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Abstract: Integrated energy systems (IESs) can easily accommodate renewable energy resources
(RESs) and improve the utilization efficiency of fossil energy by integrating various energy production,
conversion, and storage technologies. However, the coupled multi-energy flows and the uncertainty
of RESs bring challenges regarding optimal scheduling. Therefore, this study proposes an energy
bus-based matrix-modeling method and a coordinated scheduling strategy for the IES. The matrix-
modeling method can be used to formulate the steady- and transient-state balances of the multi-
energy flows, and the transient model can clearly express the multi-time-scale characteristics of
the different energy flows. The model parameters are fitted with data from experiments and the
literature. To address the inherent randomness of the RESs and loads, a coordinated scheduling
strategy is designed that contains two components: day-ahead optimization and rolling optimization.
Day-ahead optimization uses the system steady-state model and multiple scenarios from the RES
and load forecast data to minimize the operation cost while rolling optimization is based on the
system’s transient-state model and aims to achieve the optimal real-time scheduling of the energy
flows. Finally, a case study is conducted to verify the advantages and effectiveness of the proposed
model and optimization method. The results show that stochastic optimization reduces the total
daily cost by 1.48% compared to deterministic optimization when considering the prediction errors
associated with the RESs and loads, highlighting the stronger adaptability of stochastic optimization
to prediction errors. Moreover, rolling optimization based on the system’s transient-state model can
reduce the errors between day-ahead scheduling and rolling correction.

Keywords: integrated energy system; matrix model; optimal scheduling; day-ahead optimization;
rolling optimization

1. Introduction

An integrated energy system (IES) is an efficient tool to accommodate more renewable
energy and improve the utilization efficiency of fossil energy [1]. It has received great
attention in recent years, especially regarding its use in combination with high proportions
of photovoltaic (PV) and wind power (WP) [2]. By integrating multiple types of energy
conversion devices, the IES can flexibly convert natural gas, electricity, and heat energy and
supply diverse types of energy for users simultaneously [3]. However, the complementary
operation of these devices requires an intelligent energy management system or an optimal
scheduling strategy.

Optimal scheduling requires an effective model that can clearly describe the complex
structure of the IES and the coupled energy flows. In 2007, Geidl et al. [4] put forward the
concept of an energy hub (EH), which describes the energy input, output, storage, and
coupling relationships in the IES. Wang et al. [5] proposed a standardized matrix-modeling
method for the IES, based on the concept of the EH, that is suitable for computer implemen-
tation and can facilitate the optimal scheduling of complex IESs. Liu et al. [6] presented an
efficient standardized multi-step modeling method for the EH and separated a complex
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EH model into several simple models based on the node arrangement and virtual node
insertion methods, seeking to avoid large matrix calculations. Wang et al. [7] developed an
automatic and linearized modeling method to formulate the energy conversion in the EH,
and they quantitatively evaluated the flexibility of the system based on the ranks of the
coupling matrices. Ma et al. [8] improved the linearization model of the EH, expounding
and simplifying the identification and selection of state variables. Li et al. [9] built an
improved layering energy hub model for an electricity–heat–cold–gas coupled IES, which
had the advantage of linear convexity compared to classical EH models, improving the
solving efficiency.

The EH is also a promising option for the energy management of IESs [10,11]. The
optimal scheduling strategies of residential and industrial EHs were developed to min-
imize the total energy consumption or demand charges [12,13]. Vahid-Pakdel et al. [14]
established a stochastic optimization model for the EH operation and employed the CPLEX
solver of the GAMS software to find the global optimum solution. Rastegar et al. [15]
proposed a new framework for home energy management in the context of the residential
EH using a probabilistic optimization approach. Brahman et al. [16] developed a thermal
and electrical energy management strategy to optimally schedule major components of the
EH. Ma et al. [17] proposed a novel matrix-modeling method based on graph theory to
formulate the steady-state balance of energy flows in the IES, and they presented an opti-
mal scheduling model in matrix form to minimize the daily operation cost. Luo et al. [18]
presented a hierarchical Stackelberg game method to formulate the energy scheduling
optimization of a three-level IES based on the EH model. Dini et al. [19] proposed an opti-
mization model for the flexible and reliable operation of an electricity–gas–heat coupled
EH with renewable energy sources. Salehimaleh et al. [20] developed a shrinking-horizon
optimization framework for EH scheduling and used the DICOPT solver to determine the
optimal scheduling scheme, which significantly improved the economic performance of
the system. However, these studies based on EH models separately analyze and model the
balances of the electricity, cooling, and heating flows in IESs, and the modeling processes
and results are somewhat complex.

