population, as shown in Table 2:

Table 2. Probability value of genetic operators.

Operator Probability Value

Selection Pselect · η
Crossover Pcrossover · η
Mutation Pmutation · η

In the table, Pselect, Pcrossover, and Pmutation are the selection, crossover, and mutation
rates set at initialization, respectively, and η is the dynamic perturbation factor of the
current food source.

Example: D1, D2, D3, D4, D5, and D6 are the data shardings that need to be accessed
in the query. Assume that these six shardings are distributed in nine sites as S1, S2, S3, S4,
S5, S6, S7, S8, and S9. Then, the data sharding-site matrix is shown in Figure 5, and the
query statement is as follows:

Select F1, F2, F3
From D1, D2, D3, D4, D5, D6
Where D1.F1 = D2.F1 AND
R3.F2 = D4.F2 AND
R5.F3 = D6.F3.
In a query plan, access sites are randomly assigned to the required data shardings

according to the DSM of Figure 5. Figure 6 illustrates the five randomly generated alterna-
tive query execution plans. Let the i-th food source in the current population be Xi, where
Xi = (2, 2, 2, 2, 4, 2) is the current execution plan; Yi = (2, 2, 2, 3, 2, 6) is a food source gener-
ated by Xi through Algorithm 1; Zi = (2, 2, 7, 8, 9, 8) is a food source obtained by Xi through
the mutation operation; and Xbest = (2, 2, 2, 2, 2, 2) is a food source that, under the current
number of iterations, is the solution with the highest fitness value in the population. As
shown in Figure 7, these food sources are considered parents, and all of them are subjected
to two-by-two crossover operations to produce offspring. In this way, the food sources
are kept diversified by crossover and mutation operations to solve the problem that the
artificial bee colony algorithm easily falls into local optimality.

Figure 5. Data sharding-site matrix.
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Figure 6. Several alternative query plans.

Figure 7. Crossover operation example.

2.3. A Hybrid Model of the Dynamic Artificial Bee Colony Algorithm Combined with
Genetic Operators

The hybrid model proposed in this paper (dynamic disturbance artificial bee colony
algorithm–genetic operator, DYABC-GO) aims to perform large join queries with less
data communication between data sites to reduce the query cost and optimize the dis-
tributed database join query. Figure 8 shows the logical flowchart of the overall model, and
Algorithm 2 is the logical pseudo-code of the overall model.

2.4. Time and Space Complexity of the Hybrid Model

Time complexity: The DYABC-GO algorithm has a time complexity of O(n2) for the
initialization phase; O(n2) for the leader bees to search for food sources; O(n) for calculating
the fitness values and selecting the food sources according to the greedy method, as well as
for calculating the probability of selection of the follower bees; O(n2) for the follower bees
to search for food sources; and O(n) for the scout bee phase. Thus, the total time complexity
of the algorithm is O(n2) + O(n2) + O(n) + O(n) + O(n2) + O(n), which can be simplified to
O(n2), or the same as that of the traditional artificial bee colony algorithm.

Space complexity: The DYABC-GO algorithm performs evolutionary search by main-
taining a population. The population contains multiple individuals, each of which needs to
store a data structure representing the food source or combination of its genes. Therefore,
the size of the population storage space is related to the size of the population, the gene
lengths of the individuals, and the data structures used. In general, the complexity of the
population storage space is O(N · L), where N is the population size and L is the gene
length of the individuals.
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Algorithm 2 DYABC-GO Logical Pseudo-Code

Input: Data sharding-site matrix (DSM) for query statement and the number of output
query plans k

Output: Top-k query execution plans and their query execution costs
1: Initialize Xi; set N, Pselect, Pcrossover, and Pmutation ▷ Initialize each food source; set the

parameters: population size, selection rate, crossover rate, and mutation rate
2: Initialize δ’, L, Limit, t = 1; ▷ Initialize the perturbation coefficient as well as the

maximum number of iterations and the food source abandonment threshold; current
number of iterations

3: while t < L do
4: The leader bee phase:
5: for i = 0:N do
6: ηi ← Equation (3) [Xi] and search Xi; ▷ Assign a leader bee to food

source Xi and calculate the dynamic perturbation factor ηi for food source Xi according
to Equation (4)

7: Recalculate perturbation coefficient, selection rate, crossover rate, and mutation
rate based on dynamic perturbation factor ηi;

8: Yi ← a new food source; ▷ Generate a new food source Yi according to
Algorithm 1

9: Determine whether or not to perform cross and mutate operation based on the
selection rate; if yes, proceed to step 10, otherwise go directly to step 13;

10: Xi ←Mutation(Xi); ▷ Food source Xi generates a new food source Zi through a
mutation operation

11: Xbest ← best food source; ▷ Assign the food source with the best fitness value
among all current populations as Xbest

12: 12 new food sources← Crossover (Xi, Yi, Zi, Xbest); ▷ Fully connected crossover
operations are performed on four food sources, Xi, Yi, Zi, and Xbest, to generate 12 new
food sources and calculate their fitness values

