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Abstract: As official public records of inventions, patents provide an understanding of technological
trends across the competitive landscape of various industries. However, traditional manual analysis
methods have become increasingly inadequate due to the rapid expansion of patent information and
its unstructured nature. This paper contributes an original approach to enhance the understanding
of patent data, with connected vehicle (CV) patents serving as the case study. Using free, open-
source natural language processing (NLP) libraries, the author introduces a novel metric to quantify
the alignment of classifications by a subject matter expert (SME) and using machine learning (ML)
methods. The metric is a composite index that includes a purity factor, evaluating the average
ML conformity across SME classifications, and a dispersion factor, assessing the distribution of ML
assigned topics across these classifications. This dual-factor approach, labeled the H-index, quantifies
the alignment of ML models with SME understanding in the range of zero to unity. The workflow
utilizes an exhaustive combination of state-of-the-art tokenizers, normalizers, vectorizers, and topic
modelers to identify the best NLP pipeline for ML model optimization. The study offers manifold
visualizations to provide an intuitive understanding of the areas where ML models align or diverge
from SME classifications. The H-indices reveal that although ML models demonstrate considerable
promise in patent analysis, the need for further advancements remain, especially in the domain of
patent analysis.

Keywords: natural language processing; NLP model evaluation; machine learning; patent classification;
semantic analysis; human-centered interpretability; technological trend analysis

1. Introduction

Patents are a valuable source of information for understanding technological advance-
ments, identifying emerging trends, and assessing the competitive landscape of various
industries. However, because of the vast and growing volume of patent data and their
unstructured nature, they are challenging to analyze manually [1]. Current approaches in
patent analysis have primarily focused on manual interpretations, leading to challenges in
scalability and consistency. This paper addresses that gap by evaluating the use of natural
language processing (NLP) and machine learning (ML) techniques to extract insights from
patent documents, particularly in the context of connected vehicle (CV) patents.

Analysts have used NLP and ML to automate tasks such as patent classification, topic
modeling, technology identification, and patent recommendation systems [2]. Even so,
verifying the alignment of ML methods with human understanding of patent documents
remains challenging and is an unresolved issue [3]. Hence, establishing a performance
benchmark of state-of-the-art, free, open-source models will set the stage to evaluate the
advancement of machines that can understand and classify patents. Such advancements
could include large language models (LLMs), but accessing their application programming
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interface (API) is not currently free or widely available to everyone, and the models are
still immature.

The goal of this research is to develop a comprehensive metric for quantifying align-
ment between subject matter expert (SME) and ML classification of patent topics. The
author selected the field of CVs for the case study based on his more than 30 years of
domain knowledge and industry experience inventing relevant products. With dozens of
related patent awards in the field, the author amassed decades of experience reviewing
and analyzing the nuances of patent documents in the CV and intelligent transportation
systems domain. Hence, the author is qualified to serve as the SME in this study.

The contribution of this paper is an original metric to quantify the alignment between
SME classification and ML topic assignments. The proposed composite index comprises a
purity factor that measures the average purity across SME classifications, and a dispersion
factor that measures the spread of assigned topics across the SME classifications. The
analysis of various mature methods provides valuable insights into the effectiveness of
different combinations of tokenizers, normalizers, vectorizers, and topic modelers in the
NLP pipeline. The embedded manifold visualizations effectively demonstrate the areas
where the topic model aligns and diverges from the SME classifications, offering a clear
view of the model’s performance and limitations. This paper also bridges a gap in the
literature between NLP efficiency and human-centered interpretability in topic modeling.

The organization of the rest of this paper is as follows: Section 2 reviews the literature
on CV technology development, the utility of NLP in patent analysis, and evaluations
of NLP alignment with human judgment. Section 3 describes the data preparation, the
NLP pipeline, and optimization of the selected topic model. Section 4 presents the results,
including visualizations of the confusion between ML models and human interpretations.
Section 5 discusses implications, further insights, and limitations of the work. Section 6
concludes the research and suggests future work.

2. Literature Review

The three subsections of the literature review focus on connected vehicle trends, NLP
in patent analysis, and quantifying the alignment of ML methods with human judgment.

2.1. Connected Vehicles Trends

A review of the latest trends in CV technology development sets the stage for un-
derstanding the topic classifications. The transportation industry expects CV technology
to revolutionize driving safety, efficiency, and convenience [4]. The recent literature on
CVs focused on advancing security, traffic management, and cooperative control systems.
Nkenyereye et al. (2023) examined the integration of 5G networks in vehicular cloud
computing, highlighting the potential of vehicle clusters to share resources and data in a
mobile cloud environment [5].

The security of CVs is another area of major concern. Shichun et al. (2023) reviewed cy-
bersecurity techniques focusing on CVs, covering threat analysis and intrusion detection [6].
Rathore et al. (2023) focused on the cybersecurity challenges of in-vehicle communica-
tion [7], while Ju et al. (2022) examined attack detection and resilience from a vehicle
control perspective [8]. Hildebrand et al. (2023) explored the use of blockchain technol-
ogy to enhance security in vehicle networking [9], and Khan et al. (2023) proposed a
blockchain-based secure communication system for CVs [10].

Alanazi (2023) conducted a systematic literature review of how autonomous vehicles
manage traffic at junctions, exploring various methodologies that include ML [11]. Shi et al.
(2023) developed a real-time control algorithm for CVs to optimize fuel use in signalized
corridors [12]. Gholamhosseinian and Seitz (2022) surveyed cooperative intersection man-
agement strategies for CVs [13]. Xu and Tian (2023) proposed a method to improve arterial
signal coordination using CV data [14], and Zhu et al. (2022) reviewed merging control
strategies at freeway on-ramps [14]. Wang et al. (2022) discussed the development of
cooperative driving systems for CVs [15].
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Cui et al. (2022) reviewed cooperative perception technologies that combine local and
edge sensing data for improved situational awareness [16]. Khanal et al. (2023) utilized CV
data to develop crash prediction models. Gao et al. (2023) provided insights into predictive
cruise control under cloud control systems, emphasizing the role of predictive algorithms
in traffic efficiency and safety [17]. Islam and Abdel-Aty (2023) focused on using CV data
for traffic conflict prediction [18]. Schwarz et al. (2022) examined the role of digital twin
simulations in various traffic management applications [19].