From the perspective of IESs, a combined cooling, heating, and power (CCHP) system
is a typical component that supplies multiple types of energy by using various energy
conversion technologies [21]. Chicco et al. [22] presented a comprehensive input–output
matrix approach to model a small-scale trigeneration system, considering the interac-
tions among the plant components and energy networks. Liu et al. [23] used conversion
matrices, including the dispatch factors and component efficiencies, to describe the en-
ergy conversion and transfer processes of the CCHP system. Meng et al. [24] proposed
a day-ahead scheduling optimization method for a park-level electricity–heat coupled
IES, considering a flexible supply. Bao et al. [25] established day-ahead scheduling and
real-time scheduling models for the CCHP microgrid and adopted scheduling schemes
with different time scales in the real-time scheduling of cooling and electricity, seeking to
address the fluctuations in renewable energy resources (RESs) and user loads. Luo et al. [26]
proposed a novel two-stage coordinated control approach for CCHP energy management,
including an economic dispatching stage (EDS) and a real-time adjusting stage (RTAS),
in which the RTAS is used to adjust the scheme of the EDS to tackle power fluctuations.
Gu et al. [27] proposed an online optimal scheduling approach based on model predictive
control for CCHP microgrids, which can compensate for prediction errors in the RESs and
loads. Li et al. [28] developed a hybrid time-scale energy management approach for IESs,
which was composed of a day-ahead robust optimal scheduling model and an intraday
rolling model. Hu et al. [29] presented the multi-time-scale optimization of IESs based on
distributed model predictive control, which improved the economic performance of the
system’s operation. Song et al. [30] proposed a multi-time-scale scheduling approach for
IESs considering the uncertainty of the RESs and loads, achieving low-carbon and eco-
nomical supply–demand matching. Li et al. [31] presented a multi-time-scale optimization
dispatch model for an IES, considering a demand response mechanism. Wang et al. [32]
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constructed a multi-time-scale optimization model with day-ahead, intraday, and real-
time scheduling based on a dynamic EH model, improving the accuracy of the system’s
operation significantly.

In the abovementioned research works, the models of the IES or EH are formulated
based on steady-state balances of the energy flows, and the optimal scheduling problems
include a day-ahead scheduling stage and a real-time scheduling stage. Due to the fluctua-
tions in the RESs and loads, stochastic optimization methods are used in the day-ahead
scheduling stage, while real-time scheduling mainly focuses on how to follow the varia-
tions. However, the different energy flows have different time-scale characteristics. For
example, the electricity flow can reach a steady state in several seconds, but the heat flow
needs several minutes or even an hour. In [25], the real-time scheduling method uses
different cycle times to address the multi-time-scale characteristics. In other methods,
the multi-time-scale characteristics are somewhat disregarded, leading to an inability to
characterize the dynamic differences between electricity, heat, and gas. These methods are
not able to achieve optimal real-time scheduling for the cooling or heat flow.

To resolve this issue, this paper proposes an energy bus-based matrix-modeling
method and a coordinated scheduling strategy for the IES. The steady- and transient-
state balances of the energy flows are formulated using the matrix-modeling method,
whose parameters are fitted with data from experiments and the literature. To address
the fluctuations in the RESs and loads, the coordinated scheduling strategy consists of
two components: day-ahead optimization and rolling optimization. Day-ahead optimiza-
tion uses the steady-state model and multiple scenarios concerning the RES and load
forecast data. Rolling optimization is based on the transient-state model, aiming to achieve
the optimal real-time scheduling of the energy flows, because the transient model can
clearly reflect the multi-time-scale characteristics. The contributions of this study are
listed below.

• An energy bus-based matrix-modeling method is proposed, which can be used to
formulate steady- and transient-state models of the IES. The modeling process and
results are relatively simple.

• A transient-state model that can constitutionally express the multi-time-scale charac-
teristics of the different energy flows is presented.

• Rolling optimization based on the system’s transient-state model is used to optimally
schedule the multi-energy flows of the IES and compensate for the prediction errors
of the RESs and loads. It can accurately track the day-ahead schedule and satisfy
supply-demand balances of multi-energy flows to minimize the total operation cost of
the IES.

The remainder of this paper is organized as follows. Section 2 describes the matrix-
modeling method. Section 3 provides the model parameters. Section 4 describes the
coordinated scheduling method. Section 5 provides the case study, and the conclusion is
provided in Section 6.

2. Matrix-Modeling Method
2.1. IES Structure Based on Energy Bus

Figure 1 shows the structure and energy flow of a complex IES with various devices.
The IES uses the energy from RESs (wind and solar), power, and gas grids and can provide
gas, electricity, cooling, and heating for users simultaneously. Any energy flow can be
converted into another by using different devices, e.g., a power generation unit (PGU) can
consume gas to generate electricity, and an electric chiller can make use of electricity to
produce cooling energy. Some energy storage units are also introduced to improve the
overall performance of the IES. The existing methods separately analyze and model the
balances of the electricity, cooling, and heating, and the modeling processes and results are
somewhat complex.
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Figure 1. The structure and energy flow of a complex IES.

