
Citation: Alexan, A.I.; Alexan, A.R.;

Oniga, S. Real-Time Machine

Learning for Human Activities

Recognition Based on Wrist-Worn

Wearable Devices. Appl. Sci. 2024, 14,

329. https://doi.org/10.3390/

app14010329

Academic Editors: Affan Yasin, Javed

Ali Khan and Lijie Wen

Received: 8 December 2023

Revised: 24 December 2023

Accepted: 26 December 2023

Published: 29 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Real-Time Machine Learning for Human Activities Recognition
Based on Wrist-Worn Wearable Devices
Alexandru Iulian Alexan 1,*, Anca Roxana Alexan 1 and Stefan Oniga 1,2,*

1 North University Center of Baia Mare, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania;
anca.osan@yahoo.com

2 Faculty of Informatics, University of Debrecen, 4032 Debrecen, Hungary
* Correspondence: alexanalexandru@gmail.com (A.I.A.); stefan.oniga@ieec.utcluj.ro (S.O.)

Abstract: Wearable technologies have slowly invaded our lives and can easily help with our day-to-
day tasks. One area where wearable devices can shine is in human activity recognition, as they can
gather sensor data in a non-intrusive way. We describe a real-time activity recognition system based
on a common wearable device: a smartwatch. This is one of the most inconspicuous devices suitable
for activity recognition as it is very common and worn for extensive periods of time. We propose a
human activity recognition system that is extensible, due to the wide range of sensing devices that
can be integrated, and that provides a flexible deployment system. The machine learning component
recognizes activity based on plot images generated from raw sensor data. This service is exposed
as a Web API that can be deployed locally or directly in the cloud. The proposed system aims to
simplify the human activity recognition process by exposing such capabilities via a web API. This
web API can be consumed by small-network-enabled wearable devices, even with basic processing
capabilities, by leveraging a simple data contract interface and using raw data. The system replaces
extensive pre-processing by leveraging high performance image recognition based on plot images
generated from raw sensor data. We have managed to obtain an activity recognition rate of 94.89%
and to implement a fully functional real-time human activity recognition system.

Keywords: human activity recognition; plot image analysis; ML.NET; real-time; cloud

1. Introduction

The concept of a smart house or smart living environment is more current than ever, as
more and more everyday devices are equipped with smart capabilities. The importance of
activity recognition research lies in the advantages of being able to monitor and assist a per-
son who uses smart sensors [1]. Internet connectivity, which is, in most cases omnipresent,
has even increased the range of these smart devices as they can now communicate with
any internet node and can even be controlled or supervised remotely.

The security aspect of this emerging connectivity is still a very important one, as per-
sonal data are sent around via the internet, so any device or platform that is exposed over
the internet needs to be properly secured to make sure that the personal data are only avail-
able to the correct system and are stored only according to the user’s agreement. Human
Activity Recognition (HAR) is one area that greatly benefits from this emerging trend of
having smart capable devices around the living environment. The amount of available data
for human activity recognition greatly increases as we are surrounded by smart capable
devices, thus we can detect human activity more precisely. This increase in HAR precision
can be especially helpful in environments that are inhabited by multiple persons. In most
cases, smart devices can pinpoint the current user, providing additional context when
trying to resolve the multiple inhabitant HAR issue, more precisely, to identify a certain
person and link them to a specific complex activity in a multi-person space.

Internet of Things (IoT) technology is applied in multiple domains such as medicine,
manufacturing, emergency response, logistics, and daily life activity recognition. Further-

Appl. Sci. 2024, 14, 329. https://doi.org/10.3390/app14010329 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14010329
https://doi.org/10.3390/app14010329
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2353-6759
https://doi.org/10.3390/app14010329
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14010329?type=check_update&version=3

Appl. Sci. 2024, 14, 329 2 of 20

more, emerging IoT technologies allow us to not only supervise HAR but also to actively
react, based on these and other data, by controlling smart-enabled devices or contacting
other persons. This kind of complex supervision and environment control, together with
all the smart-enabled devices and systems, make up the building blocks of the smart home,
a home that can help its occupants in day-to-day tasks and especially during emergencies
or life-threatening situations.

Activity recognition can be performed using three main sensor categories: ambient,
vision, and body-worn, as also shown in [2–4]. Ambient sensors are a great way to super-
vise relatively small areas and require changes across the living environment to function.
The main disadvantage of using ambient sensors is the fact that they require a specially
prepared living area for HAR analysis. This kind of ambient sensor implementation can
help when dealing with multiple inhabitant spaces where we need to identify and pinpoint
each user, as the entire living space is supervised at any moment and acts as a single unit.
As the supervised living environment increases, the required number of nodes increases
as well. A particular type of ambient sensor is vision-based, which can offer great user
recognition in multi-inhabitant spaces. This type of ambient sensor requires multiple vision
devices installed across the living space (at least one vision-based sensor for every room)
and raises some potential privacy issues, especially if the data are analyzed outside the
local living environment network.

Body-worn sensors, also known as wearable devices, can directly gather and even
process the sensor data closest to the user’s body. Since the main data-gathering device is
worn on the user’s body, this approach will work fully or partially even in non-controlled
environments. For this body-worn sensor type, we have only network or minimum
infrastructure requirements for the system to work, even if there are multiple types of
devices that send data via many types of communication technologies [5]. A person usually
performs many types of activities, based on simple and complex movements [6], and this
physical information is easily collected through wearable devices like commercial mobile
phones and portable devices [7].

The smartphone is one of the most used devices for HAR as it can record and process
information itself. Also, since the processing power is enough for most tasks, this widely
available device has quickly gained popularity for HAR-related tasks. The major downside
of using a smartphone for detecting the user’s activity is data downtime for not wearing
the device. If the smartphone is not worn or directly used by the user, the system does
not receive any relevant data regarding the current activity and, thus, the HAR precision
decreases. Smartphones are not necessarily worn consistently, as the wear position will
greatly vary depending on the person and situation. A watch has a more stable wear
pattern, as it is primarily worn on the user’s wrist and is usually worn extensively for long
periods of time. A smartwatch is a small device that can be easily and non-intrusively worn
for long periods of time, making it ideal for data acquisition [8,9].

For HAR based on accelerometer and gyroscope data, provided by sensors also found
in a smartwatch, the classic approach is to use the raw sensor data and preprocess it.
Features are then extracted and used to train a neural network for activity recognition.
In this scenario, the neural network input is represented by a series of numeric values that
try to capture the essence of that particular activity. Based on the raw sensor data or even
extracted features, plot images can be generated and fed to the neural network as input
data instead of numerical values. In this scenario, the human activity recognition task
becomes an image classification task, trying, in essence, to identify the activity based on the
plot image using specific image classification neural networks. The numerical data that are
turned into a plot image can be graphically represented in multiple ways depending on the
type of plot image and the input raw data structure; these variations can have a significant
impact on the activity recognition rate [10,11].