The above literature review revealed that trending topics in CV development include
vehicular security, traffic management, cooperative control and perception systems, and
overall driving safety. These trends suggest that while the industry has made considerable
progress in the development of technologies for CVs, challenges in security, real-time con-
trol, and effective traffic management remain, necessitating further research and innovation
in these areas.

2.2. NLP in Patent Analysis

This section of the literature review synthesizes NLP-related contributions in patent
analysis from the recent literature and contrasts them with the current paper’s unique
contributions. Krestel et al. (2021) surveyed the use of deep learning for patent analysis,
emphasizing the significant role of these techniques in automating tasks previously solvable
only by domain experts [2]. Casola and Lavelli (2022) surveyed NLP approaches for
summarizing, simplifying, and generating patent text for non-experts to improve the
accessibility and understanding of patent information for a wider audience [1]. Their work
highlighted the peculiar challenges patents pose to current NLP systems. This finding
suggested that the performance of NLP and ML methods is sensitive to the type of topic
domain analyzed.

Trappey et al. (2020) focused on NLP-based patent information retrieval and intel-
ligent compilation of patent summaries [20]. Joshi et al. (2022) proposed an intelligent
keyword extraction technique for patent classification by training a transformer model
and comparing its performance with K-means clustering and topic modeling using the
latent Dirichlet allocation (LDA) method [21]. These works highlight the challenges in
effectively extracting and summarizing knowledge from patents and the opportunities that
NLP techniques offer in this context.

De Clercq et al. (2019) proposed a multi-label classification approach to classify electric
vehicle patents by combining LDA with ML algorithms to explore the relationships between
patents and cooperative patent classification classes [22]. Their method provided a user-
friendly way to analyze and visualize patent data. Hyun et al. (2020) and Wu et al. (2020)
explored semantic analysis of patent data, emphasizing the role of NLP in identifying
technical trends [23] and screening patents in specific domains such as communication
technologies in construction [24]. These studies highlight the evolution of NLP and ML
tools and the need for continuous innovation in this field.

Arts et al. (2021) demonstrated the potential of topic modeling in enhancing the
understanding of patent documents and providing insights into the evolution of tech-
nologies [25]. Puccetti et al. (2023) proposed a named entity recognition (NER) method
to identify technology-related entities from patent texts [26]. Their approach utilized a
combination of rule-based and ML techniques to identify entities such as products, pro-
cesses, organizations, and locations. Rezende et al. (2022) combined NLP techniques with
algorithms such as latent semantic analysis (LSA), word2vec, and word mover’s distance
(WMD) to analyze patent similarity and technology trends [27].

2.3. NLP Alignment Evaluation

This subsection focuses on works that surveyed or compared the performance of
NLP and ML methods. Kherwa and Bansal (2019) presented a comprehensive survey
of topic modeling, highlighting challenges in their quantitative evaluation [28]. Abdel-
razek et al. (2023) provided a recent survey categorizing topic modeling techniques into
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algebraic, fuzzy, probabilistic, and neural categories [29]. They reviewed the diversity
and evolution of topic models and found that the research trends are moving toward
developing and tuning neural topic models such as LLMs. Meaney et al. (2023) focused on
methods for assessing the quality of topic models. They explored metrics such as recon-
struction error, topic coherence, and stability analysis, emphasizing that different metrics
capture various aspects of model fit [30]. Their findings suggested that a combination
of indices, coupled with human validation, is essential for assessing the performance of
topic models, a perspective that highlights the complexities of evaluating model quality.
Harrando et al. (2021) empirically evaluated the challenges in systematically comparing
topic modeling algorithms, revealing shortcomings in common practices and highlighting
the need for a standardized approach in model benchmarking [31]. Vayansky and Ku-
mar (2020) reviewed various topic modeling methods, focusing on their ability to handle
complex data relationships, such as correlations between topics and topic changes over
time. Their work encouraged diversity in the choice of topic modeling methods, partic-
ularly for complex datasets [32]. Borghesani et al. (2023) compared human and artificial
semantic representations in topic modeling [3]. They demonstrated that NLP embeddings
still fall short of human-like semantic representations. Rüdiger et al. (2022) compared
non-application-specific topic modeling algorithms and assessed their performance against
known clustering [33]. They found that metrics used so far provided a mixed picture that
made it difficult to verify the accuracy of topic modeling outputs, concluding that topic
model evaluation remains an unresolved issue [33]. Hoyle et al. (2021) questioned the
validity of automated topic model evaluation, suggesting a disparity between automated
coherence metrics and human judgment [34].

The above studies demonstrate the wide range of applications for NLP and ML in
patent analysis, highlighting the complexities in evaluating algorithmic interpretations in
topic modeling and the importance of human validation. Relative to these studies, the
present study stands out by uniquely combining topic modeling techniques with SME
expertise to quantify alignment in patent topic classification, particularly in the context
of CV patents. The proposed topic alignment index, combined with an optimized NLP
pipeline, fills a crucial gap in the literature by offering a more rigorous and complete
approach in establishing a performance benchmark to contrast with future advancements.
As NLP and ML techniques continue to advance, their role in patent analysis is likely to
expand, providing researchers, practitioners, and policymakers with even more powerful
tools for understanding, managing, and forecasting technological innovation. Hence, this
study not only contributes to the existing body of knowledge, but also opens new avenues
for future research in patent analysis.