In this study, an energy bus-based unified modeling method is proposed for the IES.
Natural gas, electricity, cooling, and heating are defined as a unified energy vector.

e = [G E C Q]T (1)

where G, E, C, and Q represent natural gas, electricity, cooling, and heating, respectively.
Then, the IES can be described by an energy bus-based structure, as shown in Figure 2, in
which G, E, C, and Q are uniformly expressed as an energy vector e. The balance of the
energy vector e can be expressed as

egrid + eres + epgu,out − epgu,in + egb,out − egb,in + eac,out − eac,in + eec,out − eec,in + es = eload (2)
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Energy purchased from the gas and power grids is classified as the energy vector egrid,
which is generally a controllable vector. WP and PV are classified as the energy input vector
eres, whose value needs to be predicted. eload represents the energy output vector of the
IES. es is the charging (es < 0) or discharging (es > 0) vector of the energy storage unit. Its
state of charge (SOC) is

es,soc(t + 1) = Hsoces,soc(t)−Hses(t) (3)

where Hs is the loss coefficient matrix of the charging and discharging processes. The above
ports of the energy bus belong to a single energy input or output vector, which fails to
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consider the energy conversion process. Some energy conversion devices or components
can acquire any type of energy from the energy bus, and their outputs are injected into
the energy bus, e.g., the PGU consumes some gas and returns the converted electricity
and heat; the electric chiller inputs some electricity and outputs the corresponding cooling
energy. By using an energy bus-based structure, the energy flow analysis can be clarified,
which is beneficial in modeling the steady-state and transient-state energy flows of the IES.

2.2. Steady-State Model

If the IES is in the static state, the inputs and outputs of each device are unchanged.
The energy conversion process of the devices can be expressed as

ei,out = Hiei,in (4)

where ei,out and ei,in are the output and input of the device i, and Hi is the energy conversion
matrix of the device i and is defined as

Hi =


ηi,G2G ηi,E2G ηi,C2G ηi,Q2G
ηi,G2E ηi,E2E ηi,C2E ηi,Q2E
ηi,G2C ηi,E2C ηi,C2C ηi,Q2C
ηi,G2Q ηi,E2Q ηi,C2Q ηi,Q2Q

 (5)

where ηi,x2y represents the conversion efficiency of the energy x to y of the device i. Regard-
ing the PGU, its input is gas and its outputs are electricity and heat. It has two efficiency
coefficients: the conversion efficiency of gas to electricity ηpgu,e and the conversion effi-
ciency of gas to heat ηpgu,rh. Hence, Hpgu is

Hpgu =


0 0 0 0

ηpgu,e 0 0 0
0 0 0 0

ηpgu,rh 0 0 0

 (6)

and epgu,in is

epgu,in = [αpgu 0 0 0]T (7)

where αpgu is the gas input of the PGU. According to the energy conversion mechanism of
the gas boiler, absorption chiller, and electric chiller, their energy conversion matrices are
defined as

Hgb =


0 0 0 0
0 0 0 0
0 0 0 0

ηgb 0 0 0

 (8)

Hac =


0 0 0 0
0 0 0 0
0 0 0 COPac
0 0 0 0

 (9)

Hec =


0 0 0 0
0 0 0 0
0 COPec 0 0
0 0 0 0

 (10)

where COPac and COPec are the coefficients of performance of the absorption chiller and
electric chiller, respectively. ηpgu,e, ηpgu,rh, ηgb, COPac, and COPec can be fitted with the
operating data of the corresponding devices. They can be represented by constants or
polynomials related to the part–load ratio [33]. This means that the models can be linear
or nonlinear.
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Since most of the conversion devices and components have only one type of input,
ei,out can be simplified as

ei,out = hiαi (11)

where hi is the nonzero column of Hi, and αi is the input of the device. If purchases of
electricity and gas are allowed, egrid can be defined as

egrid = [αgrid,g αgrid,e 0 0]T (12)

Electricity, chilled water, and hot water storage units are employed in the IES as es and
are defined as

es = [0 αs,e αs,c αs,h]
T (13)

Hence, the steady-state balance of the energy flow of the IES can be simplified as


1
0
0
0

αgrid,g +


0
1
0
0

αgrid,e +


−1
ηpgu,e
0
ηpgu,rh

αpgu +


−1
0
0
ηgb

αgb +


0
0
COPac
−1

αac +


0
−1
COPec
0

αec

+


0
ηs,e
0
0

αs,e +


0
0
ηs,c
0

αs,c +


0
0
0
ηs,h

αs,h = eload − eres

(14)

In the optimal scheduling of the IES, αgrid, αs, and αi are the decision variables, and
they need to be confined to reasonable ranges that are related to the capacities of the devices.
Formula (14) can be expanded into the energy flow equilibrium equation in [34] or written
as the standard equation constraint form Ax =b.