Data collected from different devices are stored in various databases that are freely
available. These databases are helpful to improve and test new algorithms and meth-
ods. One of the most common databases is WISDM [12], as this database contains data

Appl. Sci. 2024, 14, 329 3 of 20

collected from the accelerometer and gyroscope of Android-based smartphones and smart-
watches [13]. The data can be affected by the differences in the residence’s layout or human
behavior. Some of the causes of these differences are health conditions changes, sensor
displacement, and activities performed differently over time, as mentioned in [13].

For data segmentation, two major types are used: fixed window size and dynamic seg-
mentation. For both of them, the main challenge is to determine the proper window length.
Data segmentation is very important, a smaller segment can allow faster activity recognition
and real-time recognition, minimizing the time of the entire required process [14]. On the
other hand, choosing a window that is too small may lead to a low activity recognition rate
as the system cannot properly identify the activity due to the data window’s similarities
with other activities. So the length of the data window chosen is very important as we
need to allow real-time process recognition and maintain a proper activity recognition rate.
The data segmentation process can be time-based or feature-based. In activity recognition
for daily tasks, the most common method is time-based segmentation. The main problem
for dynamic-size windows is identifying the correct temporal separation for an activity.
For the fixed-size windows, the main problem is to identify the proper size to include all
the data recorded for the same activity [15–17].

The HAR is very important in real-time systems that include smart gadgets and
deep learning techniques [18,19]. To recognize activities from a real environment with
continuous data streaming remains a major challenge, as shown in [20]. Recognition can
be implemented on wearable devices like mobile phones or personal computers. An im-
portant aspect that can affect the performance of the system is the computational cost.
Although some minimal computational steps are still required, reducing the multiple fea-
tures extraction and windowing process is detailed in [21]. The data from the body-worn
sensor module can be relayed to a local data hub or to the cloud directly. A socket or HTTP
request can be used for data transfer on the local or cloud data processing device.

Our objective is to create a cloud-based real-time human activity recognition system
powered by a neural network. The system should be able to work with raw movement
data retrieved from a smartwatch in order to identify human activities. The HAR process
will be accomplished using an image recognition ML.NET neural network that handles
plot images generated based on both raw accelerometer and gyroscope data. The system
should be available for local network usage or cloud-based deployment and usage. Data
privacy and security are very important aspects and supporting on-premises deployment
and usage provides added layers of security for special requirements and use cases.

2. Related Work

Visually representing data from a dataset is quite common. Symbolic representa-
tion is used to increase the recognition rate and uses high-performance neural networks
specialized in image recognition. A significant method of representing data is Human
Activity Recognition on Signal Images (HARSI). As described in [22], this method is
very efficient and the research describes the method as converting the raw data into an
understandable image. The images were generated by plotting the raw data from an
accelerometer. The WISDM data set was used for this work and six types of activities were
selected: jogging, moving downstairs, walking, moving upstairs, standing, and sitting.
In this study, different types of convolutional neural networks were tested. The exper-
imental algorithms tested the following versions: HARSI-ResNet50, HARSI-ResNet101,
HARSI-AlexNet, HARSI-DenseNet121, HARSI-SqueezeNetv1.0, HARSI-SqueezeNetv1.1,
HARSI-VGG16, and HARSI-VGG19. The most efficient was the HARSI-VGG19 method
with a 98% accuracy.

Another study using the WISDM data set was described in [23]. Two types of algo-
rithms were tested: Convolution Neural Networks (CNNs) and Long Short-Term Memory
Networks (LSTMs). Through these algorithms, the performance of recognizing hand move-
ments was tested using smartwatch data. The following activities were studied: kicking,
stairs, standing, jogging, sitting, walking, sandwiching, chips, drinking, soup, pasta, fold-

Appl. Sci. 2024, 14, 329 4 of 20

ing, typing, teeth, catching, clapping, dribbling, and writing. The data from 44 subjects
were selected from the raw data set. In the preprocessing phase, a time-based sliding
window was used with a length of 10 s with 5 s of data overlapping. Three types of data
sets were tested: data from the accelerometer, data from the gyroscope, and combined data
from both the accelerometer and gyroscope. The best results were obtained from combined
data from the accelerometer and the gyroscope with a hybrid CNN-LSTM algorithm with
an overall recognition rate of 96.20%. Analyzing the confusion table, we observed that the
activities with the lower recognition rate were sitting, standing, sandwiching, and writing.

The research described in [24] presents a human activity recognition method based
on symbolic representation (HAR-SR). This method has two essential parts: the first is
signal segmentation-based data fusion and the second is symbolic representation based on
patterns from time series. The steps in symbolic representation presented in this research
start with data segmentation using a sliding window based on time with a specific length,
after the dimension of the segments database is reduced by symbolic approximation and
noise removal. Next, a search table was used for the discretization process to obtain the
symbolic representation of the segment and, in the final step, each discretized segment
was used to obtain a frequency histogram of the symbols. For classification, a K-Nearest
Neighbor (kNN) algorithm was used and the recognition rate obtained was 77.82%.

An interesting view of human activity recognition was described in [25]. A new
architecture of CNNs network was proposed in this research. A new type of classification
was added to the convolutional layer. This layer contains a matching filter (MF) based on
adding a signal noise comparison function. The activation function from this method is
based on calculating the maximum between the known signal or the template signal and
the unknown signal or the signal to be known. This function was included in a layer named
Conv1D. The Conv1D layer is followed by a GlobalMaxPooling layer and, in the final
step, a fully connected layer with softmax activation was added. For the most common
activities (walking, jogging, moving downstairs, moving upstairs, sitting), this research
obtained a very good total recognition rate of 97.32%. Analyzing the confusion matrix for
this method applied to the WISDM data set (only accelerometer data), we observed a lower
recognition rate for moving downstairs and moving upstairs activities. Moving downstairs
activity obtained an 89.00% recognition rate and moving upstairs a 91.00% recognition rate.
The algorithm was unable to obtain a very good recognition rate for both of these activities,
probably due to the similarities between the signals.