3. Methodology

The methodology aims to quantify the alignment between patent topic classification
by an SME and that using ML methods that are part of an NLP pipeline. The first subsection
below describes the data preparation and the results of the SME classification. Four pro-
cedures make up the NLP pipeline, and several types of mature algorithms are available
for each procedure. The second subsection describes the NLP pipeline in terms of the
combinations of algorithms evaluated. As indicated in the literature review above, the
existing literature does not define an objective method to quantify classification alignment.
Hence, the third subsection describes the objective method developed in this work. The
fourth subsection describes the method of identifying the best NLP pipeline and optimizing
the identified topic model in terms of finding the optimum number of topics to set for
the hyperparameter.

3.1. Data Preparation

This section details the data source selection, patent record extraction and selection,
SME classification of distinct topic areas, and visualizations of the topic distributions
and their dominant keywords. According to data from the World Intellectual Property
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Organization (WIPO), the United States and China were the world’s top patent holders
in CV development [35]. Therefore, this research selected the United States Patent and
Trademark Office (USPTO) as a representative baseline, focusing on the English language to
classify patent topics in connected vehicle development [36]. A bigram search of the USPTO
patent summary from 2018 to 2022 extracted 622 CV-related records from a total of 1,637,725.
Selecting the last five full years (rather than partial data available for 2023) provided a more
accurate representation of annual trends. The author, serving as the SME, subsequently
identified 220 of these patents that were directly relevant to CV technology development.

The SME classification resulted in the 11 distinct topic areas summarized in Table 1.
The table lists each topic and describes the general types of problems addressed within
that category. Figure 1 shows a distribution of these topic areas by year. The literature
review revealed that safety and security are broad aims of CV technology, and these
align with the SME classified topics. Traffic flow efficiency, another broad aim, includes
topics such as traffic signaling, information management, vehicle monitoring, vehicle
navigation, smart parking, and platooning. Topics focused on wireless communications
and allocating vehicular computing resources enable the efficient deployment of CVs. The
notable concentration in cybersecurity-related patents indicates a trend toward prioritizing
security in CV development. The SME observed that every topic had overlapping objectives.
For example, advancements in traffic signaling and multi-vehicle networking can improve
both driving safety and the efficiency of traffic flows. Therefore, the SME assigned the
dominant topic to each patent summary.

Table 1. SME classification of general patent objectives.

Topic SME Description

Computing
Resource

Communications traffic to exchange sensor data and a wide range of other information, including the
need for low latency to meet real-time demands, place additional burden on available computational

resources. Objectives target optimal resource allocation and usage of onboard and cloud-based
computing resources and optimize communications across multiple network interfaces and servers.

Cybersecurity
Growing wireless connectivity between vehicles and other things, including other vehicles, expands

the vulnerability surface for cyber-attacks. Objectives address enhanced cybersecurity, including
encryption, authentication, and intrusion detection methods.

Driving
Safety

Objectives utilize vehicle-to-everything connectivity and sensors on other vehicles to enhance
visibility and situational awareness, safely navigating in complex environments, including through

intersections and among pedestrians, and avoiding collisions.

Information
Management

Demand for efficient management of information across software applications and services scales
with increased vehicle connections. Objectives ensure that systems present relevant information to

vehicle operating and in-cabin infotainment systems to prevent data overload and prioritize
information that is essential for vehicle operation, safety, and user experience.

Multi-vehicle
Networking

Vehicle clusters can form and maintain microvehicular clouds to efficiently share and exchange
information. Objectives address the efficient use of resources among vehicles to enable capabilities

such as distributed data storage, collaborative computing, reliable communications, and
service provisioning.

Platooning

The streamlined aerodynamics resulting from vehicles following each other more closely than normal
(platooning) results in better fuel efficiency and improved traffic flow. Objectives address various

ways to utilize wireless, sensors, and real-time control mechanisms to enable safer and more
cost-efficient platooning and to alert law enforcement.

Smart
Parking

Locating parking spaces in crowded and complex environments can be challenging and contribute to
congestion. Objectives facilitate cooperative parking space searches, including charging for the “ego”

vehicle by using sensors and microvehicular clouds or centralized services.

Traffic
Signaling

Suboptimal traffic signal timing can exacerbate congestion. Objectives leverage wireless
communications and sensors among vehicles to assess conditions and predict arrival times while

dynamically optimizing traffic signaling for overall traffic impact.
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Table 1. Cont.

Topic SME Description

Vehicle
Monitoring

Objectives aim to enrich in-cabin experiences for passengers through display devices that provide
various forms of information and entertainment, and via methods of preventing motion sickness by

monitoring and predicting ride quality.

Vehicle
Navigation

Objectives are to update electronic maps with real-time data from vehicles for more accurate
navigation, and dynamically detecting environmental changes, including topography, emergency
situations, and seasonal conditions such as flooding or snow, to inform about alternative routes.

Wireless
Communications

Objectives address advancements in wireless communications such as lower latency cellular
networks, quality of service, resilience in noisy environments, and interference.
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The topic modeling algorithms require cleaned text to provide the best results. Hence,
the text cleaning procedure removed noisy text, including characters and words with little
or no meaning. These included punctuation marks, numbers, and short tokens such as
those containing at most three characters. The field of NLP defines stop words as those
that contribute little or no meaning towards understanding a sentence. Common English
stop words are they, which, that, were, having, doing, while, and from. Initially removing short
tokens such as the, a, an, in, on, at, or and reduces the size of the corpus to speed up the
removal of longer stop words, including words that are specific to patent documentation.
For example, words commonly used in patent documents are system, method, embodiment,
invention, disclosure, claim, provide, describe, and include. In this analysis, the words connected,
vehicle, and vehicles were stop words because they must appear in all documents, by
definition of the search keywords.