2.3. Transient-State Model

Due to the fluctuations in the RESs and loads, the IES needs to continually adjust the
set points (inputs) of the devices. After each adjustment, the system takes a period of time
to enter the steady state. For electricity and gas, the steady state can be achieved quickly,
while a long time (a few minutes to tens of minutes) is required for the energy flows of
cooling and heat. In the rolling optimization of the IES, the cooling and heat are mostly in
an unsteady state, so it is necessary to use a transient model of the energy flow. The details
will be discussed in this subsection.

For energy conversion devices, the transient values of their output energy flow depend
on their state vectors xi, and the transient model can be represented as

.
xi = Aixi + Biei,in
ei,out = Cixi

(15)

where Ai ∈ Rm×m is the state matrix of the device i, Bi ∈ Rm×4 is the input matrix, and
Ci ∈ R4×m is the output matrix. In rolling optimization, the corresponding discrete-time
models of the devices are required. Let Ts ∈ R denote the sampling period, and the set
points of the devices can hold at least one sampling period, i.e., ei,in(k) remains constant
between kTs and (k + 1)Ts. Hence, model (15) can be discretized as follows:

xi(k) = Lixi(k− 1) + Riei,in(k)
ei,out(k) = Cixi(k)

(16)

with

Li = exp(AiTs), Ri =
∫ Ts

0
exp(Ait)dtB (17)
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where Li ∈ Rm×m and Ri ∈ Rm×4 are the state matrix and input matrix of the discrete-
time model of the device i in a fixed sampling period Ts, respectively. Through (16), it is
obtained that

xi(k) = Lk
i xi(0) + Lk−1

i Riei,in(1) + · · ·+ Riei,in(k)
ei,out(k) = Cixi(k)

(18)

This shows the transient energy output ei,out at any sampling point. On this basis, the
energy supply and demand can achieve a strict balance and the set point optimization for
any energy flow can be implemented in the same rolling cycle.

In this study, the state vectors of the PGU, gas boiler, absorption chiller, and electric
chiller are their output vectors, i.e., Ci = I. This means that the transient conversion of the
natural gas, electricity, cooling, and heat energy flows has inertial characteristics, which
mainly exist in the transfer of a certain energy flow. For the cooling and heating processes,
the chiller and PGU must bring the cooling and heating media to certain temperatures,
and their energy outputs vary with the temperatures of the media. The transient state of
electricity or gas changes very quickly and can be approximated as an inertial element.
Hence, the state matrix can be expressed as

Ai =


−1/τi,g 0 0 0

0 −1/τi,e 0 0
0 0 −1/τi,c 0
0 0 0 −1/τi,h

 (19)

where τi,g, τi,e, τi,c, and τi,h are the gas, electricity, cooling, and heat inertia time coefficients
of device i. The input matrix is represented as

Bi = −AiHi (20)

The transient-state model of device i is

ei,out(k) = Lk
i ei,out(0) + Lk−1

i Riei,in(1) + · · ·+ Riei,in(k) (21)

with

Li =


exp

(
−Ts/τi,g

)
0 0 0

0 exp(−Ts/τi,e) 0 0
0 0 exp(−Ts/τi,c) 0
0 0 0 exp(−Ts/τi,h)

 (22)

Ri = (I− Li)Hi (23)

It is clear that the transient output at a specified time kTs can be calculated via the
input sequence u(0), . . ., u(k). If the sampling time Ts is sufficiently greater than the inertia
time τ, we can obtain

Li → 0, Ri → Hi (24)

and the transient-state model can be degraded into the steady-state model.

3. Model Parameters
3.1. Steady-State Model Parameters

Typically, the conversion efficiency η can use a constant in the optimal scheduling, as
shown in Table 1 [5]. However, in the IES with RESs, the fluctuations in the RESs often
cause the devices to run in off-design conditions. The conversion efficiency of the boiler is
almost linear, while the electric chiller can work periodically. Hence, ηg and COPec can use
constant coefficients.



Appl. Sci. 2024, 14, 4297 8 of 23

Table 1. The constant efficiency of the energy converters.