The labeling of the activity data set is the most important part of improving activity
recognition performance according to [26]. This research proposes a system based on user
feedback regarding the recognized activity. The user was informed through a notification.
The recognition algorithm used is a long short-term memory (LSTM) model which was
trained using an open dataset. The accelerometer data that are read from the smartphone
are recognized by the trained algorithm and the result is sent to the user via a notification.
The user approves the newly labeled data and, in this way, the raw data set increases in size.
This implementation improves the recognition rate, according to this research, with 10%
more than the classical method with the same model. For the kNN model, the recognition
rate was improved by 13.40%, and for LSTM, by 16.20%.

The concept of the Internet of Things can help improve people’s life nowadays, by han-
dling and maximizing the data collected from multiple sensors. The authors of [27] propose
a human activity recognition real-time system based on data collected from smartphones
and smartwatches. The real-time data are collected from the accelerometer and gyroscope
sensors. The watch is placed on the wrist and the smartphone is in a pocket. For the
accelerometer, the signals are separated into body and gravity components. The data are
segmented into overlapped windows. After the new features are extracted, the data scaling
factors and normalization are applied. Four types of algorithms were tested for human
activity recognition: Random Forest (RF), Multi-layer Perception (MLP), Support Vector
Machines (SVM), and Naive Bayes (NB). The training was implemented with a dataset
collected by researchers. The best recognition rate was obtained by the RF model at 98.72%.

Appl. Sci. 2024, 14, 329 5 of 20

Also, this method was tested with the WISDM dataset, and a 98.56% recognition rate
was obtained.

Using wearable sensors built into everyday objects is common practice, even reaching
the level of the incorporation of stretch sensors into clothes. Combining stretch sensors
and inertial sensors can yield good results with an accuracy rate of 97.51% [28]. This
approach implies that the user wears custom add-on modules that can also be built into
the clothes, and it requires specialized hardware modules for this, making the system a bit
more difficult to wear for extensive periods of time.

Options to unobtrusively monitor a user’s activity can also be used, without the
subject carrying a dedicated device; for example, the authors of reference [29] highlight an
innovative system that uses indoor WiFi signals to detect users’ activity by the different
patterns generated. This system can achieve a good recognition rate; the CNN-ABiLSTM
model reached an accuracy of 98.54% but it has some drawbacks as it can be used only in a
specific setup environment.

3. Proposed System

We propose a HAR system able to perform real-time activity recognition based on
internally generated plot images. The proposed system has multiple components:

• A data preprocessing app;
• A machine learning core processor;
• A machine learning processor Web API;
• A real-time Cloud human activity recognition system

The main components of the proposed system are shown in Figure 1.

Figure 1. Main components of the proposed system.

The “Data preprocessing app” handles the conversion of raw movement data from
an accelerometer and gyroscope to a plot image. This conversion transforms a movement
data window to a single image that will be used as input for the machine learning algo-
rithm. The “Machine learning core processor” represents the main computing logic that
is a machine learning implementation trained using the previously generated movement
images. After training, this component is capable of receiving an image and predicting its
source activity. This behavior is supported only locally, as this component does not support
network interactions or advanced conversions from raw data to images. The “Machine
learning processor Web Api” is the component that incorporates the “Machine learning
core processor” and is able to support network connections and recognize human activity.
The recognition process can be based on a generated image but this component is also able
to generate the image itself based on raw accelerometer and gyroscope data. So, in order
to recognize what activity a series of movement data is part of, a simple API call is suffi-
cient. The “Real-time Cloud human activity recognition system” represents the “Machine
learning processor Web Api” cloud correspondent, which is able to handle requests from

Appl. Sci. 2024, 14, 329 6 of 20

multiple computer networks via the Internet. This component is not limited to a single
local network and can be easily scaled and enhanced for the human activity recognition
process. In this way, we can easily recognize real-time human activity from any source
application that can make a web API request that contains movement data.

3.1. Our Contributions

Our contributions to the HAR field are as follows:

• The implementation of a real-time system for human activity recognition that can
operate locally and in the cloud via rest API calls based on image plot recognition;

– The implementation and usage of a .NET C# console application to generate label
images based on raw accelerometer and gyroscope sensor data;

– The creation of a .NET C# application that contains a deep neural network that
was created based on a pre-trained TensorFlow DNN model and trained for HAR
using plot images;

– The integration of the created and trained neural network in a .NET Web API
application capable of real-time activity recognition based on rest API calls;

– The further extension of the HAR Web API application capabilities to allow
cloud-based activity recognition.

• The analysis of multiple scenarios for plot image generation configuration and plot
types and the evaluation of the obtained activity recognition precision results;

• We concluded that a real-time HAR system, based on plot image recognition and REST
requests, can be a good system architecture for real-time activity recognition.

3.2. WISDM Biometrics Dataset

The “WISDM Smartphone and Smartwatch Activity and Biometrics Dataset” dataset
was chosen for this implementation. This dataset was introduced and described in [30] and
is extensively used for human activity recognition.

This dataset was chosen as it is one of the most important and used datasets for human
activity recognition based on wearable devices, as also mentioned in [22]. Since it was used
in multiple studies, it is a perfect candidate to be used to compare different approaches and
to analyze the obtained accuracy rates across multiple different implementations. Since the
data collection process was closely supervised by the dataset research creators, to ensure
proper data quality and movement consistency, this dataset can be clearly used for the
in-depth analysis of any of the available activities. This dataset is even suitable for detecting
symmetric activities. Based on the fact that the dataset used is an existing one that is freely
available for usage, the research creators handled the appropriate approvals from required
entities as it involved human subjects research.

The dataset contains many different activities carried out by 51 subjects. We have
18 different activities, each with a length of about 3 min. The monitoring devices used to
track the subject’s movements are a smartwatch and a smartphone. The smartwatch is
placed on the subject’s dominant hand and is non-obstructive, due to its relatively small
form factor. The smartphone is placed in the pocket, simulating the everyday carrying of
this omnipresent device. Both data-gathering devices run a custom-made app designed
specifically for this purpose. Both tracking devices gather accelerometer and gyroscope
data using a number of four separate sensors, two for each device. Each sensor gathers data
with a frequency of 20 Hz, reading a measurement every 50 ms. This is the data polling rate
that was set for the operation but the actual polling rate of the sensor data can be delayed if
the processor is busy.

Accelerometer and gyroscope data folders are present for both smartwatch and smart-
phone data. In each data sub-directory, there will be a file for each subject, so a total of
51 files will be present in each sub-directory. The naming of the files is standard and uses
underlining to delimit different parts of the name components.