The word cloud of Figure 2 provides a visualization of the important terms in the
cleaned corpus of documents within each of the SME-defined categories summarized in
Table 1. The word cloud provides a visual confirmation that the SME classification was
succinct, rational, understandable, and compelling. A word cloud scales the font size
of terms in proportion to their importance in the document set. Terms can be single or
multiple adjacent words such as bigrams. The measure of importance is either the term
frequency (TF) or a modification of TF, as discussed in the next section. As an example, the
word cloud associated with the cybersecurity category included dominant phrases such as
pseudonym certificate, authentication, and registered master, which are all related to methods
that the patents describe to secure vehicular communications. Similarly, the word cloud for
traffic signaling included dominant phrases such as compatible movement, candidate timing,
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entire queue, and queue length, which are all related to controlling traffic lights to manage
intersection traffic and queues.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 22 
 

multiple adjacent words such as bigrams. The measure of importance is either the term 
frequency (TF) or a modification of TF, as discussed in the next section. As an example, 
the word cloud associated with the cybersecurity category included dominant phrases 
such as pseudonym certificate, authentication, and registered master, which are all related to 
methods that the patents describe to secure vehicular communications. Similarly, the 
word cloud for traffic signaling included dominant phrases such as compatible movement, 
candidate timing, entire queue, and queue length, which are all related to controlling traffic 
lights to manage intersection traffic and queues. 

 
Figure 2. Word cloud of the corpus cleaned by SME classification. 

3.2. NLP Pipeline 
The NLP pipeline to identify topics started with text tokenization followed by text 

normalization, text cleaning, vectorization, and an ML algorithm known as topic model-
ing [37]. Text tokenization converted raw text into individual word fragments called to-
kens. Text normalization reduced tokens to their base or root form with the aim of mini-
mizing the number of variations that can serve as unique features in the topic modeling 
process. Text normalizers can be stemmers or lemmatizers. The former truncates the ends 
of words to a root form, whereas the latter employs a more sophisticated method to iden-
tify a base form that accounts for the morphological structure of a word. Therefore, stem-
mers can overgeneralize words, whereas lemmatizers can retain semantic accuracy at the 
expense of requiring more computation. 

Vectorizers represent the entire corpus as a matrix of values that reflect the im-
portance of words in a document. Each vectorizer has an option to exclude tokens that are 
too common or too rare. Common thresholds for “too common” and “too rare” are 95% 

Figure 2. Word cloud of the corpus cleaned by SME classification.

3.2. NLP Pipeline

The NLP pipeline to identify topics started with text tokenization followed by text
normalization, text cleaning, vectorization, and an ML algorithm known as topic model-
ing [37]. Text tokenization converted raw text into individual word fragments called tokens.
Text normalization reduced tokens to their base or root form with the aim of minimizing
the number of variations that can serve as unique features in the topic modeling process.
Text normalizers can be stemmers or lemmatizers. The former truncates the ends of words
to a root form, whereas the latter employs a more sophisticated method to identify a base
form that accounts for the morphological structure of a word. Therefore, stemmers can
overgeneralize words, whereas lemmatizers can retain semantic accuracy at the expense of
requiring more computation.

Vectorizers represent the entire corpus as a matrix of values that reflect the importance
of words in a document. Each vectorizer has an option to exclude tokens that are too
common or too rare. Common thresholds for “too common” and “too rare” are 95% and
5% of the documents, respectively. A vectorizer builds a predetermined size vocabulary of
unique tokens in the corpus. The vectorizer output is a sparse matrix of dimensions (N,
M), where N is the number of documents in the corpus (rows), and M is the size of the
vocabulary (columns). Hence, each entry in the matrix stores the importance of a token
(column) within a document (row).

Table 2 summarizes the variety of NLP algorithms available for each part of the
NLP pipeline, including their advantages and disadvantages. Lane et al. (2019) provides
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further in-depth descriptions of these algorithms, which are currently state-of-the-art and
mature [37]. The algorithms listed are available in software libraries such as the natural
language tool kit (NLTK), scikit-learn (sklearn), and regular expression operations (re)
supported by the Python programming language. The NLP libraries constrain tokenizers
and normalizers to operate as compatible pairs. For example, the SpaCy tokenizer works
only with the SpaCy lemmatizer, but not with any of the other normalizer algorithms.

Table 2. Algorithm options for the NLP pipeline.

Algorithm Brief Description Advantages Disadvantages

To
ke

ni
ze

r

Whitespace Splits tokens based on
whitespace. Simple, fast.

Not suitable for languages where
whitespace does not denote word

boundaries.

Word Splits text into words using
NLTK’s word_tokenize. Robust, handles punctuation. Slower compared to whitespace

tokenizer.

Punke Language-independent
tokenizer.

Good for European
languages, handles

punctuation.

May not work well for languages
with different sentence structures.

Regexp
Tokenization based on

regular expression
patterns.

Highly customizable. Requires good understanding of
regular expressions.

Sentence Splits text into sentences.
Useful for document
summarization and

segmentation.
Not useful for word-level analysis.

SpaCy Tokenizer provided by the
SpaCy library.

Fast, handles multiple
languages, robust.

Requires installing the SpaCy
library and language models.

N
or

m
al

iz
er

PorterStemmer A well-known stemming
algorithm.

Effective for English, reduces
words to base form.

Over-stemming or
under-stemming possible.

Lancaster Stemmer More aggressive than
Porter.

Reduces words to a basic
form.

Can produce stems that are not
meaningful words.

Snowball Stemmer Extends Porter to support
multiple languages.

Language support,
aggressive.

Over-stemming or
under-stemming possible.

WordNet Lemmatizer Lemmatizer based on
WordNet lexical database.

Produces valid words, less
aggressive than stemming.

Slower, may require POS tags for
accurate lemmatization.

SpaCy Lemmatizer Lemmatizer offered by the
SpaCy library.

Fast, handles multiple
languages, usually more

accurate.

Requires installing the SpaCy
library and language models.

Ve
ct

or
iz

er

CountVectorizer Converts text to a matrix of
token counts.

Simple, effective for most
cases.

Does not consider semantic
meaning, sensitive to frequent

words.

TfidfVectorizer Converts text to a matrix of
TF-IDF features.

Considers global importance
of words, less sensitive to

frequent words.