Converter Efficiency

PGU
ηpgu,e = 0.3
ηpgu,rh = 0.4

Gas boiler ηg = 0.8
Absorption chiller COPac = 0.7

Electric chiller COPec = 3

In this study, ηpgu,e is fitted with the operating data of the real generator, and COPac is
fitted with the simulation data in [33]. The polynomial fitting results with 95% confidence
bounds are as follows:

ηpgu,e =

{
0 PIRpgu = 0
−2.799PIR4

pgu + 9.276PIR3
pgu − 11.44PIR2

pgu + 6.454PIRpgu − 1.181 PIRpgu ≥ 0.3288
(25)

COPac = 1.386PIR4
ac − 1.943PIR3

ac − 0.2784PIR2
ac + 1.214PIRac + 0.4216 (26)

where PIR is the part–input ratio and is defined as

PIR =
vin

vin,rc
(27)

where vin is the input value of the energy conversion device, and vin,rc is the input value in
the rated condition. Considering that the conversion is inefficient if the PGU runs under
light-load conditions, we set PIRpgu ≥ 0.4 in the experiment. ηpgu,e can be calculated
via [33]

ηpgu,rh = 0.8(1− ηpgu,e) (28)

The efficiency and fitting curves are plotted in Figures 3 and 4. The R-squared values
of ηpgu,e and COPac are 0.9998 and 0.9771, respectively. The nonlinear parameter provides
an exact description of each device under the off-design condition.
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3.2. Transient-State Model Parameters

The transient-state model parameters need to be identified using the dynamic process
data. Considering that the inertia time coefficients are mainly impacted by the machine
and thermodynamic characteristics and are less affected by the running time and input
energy, we identify each coefficient as a constant using the System Identification Tool in
MATLAB. The PGU converts gas into electricity and heat, so its electricity and heat inertia
time constants need to be identified. We increase the gas input from 52.034 kW to 59.714 kW
at 203 s and to 67.727 kW at 1192 s, and we obtain τpgu,e and τpgu,h as 0.382 and 125. The
real outputs and the transient model outputs are shown in Figure 5. Due to the use of a
constant temperature control, the heat output has some fluctuations. The transient model
of the PGU can be used to reasonably simulate the dynamic process of its electricity and
heat. For the absorption chiller, we identify τac,c using the dynamic simulation data in [35].
The input of the absorption chiller is increased at 100 s. The result is shown in Figure 6, in
which it can be seen that there is a small time delay between the output and input of the
absorption chiller. It can be expressed as a modified model:

eac,out(k) = Lk
acxac(0) + ∑k

j=1 Lk−j
ac Raceac,in(j− µ) (29)

with

Lac =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1/71.429

, µ = 15 (30)

where µ is a time delay coefficient. This can simulate the dynamic process of the absorption
chiller accurately, as shown by the green dashed line in Figure 6. For ease of use in rolling
optimization, the time delay is ignored. The inertia time coefficient τac,c is 80 and the
corresponding result is plotted as the red dotted line in Figure 6; it also models the dynamic
process effectively.
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4. Optimal Scheduling of IES

Since the RESs and user loads have the properties of periodicity and randomness, the
optimal scheduling of the IES consists of two stages or time scales, including day-ahead
scheduling and rolling optimization. The schematic diagram is shown in Figure 7. Day-
ahead scheduling runs once a day and determines the optimal hourly set point of each
device based on the forecast hourly RES outputs and multiple energy demands in the next
24 h. It can coordinate the scheduling of devices, such as the PGU, absorption chiller, gas
boiler, electric chiller, energy storage unit, and so on, to minimize the operating cost of the
IES while satisfying the energy supply–demand balance and the device constraints. The
hourly electricity and gas consumption plans need to be sent to the scheduling centers of the
power grid and gas grid for day-ahead scheduling purposes. Due to errors in the predicted
data, rolling optimization is employed to correct the day-ahead scheduling scheme. Its task
is to ensure that the amounts exchanged with the power and gas grids follow the day-ahead
schemes as much as possible while satisfying the energy supply–demand balance and the
device constraints. However, the correction will cause some unplanned costs to be incurred,
which can be considered in the rolling optimization. The details of the optimization model
will be described in the following sections.
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4.1. Day-Ahead Optimization

In day-ahead scheduling, we expect that the total daily cost can be minimized by
optimizing the hourly set points of the devices. The day-ahead optimization interval Td
is 1 h. Considering the stochastic fluctuations in the RESs and the users’ demands, the
objective function is defined as

min COST = E
[
∑24

t=1 p(t)Tegrid(t)
]

(31)

where t (t ∈ [1, 24]) denotes the t-th hour of a day, and p(t) is the price vector of the energy
purchased from the gas and power grids in period t. It is expressed as

p(t) =
[
pG(t) pE(t) 0 0

]T (32)

where pG(t) and pE(t) are the prices of gas and electricity in period t, respectively.
The day-ahead optimization must satisfy the balance constraint of the energy flow

expressed in (14). Each energy converter or storage unit must run within its capacity;
therefore, each decision variable αi(t) must meet the following constraint:

0 ≤ αi(t) ≤ αi,rc (33)
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where αi,rc is the input of the device i in the rated condition. The SOC of the energy storage
unit should be subject to the following constraints:

0 ≤ αs,soc(t + 1) = ηsocαs,soc(t)− ηsαs(t) ≤ αs,soc,max,
0 ≤ αs,soc(t) ≤ αs,soc,max

(34)

where αs,soc,max is the maximum SOC of the energy storage unit. In addition, to ensure the
same flexibility of the energy storage on each scheduling day, the initial and final SOCs
should be equal:

αs,soc(1) = αs,soc(25) (35)

Finally, the day-ahead optimization model can be summarized as follows:

Objective function: Equation (31)
Subject to: Equations (14), (33)–(35)

(36)

In summer conditions, the boiler and heat storage unit do not operate, so the decision
variables include αgrid,g(t), αgrid,e(t), αpgu(t), αac(t), αec(t), αs,e(t), and αs,c(t). Similarly, the
decision variables include αgrid,g(t), αgrid,e(t), αpgu(t), αgb(t), αs,e(t), and αs,h(t) in winter
conditions. For some specific problems, the decision variables need to be selected according
to the structure and operating mode, because some decision variables may be unneces-
sary. Due to the nonlinear of the PGU and absorption chiller models, (36) is a nonlinear
optimization problem.

4.2. Rolling Optimization

Rolling optimization is designed for the real-time scheduling of devices. By using the
real-time predicted data of the RESs and loads, it can correct the errors of the day-ahead
prediction. The RESs’ outputs and the electricity load fluctuate at the time scale of several
minutes. Thus, the scheduling of the devices is executed every 5–15 min [25,27]. The shorter
the time interval used, the higher the computational accuracy, but also the computational
complexity. Since this study employs a parallel genetic algorithm that includes multi-
energy flow balance constraints and has the objective of optimal economic scheduling, the
rolling interval Troll is set as 5 min and every optimization covers a time window of 1 h
(12 time intervals). The optimization results of the first-time interval are used to schedule
the devices, and the results of other intervals are used for reference only. After completing
a rolling optimization cycle, the time window moves forward by one interval. In this case,
the cooling and heat flows are not able to reach a steady state. It is necessary to use the
transient-state IES model in the rolling optimization. The sampling period Ts is set as 1 s,
and the output of the transient-state model in one rolling cycle can be calculated via

ei,out(j) =
Ts

Troll
∑300j+299

k=300j ei,out(k) (37)

where j (j ∈ [1, 288]) denotes the j-th 5 min of a day.
Rolling optimization aims to ensure that the actual electricity and natural gas ex-

changes between the IES and the grids follow the day-ahead schedules as closely as
possible while minimizing the operating cost. The objective function of rolling optimization
can be defined as

min Obj(r) = ∑r+11
j=r

(
γT
∣∣∣egrid_d(j)− egrid_r(j)

∣∣∣+ p(j)Tegrid(j)
)

(38)

where r (r ∈ [1, 288]) denotes the r-th rolling time interval; egrid_d and egrid_r represent
the day-ahead and real-time scheduling schemes of the grids, respectively; and γ is the
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weighting vector of the gas, power, cooling, and heat grids. Regarding the power grid, it is
generally expected that the IES can purchase and sell electricity as planned, so γ is

γ =
[
0 1 0 0

]T (39)

Similarly, rolling optimization must meet the constraints in (2) and (33)–(35), in which
the time interval is 5 min and ei,out(j) is calculated using (21) and (37).

Finally, the rolling optimization problem can be summarized as follows:

Objective function: Equation (38)
Subject to: Equations (2), (21), (33)–(35), (37)

(40)

All decision variables include αgrid,g(j), αgrid,g(j), αpgu(j), αgb(j), αac(j), and αec(j), while
the variables αs,e(j), αs,c(j), and αs,h(j) refer to the day-ahead optimization results.

4.3. Solving Algorithm

The day-ahead and rolling optimization models presented in (36) and (40) are nonlinear
optimization problems with complex constraints. They can be solved by using some
heuristic optimization algorithms, such as the GA and PSO [36,37]. In this study, the
parallel GA is used to solve these problems.

5. Case Study
5.1. Basic Parameter

In this study, a hypothetical IES is constructed to assess and verify the performance of
the proposed day-ahead and rolling optimization methods. This system works in summer
conditions and provides electricity and cooling for all users. It consists of a PGU, an
absorption chiller, an electric chiller, electricity, and chilled water storage units, WP, and PV,
and it can purchase electricity and natural gas from the main grids. The IES is designed
according to the typical electricity and cooling demands, and its device parameters are
listed in Table 2.