Appl. Sci. 2024, 14, 329 7 of 20

Each data file contains one sensor reading per line using a comma-separated value
data format, as the data format is maintained across the different sensor types and sources.
Each line has the following features:

• Subject-id: a unique identifier for the subject, with a range between 1600 and 1650;
• Activity Code: a unique identifier for the activity, using a single letter from A to S

skipping the “N” value;
• Timestamp: the sensor reading timestamp in Linux format;
• Sensor value for the x, y, and z axis represented by numeric real values.

Each file contains approximately 54 min of readings, based on the expected 3 min for
each activity multiplied by the total number of 18 activities; in an ideal case, we would
have a total number of 64,800 lines for the file. The data collection process was not perfect,
so these borderline values will still fluctuate across the dataset somewhat.

The raw total number of samples in this dataset is 15,630,426 and the distribution of
data across the sensor types and sources is as follows:

• Raw phone accelerometer number of data readings: 4,804,403;
• Raw phone gyroscope number of data readings: 3,608,635;
• Raw watch accelerometer number of data readings: 3,777,046;
• Raw watch gyroscope number of data readings: 3,440,342.

The smartwatch data-gathering device runs Android Wear 1.5 and the smartphone
runs Android 6.0.

As shown in [31], this dataset groups all the previously mentioned activities into
three main activity categories based on the type of activity and each recorded activity
in this dataset has a code assigned. These three major activity categories, alongside the
corresponding activities, are shown in Table 1.

Table 1. Dataset activity categories.

Activity Category No. Activity Category Activities

1 Non-hand-oriented
activities

walking, jogging, stairs, standing,
kicking

2 General hand-oriented
activities

dribbling, playing catch, typing,
writing, clapping, brushing teeth,

folding clothes

3 Eating hand-oriented
activities

eating pasta, eating soup, eating a
sandwich, eating chips, drinking

For this research, we plan to use only the smartwatch dataset containing accelerom-
eter and gyroscope raw data and we do not plan to use any of the already available
extracted features.

3.3. Data Preprocessing App: Movement Data Plot Images Generation

In order to simplify the classic time-series data classification task, based on the sensor
data, we can handle the human activity recognition task as an image classification one.
The numeric sensor data from the smartwatch are used to transform a series of values,
consisting of a data window, into a single data image. This way we can provide a visual
representation of a data chunk that is easier for a human to analyze and interpret the data
manually. Each image can show certain characteristics for that particular activity type and
different plot styles can be used. The main preprocessing application is written in C# 6 and
uses the “ScottPlot” plotting library for .NET. The preprocessing application is written as a
.NET console application.

In order to reduce the amount of data generated in the preprocessing phase, only
certain activity types and users are selected for processing. The following activities are
selected for processing from the source dataset: walking, jogging, stairs, sitting, standing,

Appl. Sci. 2024, 14, 329 8 of 20

typing, and brushing teeth. To further decrease the number of generated plot images,
the users that performed the activities are also filtered and only the first five users are used.

The “ScottPlot” 4.1.59 plotting library was chosen as it is open-source, free, and pro-
vided under the permissive MIT license. This library makes displaying and saving images
easy and fast. As mentioned in [32], there are multiple platforms of .NET that are supported
by this library (including .NET core) which means that it can even be used in Azure cloud
directly, under the form of Azure function.

Based on the chosen plot image type from the ScottPlot library, we have two main
scenarios:

• Scatter plot images;
• Population images.

The generated plot images have a different width and height based on the chosen
scenario, as shown in Table 2. The window size chosen for overlapping scenarios is
40 records.

Table 2. Generated image output dimensions.

Scenario Image Width Image Height

Scatter plot images with overlapping scatter plots 600 400
Scatter plot images with non-overlapping scatter plots 500 300

Population images 500 300

An example of generated scatter plot images with overlapping scatter plots with a
data sequence for walking activity is shown in Figure 2.

Figure 2. The scatter plot image for a data sequence with overlapping windows for an activity using
the .NET plotting library.

An example of generated scatter plot images with non-overlapping scatter plots with
a data sequence for the walking activity is shown in Figure 3.

Appl. Sci. 2024, 14, 329 9 of 20

Figure 3. The scatter plot image for a data sequence without overlapping windows for an activity
using the .NET plotting library.

An example of generated population images with the “BarMeanStDev” option is
shown in Figure 4.

Figure 4. Generated population image with the “MeanAndStdev” option.

3.4. Machine Learning Core Processor

The machine learning core processor is the main component that is able to perform
human activity recognition. This component can train a neural network based on the
generated plot images and allows this trained neural network to be used directly from a
.NET core application. The hosting application where the training takes place is the same
one as where the trained neural network is placed afterward; it is implemented in the form
of a .NET core console application project. This allows the neural network to be created,
trained, saved, and tested, all in one place. The neural network can be later moved into
another project to allow further development. This machine learning core processor project
thus also contains the required logic for the model consumption and the logic required for
the model to be retrained.

3.4.1. Machine Learning Training Process

The training phase was executed locally using the local GPU as the main training
processing device. The used training environment machine was equipped with an Intel(R)
Core(TM) i5-8300H CPU running at 2.30GHz. The available system memory was 16.0 GB.
The GPU used for the main training process was a NVIDIA GeForce GTX 1050.

In order for the training process to support local GPU, the graphics card needs to
be CUDA compatible and the system needs to have multiple software components, like

Appl. Sci. 2024, 14, 329 10 of 20

extensions and a toolkit, installed for this particular purpose. The “ML.NET Model Builder
GPU Support 2022” GPU Visual Studio extension needs to be installed in the system so
that we can use the local GPU for training image classification models. The ML.NET
Model Builder 2022 extension was updated to the latest version at implementation time,
16.14.2255902, as this extension provides a simple and fast UI tool to build, train, and ship
custom machine learning models in .NET applications. The CUDA Toolkit version 10.1
also needs to be installed as this is the recommended version at implementation time
and it provides a development environment for creating and running high-performance
GPU-accelerated applications. Alongside the CUDA Toolkit, the CUDA Deep Neural
Network library (known as cuDNN) also needs to be installed and, in this case, version
7.6.4 was used. cuDNN is a library that contains GPU-accelerated primitives for deep
neural networks. The cuDNN library contains implementations for standard routines:
forward and backward convolution, pooling, normalization, and activation layers.

3.4.2. Training Time

The training time is different across different runs and ranges from 1.12 to 5.8 h
depending on the size and number of the images used for training. All training processes
were executed on the same machine described in the previous section. The training times
obtained for the executed scenarios are presented in Table 3.

Table 3. Training time.