Sensitive to the scale of the dataset,
more computationally intensive

than CountVectorizer.

To
pi

c
M

od
el

Latent Dirichlet
Allocation

Most used topic modeling
algorithm.

Effective for a wide range of
topics, easy to interpret.

Requires choosing the number of
topics a priori, may not be suitable

for all types of text data.

Non-negative Matrix
Factorization

Useful for topic modeling
and other types of

clustering.

Fast, easier to interpret than
LDA.

Assumes linear structure, may not
work well for all types of data.

Latent Semantic
Analysis

Also known as latent
semantic indexing (LSI).

Good for capturing semantic
meaning, less sensitive to

word frequency.

High computational cost for
large datasets.
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The CountVectorizer calculated TF as the feature importance, which is the number
of times that a term appeared in a document. The TfidfVectorizer tampers the TF by an
inverse document frequency (IDF), effectively attenuating the importance of a word based
on its global frequency in the corpus. Hence, if a word appears very frequently in the target
document but also frequently in other documents, its importance for that document will
be lower.

The unsupervised learning approach to topic modeling offers a scalable, efficient,
and practical solution for analyzing large patent datasets. Such models can uncover the
underlying thematic structure of a corpus. This contrasts with supervised learning methods
that require extensive, accurately labeled data, which is often a challenging and resource-
intensive task, especially in complex domains such as patent analysis. Unsupervised
learning models effectively cluster the key features of the vectorized corpus. The NLP
pipeline focused on evaluating the most mature and best performing topic modeling algo-
rithms reported in the literature. For example, Garbhapu and Bodapati (2020) found that
LDA was better than LSA at aligning word associations with human word associations [38].
Kherwa and Bansal (2019) assessed that LDA was more efficient than other topic modeling
algorithms [28]. Rüdiger et al. (2022) found that LDA and non-negative matrix factorization
(NMF) outperformed most, with LDA better suited for a corpus containing many topic
clusters [33].

LDA is a probabilistic model that assumes each document contains a mixture of topics,
each represented by probability distributions over a vocabulary of words. LDA iteratively
assigns words to topics and updates the topic distributions until it converges to a stable
solution. NMF is a deterministic matrix decomposition technique that factors the vectorized
corpus into two non-negative matrices. One matrix represents the topics, and the other
matrix represents the distribution of topics in each document. NMF finds the factors that
minimize the reconstruction error between the original matrix and the product of the
factored matrices [37].

3.3. Topic Alignment Index

This research invents a topic alignment index (H-index) to quantify the alignment
between NLP topic model assignments and SME classifications. The proposed H-index
(H stands for harmonic) comprises two parts. The first part is a purity factor defined as
the proportion of documents within an SME category represented by the model’s most
frequently assigned topic in that category. Hence, the average purity factor ρ across C
SME-assigned categories is

ρ =
1
C

C

∑
i=1

F∗i
Di

(1)

where F∗i is the count of the model’s most frequently assigned topic for SME category i and
Di is the number of documents in SME category i. The maximum purity factor is unity
when the most frequently assigned topic in an SME category covers all documents in that
category, making it a pure assignment. The minimum purity factor is 1/C where F∗i = 1,
reflecting that no two assigned topics in an SME category were identical. The average
purity factor mirrors a homogeneity measure of clustering, which is a global measure of
the number of predicted classes that belong to the same cluster [39].

The second part of the proposed H-index is a dispersion factor d that measures the
number of most frequently assigned topics to all SME categories that are unique. Hence,
dispersion is

d =
1
C
|F| (2)

The function |·| denotes the cardinality or count of unique values in the set F = {F∗1 . . .
F∗C} of most frequently assigned topics for SME categories 1 through C. Hence, dispersion
measures how well model-assigned topics spread across the SME categories to distinguish
among them. The maximum dispersion factor is unity when no two most frequent topic
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assignments across the SME categories are identical. The minimum dispersion factor is 1/C
if the model assigned the same topic to all SME categories. Hence, the dispersion factor
penalizes repeated topic assignments across the unique SME categories.

The topic alignment index is a combination of the average purity across SME-assigned
topics and the dispersion index. A simple combination of the two indices would be the
mean value. Alternatively, this research defines the H-index, denoted ψ, as the harmonic
mean of the two indices, thereby reflecting a balanced contribution such that

ψ = 2
ρ× d
ρ + d

. (3)

Unlike a simple mean, the harmonic mean captures the influence of outliers. For
example, if the average purity factor is unity but the dispersion factor approaches zero,
the H-index will also approach zero, whereas the mean value of the two components
will instead approach 0.5. This situation represents a scenario where the model assigned
the same topic to all SME categories. The situation is the same for the other extreme
scenario where the average purity factor approaches zero and the dispersion factor is
unity. This situation represents a case where the model assigned a unique topic to each
document in an SME category and does so for every SME category. Both cases represent
the worst possible alignment with an SME classification, representing the worst possible
topic modeling performance.

3.4. Model Optimization

The best performing model identified unique words in the corpus that optimally
distinguish among distinct topics. However, stop words manifest as noise that reduces the
separability of term distributions among document clusters, which effectively decrease the
performance of topic modeling. This research invented a method of stop word engineering
to reduce noise, beyond removing common English stop words.

Figure 3 illustrates the two-part workflow to conduct stop word engineering and
find the best mix of algorithms in the NLP pipeline. The workflow began by setting
the hyperparameter for the number of topic model topics to identify the same number
of SME-identified topics and initializing the stop word list to the database search terms.
Subsequently, the workflow iteratively selected from an exhaustive combinatorial mix of
NLP algorithms in the pipeline {tokenizer, normalizer, vectorizer, filter, topic modeler}
to calculate the H-index. The workflow then selected the NLP pipeline that maximized
H-index, and then iteratively updated the stop word list. The selected stop words were
those that repeated more than once (appeared more than twice) in the combined list of top
20 keywords that the model identified for each topic. The iteration terminated when no
keywords repeated more than once. The workflow then iterated through the NLP pipeline
again, using the updated stop word list, to identify the best performing pipeline. The
pipeline selection terminated once the best NLP pipeline stayed the same.