Table 2. The device parameters of the IES.

Device Capacity

PGU 100 kW
WP 150 kW
PV 50 kW

Absorption chiller 150 kW
Electric chiller 150 kW

Electricity storage 300 kWh
Chilled water storage 300 kWh

The curves of the electricity and cooling load forecast data are shown in Figure 8
(green solid line) and Figure 9 (red solid line), respectively. The curves of the power
output forecast data for PV and WP are shown in Figure 10 (green solid line) and Figure 11
(green solid line), respectively. Considering the prediction errors between the forecast
data and the actual source/load data, and assuming that the prediction errors follow a
normal distribution (µ, 0.1µ), the Monte Carlo method is used to generate 100 sets of
source/load data samples, as shown in Figures 8–11. One set of samples is selected as
the real source/load data (test sample) to evaluate the results of day-ahead stochastic
optimization and deterministic optimization.
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In rolling optimization, probability sampling is applied to the test samples selected
for day-ahead optimization to obtain the forecast data and actual fluctuation data for
rolling optimization. The probability distributions are (µ, 0.05µ) and (µ, 0.02µ), respectively.
Specifically, the variance in the forecast data in rolling optimization is smaller than that
in the day-ahead forecast data, indicating that they have smaller prediction errors. The
real-time forecast data and actual data for the electricity load, cooling load, WP, and PV in
rolling optimization are shown in Figures 12–15 respectively.
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5.2. Analysis of Day-Ahead Optimization Results

To compare the performance differences between the day-ahead stochastic optimiza-
tion and deterministic optimization methods and to verify the adaptive ability of stochastic
optimization to predict errors, we provide comparative simulation results for day-ahead
stochastic optimization and deterministic optimization in the grid-connected mode that
forbids the selling of electricity, as shown in Table 3. When testing the prediction data
and samples, the input/output of the electricity and cold storage devices are based on the
scheduling results of the two optimization methods, while the set points of the other devices
need to be recalculated based on the test data. In the sample test, assuming that the source
and load data are fully known, the set points of the PGU, absorption chiller, and other
devices are calculated, along with the operating costs. The objective function of stochastic
optimization is the expected minimum operating cost across multiple samples, while that
of deterministic optimization is the minimum operating cost based on the RES and load
prediction data. Therefore, when testing with prediction data, where the errors in the RES
and load prediction data are zero, the results of deterministic optimization will inevitably
be better than those of stochastic optimization. When testing with a set of random samples,
where there are some errors in the RES and load prediction data, the results of stochastic
optimization are likely to be better than those of deterministic optimization. In random
sample testing, stochastic optimization reduces the total daily cost by 1.48% compared to
deterministic optimization, reflecting the stronger adaptability of stochastic optimization
to prediction errors. Without rolling optimization on the test samples, the IES experiences
an over-supply phenomenon. The use of storage devices to store excess electricity, heat,
and cold energy can be implemented to revise the scheduling scheme.

Table 3. Comparative simulation results of day-ahead stochastic optimization and deterministic optimization.

Optimization Strategy Objective Function
Value

Prediction Data
Testing Sample Testing

Day-ahead stochastic
optimization (CNY) 1568.5 1542.2 1606.0

Day-ahead deterministic
optimization (CNY) 1511.9 1511.9 1630.2

Without revision, when using all samples of RES and load data to test the two meth-
ods, the results, as shown in Figure 16, indicate significant fluctuations in the minimum
operating costs for both methods. When the actual output of the RESs is smaller than
predicted and the load demands are higher, the operating cost exceeds the expected values;
conversely, the costs are below the expectations when the conditions are reversed. It is
evident from the majority of the sample tests that the minimum operating costs in stochastic
optimization are consistently lower than those in deterministic optimization, demonstrating
its stronger adaptability to prediction errors in the RES and load data.
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Figure 16. Comparison results of all samples.

Regarding the sample tests, the revised electricity scheduling results for the two methods
are shown in Figures 17 and 18. Both methods feature the same power generation for the
WP, PV, and electricity demand, with the PGU operating during periods of higher electricity
prices and the storage devices effectively performing peak shaving. From 23:00 to 07:00 on
the next day, when the purchase price of electricity is lower, it is more economical for the
system to buy electricity from the power grid. Comparing the hourly output plans of the
devices, it is seen that those of the PGU for the two methods are different. At 12:00, in the
stochastic optimization method, the PGU has higher output, whereas, in the deterministic
optimization method, it ceases operation; at other times, in the deterministic optimization
method, the output of the PGU is slightly higher than in the stochastic optimization
method. From 18:00 to 23:00, when the power generation of WP and PV is minimal and
the grid electricity prices are higher, the stochastic optimization method uses the PGU
and the electricity storage unit to supply electricity to the users, whereas the deterministic
optimization method needs to purchase a small amount of electricity from the power grid,
thus incurring slightly higher operating costs.
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The cooling energy scheduling results for the two methods are shown in Figures 19 and 20.
From 8:00 to 23:00, both methods primarily use the absorption chiller for cooling. In the
deterministic optimization method, the PGU operates for one hour less, requiring the
chilled water storage unit and the electric chiller to supply more cooling energy, which
leads to an increased operating cost. From 23:00 to the next day at 8:00, the two methods
utilize the cold storage unit for cooling.
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5.3. Analysis of Rolling Optimization Results