Scenario Number of Images Training Time (Seconds)

Scatter plot images with
overlapping scatter plots 125,973 20,975.79

Scatter plot images with
non-overlapping scatter plots 125,973 5750.11

Population images with the
“BarMeanStDev” option 111,418 4437.96

Population images with the
“MeanAndStdev” option 111,478 4050.35

3.4.3. Local Activity Recognition

After the training phase has been completed, the machine learning core processor
can be used to run the activity recognition process locally. From the project’s console
application, any logic can be added to leverage the activity recognition functionality.
The image data can be generated on the fly based on raw accelerometer data or the system
can use a database as a buffer for the image files or movement data. The core processor
functionality can be incorporated into any .NET project type, like a desktop application or
even a web application.

3.4.4. The Trained Deep Neural Network (DNN)

The deep neural network model chosen for the image classification task is “ImageClas-
sificationMulti”. The available trainer for this image classification task is “ImageClassifi-
cationTrainer” and it trains a DNN network by using pre-trained models for classifying
images, in this case, Resnet50. For this, trainer normalization and the cache are not required.
A supervised ML task predicts the category or class of the image representing the activity
type that we want to recognize. Each label starts as text and is converted into a numeric
key via the “TermTransform”. The image classification algorithm output is a classifier that
can recognize the class and the activity type for a provided image. Figure 5 shows the
generated ML model diagram, as can be seen using the Netron viewer software.

Since ML.NET also uses a pre-trained deep neural network (DNN), called transfer
learning, the trained model also includes pre-trained knowledge, making it perfect for im-
proving accuracy and decreasing training time. ML.NET internally retrains the Tensorflow

Appl. Sci. 2024, 14, 329 11 of 20

layers based on the used data images input dataset. A small portion of the entire Resnet50
model used is shown in Figure 6.

Figure 5. Neural network ML model diagram.

Figure 6. Resnet50 neural network detail.

Appl. Sci. 2024, 14, 329 12 of 20

3.5. Web API Activity Recognition System

Based on the machine learning core processor module, that is able to recognize human
activity relying on the movement-generated plot image, a Web API application was built to
expose this functionality to other components inside the local network. In this way, any
device can receive the activity type as a response by making an API request containing
either an already generated plot image or the raw data required to generate the plot image.
Since we are handling all the main processing in a Web API application, we can save
the received data, resulting in a database, and even send real-time system notifications
to other linked subsystems or components based on certain events. For example, email
notifications can be sent if the system encounters an activity that is out of the ordinary
based on certain logic. A Web API application type component is useful to simplify the
system architecture as it is scalable and allows the other subsystems to easily communicate
using a fast and reliable method using proven protocols and technologies. Since we are
using a stateless design, the lower components that make the data acquisition do not
need to be very powerful from the computing perspective. The only requirement is to be
able to generate HTTP requests, compared to a real-time system designed around sockets,
where communication is achieved via a bidirectional opened channel. The lower layer
of the acquisition device can gather data, based on window size, and when the data has
reached the window size, an API request can be created with the entire window payload.
The frequency of the API requests is clearly dependent on the chosen window size and
whether we want to overlap data windows or not.

3.5.1. The Web API Project

The web API project was build in-house and is based on the .NET framework and
structured in the form of a minimal API project in .NET core 7. Minimal API was chosen as
it is perfect for this kind of implementation due to its low file count and clean architecture.
Due to the .NET Core cross-platform nature, this project can be deployed on multiple
platforms, like Windows and Linux, and supports cloud integration as well. The minimal
API file structure features a small number of configuration files and one single code entry
point. The already trained network is loaded from the generated machine learning model
zip archive using the “FromFile” extension when registering the prediction engine pool.

3.5.2. The Web API Endpoints and OpenAPI Specification

The Web API project features two main endpoints used for activity recognition, one
that is able to detect human activity based on a movement data plot image and the second
that is able to detect human activity based on a window of movement data gathered from
an accelerometer and gyroscope. The OpenAPI specification represents the standard for
defining RESTful interfaces, providing a technology-agnostic API interface that provides
API development and consumption support. Swagger is the tool that allows for OpenAPI
specification generation and usage in our web API project. Swagger contains powerful tools
to fully use the OpenAPI Specification, as shown in Figure 7, where the Swagger-generated
documentation for the created Web API is highlighted.

Figure 7. Swagger OpenAPI specification.

Appl. Sci. 2024, 14, 329 13 of 20

3.5.3. Real-Time Activity Recognition Process

Since we are exposing the activity recognition process via a rest API, any subsys-
tem in the local network can call this web API to benefit from the activity recognition
process. The rest request type is post and the configured endpoint route is “/activity-
recognition/image”. The activity recognition sensor data endpoint can detect the activity
based on a window of raw movement sensor data. Internally, the movement plot image
containing sensor data from both the accelerometer and gyroscope is recreated and fed
to the machine learning neural network. The rest request type is post and the configured
endpoint route is “/activity-recognition/sensor-data”.

3.6. Real-Time Cloud Human Activity Recognition System

In order to create a real-time system, Azure cloud functionalities were leveraged to
create a scalable and omnipresent service. Since the activity recognition system is deployed
in the cloud, even a simple internet-enabled device with low processing power can benefit
from the activity recognition functionalities, not just the ones from the local network.
In order to deploy the Web API application in the cloud, a valid Azure subscription is
required. The created components are structured under a hierarchical form, having as a
parent the HarResourceGroup resource group that has an API management service named
MLprocessorWebApi that can contain multiple APIs, an,d in this case, contain only one,
named MlProcessorWebApi.

The main web API application was deployed in the cloud using the following ad-
dress [33] and the postman example request is shown in Figure 8, a request that is able to
determine the activity type with the activity unique identifier “E” that corresponds to the
standing activity.

Figure 8. Azure postman post call to the activity recognition data endpoint.

The deployed Web API is secured using subscription keys. In order to consume the
published APIs, it is mandatory that this subscription key be included in the HTTP requests
when calling the protected APIs. If a valid subscription key is not provided in the header,
the calls are not forwarded to the back-end services or rejected immediately by the API
Management gateway.

Appl. Sci. 2024, 14, 329 14 of 20

4. Materials and Methods

The “WISDM Smartphone and Smartwatch Activity and Biometrics Dataset” dataset
is freely available and can be downloaded from [12]. The “ScottPlot” library can be found
here [34], alongside examples and demos. The corresponding GitHub page for this project
is located here [32] and the Nuget package is listed here [35]. The CUDA Toolkit used
for GPU neural network training is available here [36]. NVIDIA CUDA® Deep Neural
Network library (cuDNN) is available here [37]. ML.NET Model Builder GPU Support
2022 is available here [38]. ML.NET Model Builder 2022 is available here [39]. The Netron
viewer used is freely available here [40].