The rationale for setting the termination criteria to a maximum of a single keyword
repetition allowed for each document to reflect a mixture of topics, albeit with one topic
dominating.

The rationale for setting the stop word keyword count window to the top 20 was that
preliminary analysis established it as a point of diminishing returns in term importance.
The Results section plots the keyword frequency distribution of the best model to illustrate
and validate this observation. That is, the dominant keywords contribute most toward
identifying latent topics, whereas infrequent keywords manifest as noise.
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The literature established that topic models share the same flaw in requiring a user
to define the topic count for modeling [32]. Hence, the model optimization part of the
workflow used the best NLP pipeline from the pipeline to iterate the number of topics to
model and calculate the purity, dispersion, and H-indices. The workflow then evaluated
topic alignment by selecting the model that provided the peak H-index. The SME then
mapped model-assigned topics to the SME categories and empirically assessed a level of
qualitative alignment. The workflow then utilized uniform manifold approximation and
projection (UMAP) to visualize document clustering by topic assignment probability in
a dimensionally reduced feature space, and subsequently to visualize the level of topic
assignment confusion.

4. Results

Subsequent subsections describe the process of finding the best NLP pipeline, topic
model optimization to find the optimum number of topics, and an assessment of the
confusion in topic model assignments relative to the SME-assigned categories.
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4.1. Pipeline Optimization

Table 3 summarizes the outcome of the stop word engineering process to identify the
best NLP pipeline for model optimization. The process identified 179 English stop words
and 372 domain-specific stop words, resulting in 3058 unique tokens in the cleaned corpus,
which was approximately 35% of the unique tokens in the original corpus. Vectorization
with lower and upper outlier filtering for too frequent and too rare words further reduced
the number of tokens (features) to 612, which was only about 7% of the unique tokens
in the original corpus. This result highlights the efficiency of the text cleaning process to
produce a minimal set of features for ML.

Table 3. Outcome of stop word engineering.

Text Cleaning Tokens

Unique tokens in the original corpus 8872
Number of English stop words 179

Number of engineered stop words 372
Unique tokens in cleaned corpus 3058

Number of filtered tokens in vectorized dictionary 612

Table 4 summarizes the performance of each NLP pipeline in terms of their alignment
index components and the H-index. There were four combinations of tokenizers (T) and
normalizers based on the best algorithms identified in Table 2. The NLP pipeline included
a mix of the CountVectorizer measuring term frequency (TF) and the TfidfVectorizer
measuring TF-IDF (TI), each with options for no filtering (0F) and dual filtering (2F) of
extreme importance values. The NLP pipeline included combinations of the LDA and NMF
topic modelers. Hence, there were 4 (tokenizer/normalizer) × 2 (vectorizers) × 2 (filters)
× 2 (topic modelers) = 32 combinations of NLP algorithms in the NLP pipeline. The results
show that NLP pipeline 31 yielded the best H-index.

Table 4. NLP pipelines for 11 topics and alignment indices.

Pipe Tokenize & Normalize TF TI 0F 2F LDA NMF Purity Dispersion Mean H-Index

1 Spacy T & Spacy L x x x 0.386 0.091 0.238 0.147
2 Word T & Word L x x x 0.391 0.182 0.286 0.248
3 Word T & Snowball S x x x 0.443 0.091 0.267 0.151
4 Word T & Porter S x x x 0.462 0.091 0.276 0.152
5 Spacy T & Spacy L x x x 0.347 0.545 0.446 0.424
6 Word T & Word L x x x 0.323 0.636 0.480 0.429
7 Word T & Snowball S x x x 0.349 0.727 0.636 0.472
8 Word T & Porter S x x x 0.365 0.727 0.546 0.486
9 Spacy T & Spacy L x x x 0.392 0.091 0.241 0.148

10 Word T & Word L x x x 0.428 0.182 0.305 0.255
11 Word T & Snowball S x x x 0.442 0.091 0.267 0.151
12 Word T & Porter S x x x 0.452 0.091 0.271 0.151
13 Spacy T & Spacy L x x x 1.000 0.091 0.545 0.167
14 Word T & Word L x x x 0.641 0.182 0.412 0.283
15 Word T & Snowball S x x x 0.904 0.091 0.498 0.165
16 Word T & Porter S x x x 0.953 0.091 0.522 0.166
17 Spacy T & Spacy L x x x 0.372 0.182 0.277 0.244
18 Word T & Word L x x x 0.378 0.182 0.280 0.245
19 Word T & Snowball S x x x 0.403 0.182 0.292 0.250
20 Word T & Porter S x x x 0.411 0.182 0.297 0.252
21 Spacy T & Spacy L x x x 0.728 0.182 0.455 0.291
22 Word T & Word L x x x 0.585 0.182 0.383 0.277
23 Word T & Snowball S x x x 0.537 0.364 0.450 0.434
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Table 4. Cont.

Pipe Tokenize & Normalize TF TI 0F 2F LDA NMF Purity Dispersion Mean H-Index

24 Word T & Porter S x x x 0.696 0.182 0.439 0.288
25 Spacy T & Spacy L x x x 0.443 0.091 0.267 0.151
26 Word T & Word L x x x 0.441 0.091 0.266 0.151
27 Word T & Snowball S x x x 0.433 0.091 0.262 0.150
28 Word T & Porter S x x x 0.468 0.091 0.279 0.152
29 Spacy T & Spacy L x x x 0.493 0.455 0.474 0.473
30 Word T & Word L x x x 0.522 0.545 0.534 0.533
31 Word T & Snowball S x x x 0.524 0.545 0.535 0.535
32 Word T & Porter S x x x 0.483 0.545 0.514 0.512

Figure 4 is a visualization of the data in Table 4 to show trends. The figure shows the
NLP pipelines in eight groups. The following are some observations and insights:

1. The vectorizer extremity filters improved the performance of both LDA (group 2 >
group 1) and NMF (group 8 > group 7) topic modeling algorithms.