13: Xi ← best food source of 12 new food sources; ▷ Assign the food source with
best fitness value as Xi according to the greedy selection method

14: The scout bee phase:
15: if The number of times of stalled update for Xi > Limit then
16: Scout bee← Leader bee; ▷ The corresponding leader bee become a scout bee,

and the scout bee randomly finds a new food source according to Equation (7)
17: else
18: Go to step 21;
19: end if
20: end for
21: The follower bee phase:
22: for i = 0:N do
23: Calculate the probability that a food source is followed in the population by

Equation (6);
24: The follower bee selects a food source according to the roulette method, searches

for it in the same way as the leader bee, and finally determines the food source to be
retained according to the greedy selection method;

25: t = t + 1;
26: end for
27: end while
28: return Top-k optimal solutions
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Figure 8. The flowchart of overall algorithm.

3. Experiment Results and Analysis
3.1. Experimental Parameters and Data

In order to verify the effectiveness of the method proposed in this paper, experiments
were conducted on a computer with CPU core i5 and 4G memory capacity. Using this
method in comparison with other algorithms, the simulation dataset consists of six query
statements involving up to 200 data sites, and the query length involves up to 85 data
shardings [37]. DYABC-GO is the dynamic artificial bee colony algorithm incorporating
genetic operators proposed in this paper; DYABC is the artificial bee colony algorithm that
only introduces a dynamic perturbation factor; ABC-GO is the artificial bee colony algo-
rithm that only incorporates a genetic manipulation operator; GA is the genetic algorithm;
and ABC is the traditional artificial bee colony algorithm. The algorithm’s initialization
parameters are set as shown in Table 3:
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Table 3. Experimental parameters.

Argument\Method DYABC-GO DYABC ABC-GO ABC GA

Maximum iterations 400

Population size Data sharding quantity/2

Leader bee population Data sharding quantity/2 /

Follower bee population Data sharding quantity/2 /

Food source abandonment threshold 5 /

Perturbation coefficient 0.25 /

Selection rate 0.5 / 0.5

Crossover rate 0.25 / 0.25

Mutation rate 0.1 / 0.1

3.2. Results and Discussion

Figure 9 shows the Top-1 optimal query plan execution cost obtained by this method
and other comparative methods in the cases involving S = 100, 150, 200 data sites and
DS = 55, 85 data shardings. From the figure, it can be seen that, as the number of sites and
the number of data shardings involved in the query increase, the query execution cost also
increases. In contrast, the increase in the number of data shardings has more impact on
the query execution cost. According to the results, the optimal query plan generated by
the DYABC-GO algorithm and ABC-GO have a smaller query cost compared to the other
comparative algorithms. The optimal query plans produced by these two algorithms are
very close in cost for join queries with low dimensionality. However, when faced with
higher dimensional join queries, DYABC-GO produces a more significant reduction in the
cost of the query execution plan. Therefore, the DYABC-GO algorithm is able to produce a
better quality Top-1 query execution plan than other algorithms.

Figures 10 and 11 show the average execution cost of the final Top-10 and Top-20
query plans involving S = 100, 150, 200 data sites and DS = 55, 85 data shardings. As can
be seen from the figures, the average execution cost of the Top-10 and Top-20 query plans
generated by DYABC-GO is still better than that of other algorithms. In the DSM matrices
of 85 × 200, 50 × 200, 85 × 150, and 50 × 150, the average execution cost of Top-1, Top-10,
and Top-20 generated by DYABC-GO are the same, which indicates that the proposed
method has almost completely converged within the number of iterations, further proving
that the proposed method in this paper is able to generate better quality query plans and
improve the query efficiency.

Figure 9. The Top-1 optimal query plan execution cost.
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Figure 10. The average execution cost of the final Top-10 query plans.

Figure 11. The average execution cost of the final Top-20 query plans.

Figures 12–17 show the comparison of the iterative convergence efficiency of the
algorithms in cases involving different numbers of sites and data shardings. As shown in
the figures, GA and ABC always plateau early in the iteration and have difficulty converging
further in subsequent iterations. Since GA and ABC use traditional search strategies, and
since the query optimization problem addressed in this paper is to find the execution plan
with the highest concentration of sites, this leads to a very poor optimization performance
of these two methods in the face of the spaceless conceptual problem, equivalent to blindly
evolving randomly at each iteration instead of evolving in a better direction. According to
the results, the model convergence speeds of DYABC-GO and ABC-GO are much faster
than the other methods, which proves the effectiveness of the optimization search strategy
of the new artificial bee colony algorithm proposed in this paper.