The source code for the proposed real-time cloud-based human activity recognition
system that uses image classification is available in a public git repository [41]. This also
contains the Web API project that was deployed and tested in the cloud. It is located in
the “realTimeHarSystem” folder and includes the main Web API “MLProcessor WebApi”
project and its project dependencies, like the “MlProcessorService” class library project.

The dataset processor console application that was used to generate the plot images
used for training is also available in this repository. Each scenario folder contains the
“DataSetProcessor” project with the required updates for that particular scenario. The input
data used by the “DataSetProcessor” project is located in the “watch” folder located in
the root directory and contains the raw data from the dataset smartwatch with subfolders
for accelerometer and gyroscope data named “accel” and “gyro”. The output-generated
images are not part of this repository as their size is very large and can be easily generated
with the tools and files provided in this public repository.

5. Results

We used the WISDM dataset to train a real-time human activity recognition system
that is based on a Resnet50 neural network that achieved the best precision of 94.89% using
scatter plot images with overlapping scatter plots. Raw accelerometer and gyroscope data
from the previously mentioned WISDM dataset are both used to generate the plot images
that consist of the input data for the neural network training process.

For the obtained results, the following activities were used: Walking, Jogging, Stairs,
Sitting, Standing, Typing, and Brushing Teeth, for five selected users. Four major factors
affect the size and number of generated plot image files:

• The number of analyzed activities;
• The number of analyzed users;
• The window type or window size;
• The plot image dimensions.

The usage of a reduced dataset is due to the large size and number of the generated
image data sets, as we have reduced the available total number of 18 activities to 7 activities
and the total number of 30 users to a smaller one of 5. Reducing the number of analyzed
users and activities provided a decent working dataset and the decrease of the generated
plot image dimensions further decreased the side of the generated plot image dataset.

In Table 4, we can observe the performance of the obtained results. We can clearly
notice that Scatter plot images with the overlapping scatter plots method obtained the best
result. Another method that obtained decent results is using population images with the
“BarMeanStDev” option. As shown in Table 4, we managed to obtain a decent precision with
a maximum value of 94.89% when using scatter plot images with overlapping scatter plots.

The algorithm managed to obtain a surprising result time-wise, as Figure 9 clearly
shows. Although the method of using mean and standard-deviation-based generated
images is not the best from an activity recognition standpoint, it managed to obtain a
4.7 times better training time, meaning it is the fasted trained method. Since the activity
recognition difference is 0.2%, this is a negligible value as opposed to the obtained training
time gain.

Appl. Sci. 2024, 14, 329 15 of 20

Table 4. Obtained results.

Scenario Recognition Algorithm Accuracy

Scatter plot images with overlapping
scatter plots ImageClassificationMulti 94.89%

Scatter plot images with non-overlapping
scatter plots ImageClassificationMulti 93.83%

Population images with the
“BarMeanStDev” option ImageClassificationMulti 94.69%

Population images with the
“MeanAndStdev” option ImageClassificationMulti 92.49%

Figure 9. Training time performance analysis.

The following sections will detail the obtained results for each of the four analyzed
scenarios.

5.1. Scatter-Plot-Images-Based Recognition

For the “Scatter Plot” type scenario, two main variants were tested, overlapping and
non-overlapping scatter plots. For overlapping scatter plots, we obtained a micro accuracy
of 0.9489 using a training session with a duration of 20,975.7900 s.

For non-overlapping scatter plots, we obtained a micro accuracy of 0.9383 using a
training session with a duration of 5750.1130 s. The obtained non-overlapping scatter plot’s
micro precision is smaller in this case with 0.0106 compared with using overlapping scatter
plots. The training time is significantly lower, with a difference of 15,225.677 s compared to
scatter plots.

We obtained better human activity recognition precision using overlapping scat-
ter plots compared with non-overlapping scatter plots but the training time was signifi-
cantly higher.

5.2. Population-Based Images Recognition

For the “Population” type scenario, only overlapping window type was used, based
on the previously tested scenarios. The two main variants that were tested differ in how the
population plot was generated using either the BarMeanStDev or the MeanAndStdevResult
generation option.

For the “BarMeanStDev” population plot generation option, we obtained a micro
accuracy of 0.9469 using a training session with a duration of 4437.9640 s.

For the “MeanAndStdevResult” population plot generation option, we managed to
obtain a micro accuracy of 0.9249 using a training session with a duration of 4050.3480 s.

Appl. Sci. 2024, 14, 329 16 of 20

The obtained “MeanAndStdevResult” population plot generation option micro precision
is smaller in this case with 0.022 compared with using the “BarMeanStDev” population
plot generation option. The training time is somewhat lower, with a difference of 387.616 s
compared with the “BarMeanStDev” population plot generation option.

We managed to obtain a slightly better precision for scatter plot images with overlap-
ping scatter plots with a micro accuracy of 0.9489 compared with the population images
with the “BarMeanStDev” option where we obtained a micro accuracy of 0.9469, with a
very small difference for micro accuracy of 0.002.

5.3. Comparison of Results with Other Studies

As shown in Table 5, the results obtained leveraging the researched methods obtained
a satisfactory result. It can be seen that studies that used data representation as images
obtained results as good as those represented in raw data windows.

Table 5. Comparison results with other research based on WISDM dataset.

Criteria Number from
Table 6—Related Work

Section
Algorithm Accuracy % Type of Data Representation

Our results
RestNet50-

ImageClassificationMulti
model

94.89

Image representation;
Population-based

MeanAndStdevResult image
plotting with overlapping

Our results
RestNet50-

ImageClassificationMulti
model

92.49

Image representation;
Population-based

MeanAndStdevResult image
plotting

Our results
RestNet50-

ImageClassificationMulti
model

94.69
Image representation;

Population-based
BarMeanStDev image plotting

1 HARSI-ResNet34 97.33 Image representation
2 HARSI-AlexNet 89.17 Image representation
4 CNN 89.60 Raw Data Windowing
6 Hybrid CNN-LSTM 95.20 Raw Data Windowing
7 CNN 86.40 Raw Data Windowing
9 Hybrid CNN-LSTM 95.40 Raw Data Windowing
10 CNN 93.10 Raw Data Windowing
12 Hybrid CNN-LSTM 96.20 Raw Data Windowing
14 Matching Filter CNN 97.32 Matching filter over Raw Data

Table 6. Summary of activity recognition systems based on WISDM dataset.