2. LDA had an edge over NMF when the pipeline included TF and 2F (group 2 >
group 6).

3. NMF had an edge over LDA when the pipeline included TI and 2F (group 8 > group 4).
4. In all cases, stemmers performed at least as good as the lemmatizers.
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Table 5 lists the top 20 keywords associated with each of the topics (T) assigned by the
best NLP pipeline. Figure 5 shows the keyword distribution by TF-IDF for each topic that
the model assigned. This distribution validates that there is a point of diminishing returns
in keyword importance after 5 to 20 top keywords, depending on the model-assigned topic.
For example, topics 2 and 8 exhibit a point of diminishing returns after approximately
5 keywords, whereas topics 3 and 6 show that diminishing returns become apparent as the
number of keywords approaches 20.
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Table 5. Topic number and associated top 20 keywords.

T Top 20 Keywords

0 telemat insur nearbi upon smart auto accid evalu risk convent price profil usag facilit consum illustr interest score
threshold dispos

1 center manufactur command consum bandwidth structur convent design sign constant back real regular often support
sent modern longer common issu

2 antenna authent start door main regist open frequenc mean pair bluetooth initi insid problem transceiv infotain success
distanc sinc cell

3 certif patent transport reduc privaci depart easili promis interact section help effici truck flow train highway concern
exchang author protect

4 learn screen interact color turn pattern occup stationari custom independ green track relev camera internet view machin
move left certain

5 micro cluster assign cooper satisfi view criteria total share collabor threshold alloc virtu leav abil latenc list provis
space complet

6 host hazard command space mitig partial verifi close pass automat take fuel schedul brake avoid safe arrang integr
maintain compon

7 charg batteri transfer owner engin proxim sent polici rule understood substanti depend upon good appreci construct
retriev hybrid mainten mechan

8 video camera step involv passeng disclos degre stop captur uniqu util text movement still critic automobil situat issu
integr start

9 transit plan warn acquir crash stop navig phase rate element main cluster scenario arriv train collis particip characterist
evalu destin

10 telecommun cellular switch circuitri transceiv exchang packet latenc cell polici releas alloc protocol evolut coverag rsus
prioriti internet deploy support

Figure 6 complements Table 5 and Figure 5 by showing a word cloud for each of the
model-assigned topics. To improve visualization, the font sizes correspond to the TF of the
keyword distributions rather than the TI-IDF values. The visualization shows both distinct
and overlapping topics. For example, topic 6 is clearly about vehicle platooning, whereas
topic 9 includes a mix of topics based on words such as transit, warn, crash, navigate,
and cluster.

Table 6 shows the topic number most frequently assigned to each SME category and
the purity value. The ML model assigned topic 9 to the SME category of traffic signaling
with maximum purity. This aligns with the top keywords of topic 9, which include transit,
plan, warn, crash, stop, navigate, and phase. However, the model also assigned topic 9
to five other SME categories, resulting in a low dispersion of 6/11 = 0.545. The minimum
purity of 0.318 for the SME category of multi-vehicle networking suggested that the topic
model identified several topics in that category. Nevertheless, assigning topic 5 as the
dominant topic aligns with multi-vehicle networking, where the top keywords include
micro, cluster, cooperative, and share. The average purity for the best NLP pipeline was
0.524, resulting in both the mean and H-index equaling 0.535.
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Table 6. Most frequent topics assigned to each SME class.

SME Category Most Frequent Topic Purity

Computing Resource 10 0.333
Cybersecurity 3 0.444
Driving Safety 9 0.472

Information Management 9 0.533
Multi-Vehicle Networking 5 0.318

Platooning 6 0.857
Smart Parking 7 0.375

Traffic Signaling 9 1.000
Vehicle Monitoring 9 0.400
Vehicle Navigation 9 0.625

Wireless Communications 9 0.406

4.2. Model Optimization

Both topic modeling algorithms (LDA and NMF) require a hyperparameter that
specifies the number of topics to model. Figure 7 shows trends of how the various indices
change with the number of topics modeled for the best NLP pipeline. The H-index peaked
at 11 topics, aligning with the number of SME-assigned categories. This result affirmed
that the best model aligned with the SME classification, albeit with a fair amount of
disagreement in topic assignments. The purity and dispersion factors show diverging
trends, as expected. That is, as the dispersion of topic assignments increases within
and across SME categories, the purity of topic assignments within SME categories will
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necessarily decrease. Conversely, as the purity of topic assignments within and across SME
categories increases, the dispersion factor must necessarily decrease. Unlike the H-index,
the extreme values of purity and dispersion factors more heavily influenced their mean
value. After peaking at 11 topics, the H-index tended to stabilize with an increasing number
of topics modeled.
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4.3. Misalignment Visualization

Table 7 offers some insights into the amount of misalignment in model topic assign-
ments with the SME-assigned categories. The table shows that topics (T) assigned by the
model align with only 6 of the 11 SME-assigned categories. Most topics assigned by the
model related to the SME category of driving safety. The representative keywords from the
top 20 list, and as visualized in the word cloud (Figure 6), offer a glimpse into the reason for
the topic assignment. For instance, the model assigned topic 1 to documents that contained
sign as the dominant keyword. Those documents were mostly within the SME-assigned
category of driving safety. However, as shown in the table, the model assigned different
topics to documents that also pertained to the SME classification of driving safety. The
table also lists the number of unique SME categories (USC) contained within each of the
model-defined topic categories. Topic 3 achieved the best alignment with the SME category
of cybersecurity with a single unique assignment. Topic 9 achieved the worst alignment
because it contained all 11 SME categories.