DYABC has a better convergence speed than GA and ABC and has a certain probability
of jumping out of the local optimum in subsequent iterations. However, it is difficult to
maintain the diversity of the population, which means that the final convergence of the
algorithm is not ideal. DYABC is the method that uses a dynamic perturbation operator
without incorporating genetic operators. Thus, it can be found that this method is very
prone to premature maturation, although it can evolve populations in a more optimal direc-
tion. DYABC-GO and ABC-GO are two methods that combined with selection, crossover,
and mutation operations of the genetic algorithm. According to the results, these two
approaches end up generating query plans with a lower execution cost, which proves that
the combination of selection, crossover, and mutation operations of the genetic algorithm
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can increase the diversity of the population and improve the global search capability of the
overall algorithm, preventing the algorithm from falling into the local optimum.

Although both DYABC-GO and ABC-GO have efficient convergence speeds, in the
later iterations of the algorithm, DYABC-GO can generate plans with better fitness values
than ABC-GO, thus proving that the introduction of dynamic perturbation factors can
enhance the local search ability of the algorithm in the later stages. The use of smaller
perturbation coefficients in the later stages of the algorithm when the skillfulness of the
algorithm is more mature can enhance the convergence effect more effectively.

Figure 18 demonstrates the experimental results of the cost of the optimal execution
plan between the present method and recently published related methods. Figure 19 shows
the execution time of each algorithm. In Figures 18 and 19, MACGA is the multi-ant colony
genetic algorithm [29], and DEGA is the adaptive genetic algorithm based on double
entropy [31]. As the figures show, compared to the other two methods, the proposed
method in this paper is able to find less costly execution plans for queries of different
lengths and with the same iteration limitations. However, DYABC-GO and DEGA require
more algorithmic execution time.

Figure 12. The iterative convergence efficiency of each method when DSM is 50 × 100.

Figure 13. The iterative convergence efficiency of each method when DSM is 85 × 100.
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Figure 14. The iterative convergence efficiency of each method when DSM is 50 × 150.

Figure 15. The iterative convergence efficiency of each method when DSM is 85 × 150.

Figure 16. The iterative convergence efficiency of each method when DSM is 50 × 200.
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Figure 17. The iterative convergence efficiency of each method when DSM is 85 × 200.

MACGA is a hybrid algorithm that combines a genetic algorithm and an ant colony
algorithm in a serial fashion, wherein the rapid convergence of the genetic algorithm is first
used to generate a relatively optimal population, and then the ant colony algorithm is used
to further search for the optimal solution. Although this method has a very short execution
time and produces less costly query execution plans in the case of shorter join queries,
the cost of the resulting execution plans is very high in the face of longer join queries.
DEGA introduces two types of entropy into the genetic algorithm to increase the diversity
of the population and to prevent the algorithm from falling into a local optimum. This
makes the algorithm really effective in the face of high-dimensional connectivity queries
but, due to the fact that the entropy value has to be computed for a different individual in
each iteration, this makes the algorithm need more execution time and overly maintains
the diversity of the population, which makes the algorithm worse in lower connectivity
queries. The method proposed in this paper has the possibility to perform crossover and
mutation operations during each iteration, which can effectively avoid the problem of
the algorithm falling into a local optimum; however, it also increases a certain amount of
computation, leading to an increase in execution time. In contrast, although both DYABC-
GO and DEGA increase the execution time to a certain extent, the method in this paper
introduces a dynamic perturbation factor to achieve better performance in the face of
different dimensions of the join query, thus further proving the effectiveness of the method
proposed in this paper.

Figure 18. The best query plan execution cost.
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Figure 19. Comparing three algorithms in terms of time metrics.

4. Conclusions and Future Work

The query optimization problem for large-scale distributed databases is an NP-hard
problem. The complexity of query optimization increases with the increase in the number of
data shardings and data nodes involved in the query. In this paper, we solve the distributed
database query optimization problem by combining the artificial bee colony algorithm
and genetic manipulation operators (e.g., crossover and mutation). We then introduced
a dynamic perturbation factor so that the control parameters of each individual in the
population change dynamically according to the iteration process and the fitness values of
the whole population. With the increase in the number of algorithmic iterations, the whole
population keeps converging; then, the use of smaller perturbation coefficients at the later
stage of the iteration can improve the optimization effect. Finally, by experimentally com-
paring the quality of the query execution plans generated under six different dimensional
queries, it is proved that the Top-k query execution plan generated by the DYABC-GO
algorithm not only has a lower query cost, but also has a higher algorithmic convergence
speed, which in turn improves the efficiency of the distributed query optimization.

Although the method proposed in this paper has improved the effectiveness of query
optimization, the increase in the complexity of the algorithm has led to an increase in the
computational volume of the algorithm, making the running time of the algorithm increase.
Therefore, in subsequent work, the optimization algorithm can be executed by parallel
computing or heterogeneous computing to improve computational efficiency [38,39]; how-
ever, the distribution and integration of tasks in the optimization algorithm need further
research. At the same time, in the case of databases deployed in a local area network (LAN),
the query optimization also needs to consider local resource scheduling overhead so that
the query optimization for a LAN distributed database can be taken as a multi-objective
optimization [40,41].
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