Criteria
Number Reference Year Algorithm Accuracy

%
Recognised
Activities

Data Source
Sensors

Type of Data
Representation

1 [22] 2022 HARSI-ResNet34 97.33 Six activities 1 Accelerometer Image representation
2 [22] 2022 HARSI-AlexNet 89.17 Six activities 1 Accelerometer Image representation
3 [22] 2022 HARSI-VGG19 98.00 Six activities 1 Accelerometer Image representation

4 [23] 2020 CNN 89.60 Eighteen
activities 2 Accelerometer Raw Data Windowing

5 [23] 2020 LSTM 87.80 Eighteen
activities 2 Accelerometer Raw Data Windowing

6 [23] 2020 Hybrid-CNN-LSTM 95.20 Eighteen
activities 2 Accelerometer Raw Data Windowing

7 [23] 2020 CNN 86.40 Eighteen
activities 2 Gyroscope Raw Data Windowing

8 [23] 2020 LSTM 84.10 Eighteen
activities 2 Gyroscope Raw Data Windowing

9 [23] 2020 Hybrid-CNN-LSTM 95.40 Eighteen
activities 2 Gyroscope Raw Data Windowing

10 [23] 2020 CNN 93.10 Eighteen
activities 2

Accelerometer,
Gyroscope Raw Data Windowing

Appl. Sci. 2024, 14, 329 17 of 20

Table 6. Cont.

Criteria
Number Reference Year Algorithm Accuracy

%
Recognised
Activities

Data Source
Sensors

Type of Data
Representation

11 [23] 2020 LSTM 89.60 Eighteen
activities 2

Accelerometer,
Gyroscope Raw Data Windowing

12 [23] 2020 Hybrid-CNN-LSTM 96.20 Eighteen
activities 2

Accelerometer,
Gyroscope Raw Data Windowing

13 [24] 2020 kNN HAR-SR 77.82 Six activities 3 Accelerometer Symbolic representation

14 [25] 2022 Matching Filter CNN 97.32 Five activities 4 Accelerometer Matching filter over
Raw Data

15 [26] 2019 Labeled CART 77.30 Six activities 3 Accelerometer Labels over Raw Data
16 [26] 2019 Labeled kNN 80.01 Six activities 3 Accelerometer Labels over Raw Data
17 [26] 2019 Labeled LDA 76.60 Six activities 3 Accelerometer Labels over Raw Data
18 [26] 2019 Labeled LR 77.80 Six activities 3 Accelerometer Labels over Raw Data
19 [26] 2019 Labeled LSTM 78.30 Six activities 3 Accelerometer Labels over Raw Data
20 [26] 2019 Labeled RF 81.50 Six activities 3 Accelerometer Labels over Raw Data
21 [26] 2019 Labeled SVM 77.50 Six activities 3 Accelerometer Labels over Raw Data

22 [27] 2022 RandomForest 98.56 Thirteen
activities 5 Accelerometer New features over Raw

Data

1 Jogging, moving downstairs, walking, moving upstairs, standing, sitting. 2 Kicking, stairs, standing, jogging,
sitting, walking, sandwiching, chips, drinking, soup, pasta, folding, typing, teeth, catching, clapping, dribbling,
and writing. 3 Walking, running, moving downstairs, moving upstairs, sitting, standing. 4 Walking, jogging,
moving downstairs, moving upstairs, sitting. 5 Biking, having coffee, walking downstairs, eating, jogging, sitting,
smoking, standing, giving a talk, typing, walking upstairs, walking, writing.

It can be observed that we obtained a better result using the proposed model, with an
approximately 5% recognition rate gain compared to the implementation using a hybrid
HARSI-AlexNet model (Criteria number 2).

An improved result, compared with the proposed model, was obtained using a model
based on RestNet, under the form of a HARSI-ResNet34 hybrid model. This showed that
some hybrid models obtained better results than the classic ones, which will help us in
the development of a new algorithm model. Comparing the basic model of the hybrid
variants, it can be seen that those based on RestNet obtained better results than those based
on AlexNet or LSTM. The fact that the HARSI-ResNet34 variant model [22] used a data
plot obtained only from the accelerometer raw data confirms that the model proposed by
us, which uses the data from the accelerometer and gyroscope, could be enhanced in a
future implementation using a new hybrid model.

6. Conclusions

Our main objective was to implement a real-time cloud-based human activity recogni-
tion system that uses image classification at its core. The system should be able to expose
HAR capabilities from the cloud or locally via rest API calls. In order to achieve this, a .NET
core C#-based web API was implemented to expose the activity recognition functionality.
The main HAR functionality was achieved using a deep neural network created based on
a pre-trained TensorFlow Resnet50 DNN model and trained for HAR using plot images.
The created system was trained using data from the WISDM dataset, which is open access.
The training data were generated using a separate .NET core C# application that generated
the plot images based on raw accelerometer and gyroscope data. Since the proposed system
can also be deployed to the cloud, it can be easily expanded to support multiple sensor
modules and users at the same time based on its rest implementation.

We managed to obtain a decent human activity recognition rate of 94.89%, using the
following activities subset: Walking, Jogging, Stairs, Sitting, Standing, Typing, and Brushing
Teeth, demonstrating that a real-time HAR system based on plot image recognition and
REST requests can be a good system architecture for a real-time activity recognition system.
We managed to improve the previously obtained human activity recognition accuracy of
93.10%, as shown in [31], to 94.89%, obtaining an increase of 1.79%.

Appl. Sci. 2024, 14, 329 18 of 20

Since only raw accelerometer and gyroscope data are used by the proposed HAR
platform, we should be able to expand the usable sensor modules to any sensor module
that has an accelerometer, gyroscope, and network capabilities. This creates a kind of
hardware abstraction layer, as this can be simply implemented with a relatively low number
of physical components. This is a very simple option to allow basic network-enabled
sensor modules to gain ML.NET deep neural network capabilities. The custom hardware
implementation of wrist-worn sensor modules is also a viable option to be integrated into
the proposed system, as we are using a web API for the final system integration.

In order to further improve the accuracy of the implemented system, additional plot-
type images can be analyzed to see if we can gain a performance boost. Other types of neural
networks can also be analyzed, and other custom TensorFlow models may even provide
a better implementation to further expand the system. The system could be expanded to
use more data from the initial dataset, by increasing the number of analyzed activities and
users and trying to optimize the training time by using a more powerful training machine,
and trying to lower the training time using other pre-trained deep neural networks.

In order to further increase the system’s accuracy, integration with other HAR systems
may also yield better results, like integration with an environmental-based HAR system.
This will increase the complexity of the system but would provide additional types of data
regarding the user’s activity.