The topic modeling output is a matrix of documents (rows) and topic probabilities
(columns) that represent the mix of all topics in a document. However, the topic assigned
to a document is the one with the highest probability. Similar probability vectors of topic
assignments will cluster in feature space. However, it is not possible nor practical to
visualize clusters of documents, each with 11 topic probabilities or features. Fortunately,
uniform manifold approximation and projection (UMAP) is a technique used to visualize
high-dimensional data in two-dimensional space by embedding features in a manner that
preserves their original structure and relationships [40].
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Table 7. Topic model confusion with SME categories.

T Majority SME Category USC Topic Model Keywords Relevant to SME Category

0 Driving Safety 4 insurance, accident, risk
1 Driving Safety 5 sign
2 Cybersecurity 4 authenticate, register
3 Cybersecurity 1 certificate, privacy
4 Driving Safety 5 green, camera, occupy, interact
5 Multi-Vehicle Networking 4 micro, anomali, slice
6 Platooning 7 platoon, host, gateway, command, trail, brake, automate
7 Smart Parking 4 charge, battery, transfer, promotion
8 Driving Safety 3 video camera, capture, situation, stop
9 Driving Safety 11 interfere, collision, crash, stop, navigation, warn
10 Wireless Communications 6 telecommunication, cellular, transceiver, packet, switch, cell

Figure 8 shows the UMAP of topic model probabilities, labeled by the topic model
assignments. It is evident that the document clusters reflect the maximum probability topic
assigned. The chart also reveals how documents contain a mix of topics because they form
overlapping clusters, such as near the coordinates (7.5, 5.0). As highlighted by the dotted
line boundaries shown, clusters such as topic 2, topic 5, and topic 8 are more isolated and
homogeneous in topic mix. Figure 9 labels the UMAP of these topic model probabilities
with the SME topic assignments to highlight the misalignment between model-assigned
and SME-assigned categories. It is clear from the chart that even the remote clusters are no
longer homogeneous.
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5. Discussion

This research addressed a critical gap in the automated analysis of complex patent
data by developing a new metric to quantify the alignment between subject matter expert
(SME) classifications and NLP-based topic assignments. However, this research has a
few limitations, which set the stage for future work. Although the author’s expertise and
experience in the domain of CV is substantial, relying on a single SME to identify dominant
themes can result in subjective bias. Nevertheless, the novel metric developed in this work
establishes a foundation for future work to investigate the nature of a distribution in the
misalignment between SME and NLP topic identification. To do so, future work will select
multiple SMEs with different technical backgrounds to identify dominant themes from the
same corpus and evaluate the distribution of misalignment with NLP topic classification.

Another limitation is the focus on U.S. patents, which may miss broader international
themes. However, foreign patents are not consistently available in the English language,
making a mixture analysis more challenging. The results of this work highlight that the
gross misalignment of ML-assigned topics with SME classification questions the gener-
alizability of NLP in patent analysis, including across other domains. Therefore, future
work will evaluate the same approach on patents focused on related technologies such as
autonomous vehicles, advanced air mobility, battery technology, and cybersecurity.

This study established a benchmark in a snapshot of time for future work to compare
with by using the metric proposed for objective and quantitative comparison. The evolution
from free open-source NLP models, such as the ones evaluated in this research, to LLMs,
including more powerful multimodal versions currently under development by companies
such as OpenAI, Google, X Corp. (formerly Twitter), Meta, and Microsoft, could also help
to identify topics. Hence, future research will include various LLMs in the SME mix to
evaluate their misalignment with traditional NLP topic models.
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Overall, this work delivers valuable insights to various stakeholders involved in tech-
nology development and innovation. Stakeholders include patent analysts and researchers
who often face challenges in manually sifting through vast amounts of patent data to
identify trends and key areas of innovation. The unsupervised methods can automatically
categorize patents into coherent topics, significantly aiding in the quick identification of
technological trends and focus areas. Additionally, policy makers and strategic planners
can benefit by gaining a macro-level view of technological advancements in the CV domain
to inform decision making and strategic planning, especially in technology forecasting
and policy formulation. Furthermore, insights gained from topic classification can help
innovators and entrepreneurs identify under-explored areas and potential opportunities
for innovation, thereby guiding further research and development efforts.

6. Conclusions

This multidisciplinary and interdisciplinary study contributes to the field of natural
language processing (NLP) and connected vehicle (CV) technology development. The
primary contribution is the development of a novel metric (the H-index) to quantify the
alignment between subject matter expert (SME) classifications and topic assignments by
state-of-the-art, open-source NLP and ML models. This metric, comprising a purity factor
and a dispersion factor, offers a quantitative and objective understanding of the effective-
ness of various NLP and ML approaches in capturing the essence of patent documents
covering complex technological domains such as CVs.

This research navigated the challenges of analyzing a vast and unstructured dataset of
patent documents. The NLP pipeline included a variety of the top performing tokenizers,
normalizers, vectorizers, and topic modelers to demonstrate the potential of ML models
to categorize and produce insights into the intricate patterns within patent documents.
The results highlighted the misalignment of these models with SME classifications by
revealing areas where the models diverged, offering critical insights into their limitations
and areas for improvement. The integration of manifold visualizations provided a clear
and intuitive representation of the areas of misalignment. This visualization tool can
help people interpret the complex relationships and patterns within the data, making the
findings more accessible to both technical and non-technical stakeholders.

In broader implications, it is evident that while there has been significant progress in
the field, challenges remain. The complexity of CV technology, combined with the rapidly
evolving landscape of patent information, requires continuous refinement of combined
NLP and ML techniques. Future research should assess the interpretability and accuracy
of these models in other domains to benchmark their performance for comparison with
evolving tools such as large language models (LLMs) and their multimodal variants.

In summary, this study is a step forward in the intersection of NLP, ML, and patent
analysis. By developing a metric that bridges the gap between algorithmic efficiency and
human-centric interpretability, this research contributes a useful tool for researchers and
practitioners in the field. It paves the way for future innovations in NLP and ML and
sets a precedent for the rigorous evaluation of these models in the analysis of patent data,
particularly in specialized domains such as CV technology.
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