In this case, the rolling optimization strategy revises the day-ahead scheduling scheme
on the real-time RES and load prediction data, with the objective function defined as the
deviation in the electricity purchase scheme and the operating cost for the upcoming hour.
The rolling optimization results based on the comparison of the day-ahead stochastic and
deterministic optimization schemes are shown in Figure 21. Rolling optimization cannot be
implemented when the PGU is turned off, and the results of the two rolling optimization
methods are primarily concentrated between 8:00 and 22:00. Rolling optimization based on
the day-ahead stochastic optimization scheme has a smaller objective function value, and
the standard deviation of its objective value is reduced by 42.79% compared to that of rolling
optimization based on the deterministic optimization scheme, indicating smaller revisions
to the devices and stronger adaptability to prediction errors. The maximum objective
function values of the rolling optimization method based on the day-ahead stochastic
optimization scheme and the rolling optimization method based on the deterministic
optimization scheme are 40.95 and 70.52, respectively, and their minimum values are 0,
indicating that the former has a stronger ability to deal with anomalies. There are still some
prediction errors in the RES and load data during rolling optimization, and actual supply
and demand imbalances exist. Therefore, in actual operation, the use of storage devices to
store excess electricity and cooling energy ensures a real-time supply and demand balance.
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Figures 22 and 23 present the rolling optimization scheduling results for electricity
and cooling energy, revised with the use of energy storage units. From 8:00 to 23:00,
during each rolling optimization interval, the IES purchases less electricity from the grid,
primarily adjusting the power output of the PGU to respond to the stochastic fluctuations
in renewable power generation and the electrical load. It also regulates the input/output of
the electricity storage unit to achieve an energy supply–demand balance, thereby reducing
the fluctuations in the electricity purchases and operating costs. From 23:00 to 8:00 on the
next day, when the PGU is not operating, the IES primarily adjusts the amount of electricity
purchased to maintain the supply–demand balance. Similarly, in terms of the cooling
supply, the system adjusts the real-time output of the electric chiller and the input/output
of the chilled water storage unit to ensure a stable supply of cooling energy.
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6. Conclusions

This study proposes the concept of an energy bus for IESs, defining natural gas,
electricity, cooling, and heating as a unified energy vector. Thus, the structure of the IES can
be represented as a structural diagram based on the energy bus. The energy transfers and
coupling relationships between the devices are equivalent to the interaction between the
device and the energy bus so that the matrix model is quickly established to characterize
the energy balance relationships of the multiple energy flows in the system.
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On this basis, the steady-state matrix model and transient-state matrix model are
built. In the steady-state model, the definitions of the device input vector and energy
conversion coefficient matrix are shown first, and then, the equilibrium equation of the
gas, electricity, cooling, and heat vectors is established, which can be directly transformed
into the standard form of the equation constraints for the optimization problem. As for the
transient-state model, considering the difficulty in solving the optimization problem, the
first-order inertial time constant matrix is used to represent the dynamic characteristics of
the device, and then a method to obtain the transient-state matrix models of the devices
is proposed. By using curve fitting and system identification methods, the parameters of
the steady-state and transient-state matrix models of typical devices are obtained, and the
fitting results are good.

The steady-state and transient-state matrix models established in this study are applied
for day-ahead stochastic optimization and rolling optimization, so as to obtain day-ahead
hourly scheduling and an intraday 5 min scheduling correction scheme. The simulation
results show that stochastic optimization reduces the total daily cost by 1.48% compared
to deterministic optimization when considering the prediction errors of the RESs and
loads, highlighting the stronger adaptability of stochastic optimization to prediction errors.
Moreover, the standard deviation of the objective value for rolling optimization based on
the day-ahead stochastic optimization scheme is reduced by 42.79% compared to that of
rolling optimization based on the deterministic optimization scheme, indicating smaller
revisions to the devices and stronger adaptability to prediction errors.

In future work, extending the modeling approach based on the energy bus to inter-
connected integrated energy networks would be both interesting and useful. Additionally,
employing artificial intelligence methods to address multi-time-scale optimization prob-
lems will provide further improvements.
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