Author Contributions: Conceptualization, A.I.A., A.R.A. and S.O.; methodology, A.I.A., A.R.A. and
S.O.; software, A.I.A., A.R.A.; validation, A.I.A., A.R.A. and S.O.; formal analysis, A.I.A., A.R.A. and
S.O.; investigation, A.I.A., A.R.A. and S.O.; resources, A.I.A., A.R.A. and S.O.; data curation, A.I.A.,
A.R.A. and S.O.; writing—original draft preparation, A.I.A., A.R.A. and S.O.; writing—review and
editing, A.I.A., A.R.A. and S.O.; visualization, A.I.A., A.R.A. and S.O.; supervision, S.O.; project
administration, S.O. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data available in a publicly accessible repository. The data presented
in this study are the “WISDM Smartphone and Smartwatch Activity and Biometrics Dataset”. The
dataset is openly available and can be downloaded from [12].

Acknowledgments: The Intelligent Embedded Systems research laboratories supported this work at
the Technical University of Cluj-Napoca, North University Center of Baia Mare.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

HAR Human Activity Recognition
ARFF Attribute-Relation File Format
cuDNN CUDA® Deep Neural Network library
CUDA Compute Unified Device Architecture
DTO Data Transfer Object
DNN Deep Neural Network
ML Machine Learning
REST Representational State Transfer
IoT Internet Of Things
API Application Programming Interface
Resnet50 A residual convolutional neural network with 50 layers
WISDM dataset Wireless Sensor Data Mining dataset
LSTM Long Short-Term Memory Networks
CNN Convolution Neural Networks
HARSI Human Activity Recognition on Signal Images
HTTP Hypertext Transfer Protocol

Appl. Sci. 2024, 14, 329 19 of 20

HAR-SR Human activity recognition method based on symbolic representation
RF Random Forest Networks
MLP Multi-layer Perception Networks
SVM Support Vector Machines Networks
NB Naive Bayes Networks
MIT Massachusetts Institute of Technology

References
1. Peppas, K.; Tsolakis, A.C.; Krinidis, S.; Tzovaras, D. Real-Time Physical Activity Recognition on Smart Mobile Devices Using

Convolutional Neural Networks. Appl. Sci. 2020, 10, 8482. [CrossRef]
2. Kolkar, R.; Geetha, V. Human Activity Recognition in Smart Home using Deep Learning Techniques. In Proceedings of the 2021

13th International Conference on Information & Communication Technology and System (ICTS), Surabaya, Indonesia, 20–21
October 2021; pp. 230–234. [CrossRef]

3. Li, H.; Trocan, M. Deep learning of smartphone sensor data for personal health assistance. Microelectron. J. 2019, 88, 164–172.
[CrossRef]

4. Dang, M.; Min, K.; Wang, H.; Piran, M.J.; Lee, C.H.; Moon, H. Sensor-based and vision-based human activity recognition: A
comprehensive survey. Pattern Recognit. 2020, 108, 107561. [CrossRef]

5. Kim, B.; Kim, S.; Lee, M.; Chang, H.; Park, E.; Han, T. Application of an Internet of Medical Things (IoMT) to Communications in
a Hospital Environment. Appl. Sci. 2022, 12, 12042. [CrossRef]

6. Athota, R.K.; Sumathi, D. Human activity recognition based on hybrid learning algorithm for wearable sensor data. Sensors 2022,
24, 100512. [CrossRef]

7. Gowthami, M.; Kumar, V.R. A hybrid DL with the Internet of Things to monitor human activities using wearable sensors. Sensors
2022, 24, 100496. [CrossRef]

8. Giorgi, G.; Saracino, A.; Martinelli, F. Using recurrent neural networks for continuous authentication through gait analysis.
Pattern Recognit. Lett. 2021, 147, 157–163. [CrossRef]

9. Hofmann, C.; Patschkowski, C.; Haefner, B.; Lanza, G. Machine Learning Based Activity Recognition To Identify Wasteful
Activities In Production. Procedia Manuf. 2020, 45, 171–176. [CrossRef]

10. Sena, J.; Barreto, J.; Caetano, C.; Cramer, G.; Schwartz, W.R. Human activity recognition based on smartphone and wearable sensors
using multiscale DCNN ensemble. Neurocomputing 2021, 444, 226–243. [CrossRef]

11. Prasad, A.; Tyagi, A.K.; Althobaiti, M.M.; Almulihi, A.; Mansour, R.F.; Mahmoud, A.M. Human Activity Recognition Using Cell
Phone-Based Accelerometer and Convolutional Neural Network. Appl. Sci. 2021, 11, 12099. [CrossRef]

12. Weiss, G. WISDM Smartphone and Smartwatch Activity and Biometrics Dataset. Available online: https://archive.ics.uci.edu/
dataset/507/wisdm+smartphone+and+smartwatch+activity+and+biometrics+dataset (accessed on 1 February 2023).

13. Ignatov, A. Real-time human activity recognition from accelerometer data using Convolutional Neural Networks. Appl. Soft
Comput. 2018, 62, 915–922. [CrossRef]

14. Bragança, H.; Colonna, J.G.; Oliveira, H.A.B.F.; Souto, E. How Validation Methodology Influences Human Activity Recognition
Mobile Systems. Sensors 2022, 22, 2360. [CrossRef] [PubMed]

15. Najeh, H.; Lohr, C.; Leduc, B. Dynamic Segmentation of Sensor Events for Real-Time Human Activity Recognition in a Smart
Home Context. Sensors 2022, 22, 5458. [CrossRef] [PubMed]

16. Helmi, A.M.; Al-qaness, M.A.A.; Dahou, A.; Damaševičius, R.; Krilavičius , T.; Elaziz, M.A. A Novel Hybrid Gradient-Based
Optimizer and Grey Wolf Optimizer Feature Selection Method for Human Activity Recognition Using Smartphone Sensors.
Entropy 2021, 23, 1065. [CrossRef] [PubMed]

17. Mekruksavanich, S.; Jitpattanakul, A. Deep Learning Approaches for Continuous Authentication Based on Activity Patterns
Using Mobile Sensing. Sensors 2021, 21, 7519. [CrossRef] [PubMed]

18. Gul, M.A.; Yousaf, M.H.; Nawaz, S.; Ur Rehman, Z.; Kim, H. Patient Monitoring by Abnormal Human Activity Recognition
Based on CNN Architecture. Electronics 2020, 9, 1993. [CrossRef]

19. Magdin, M.; Benc, J.; Koprda, Š.; Balogh, Z.; Tuček, D. Comparison of Multilayer Neural Network Models in Terms of Success of
Classifications Based on EmguCV, ML.NET and Tensorflow.NET. Appl. Sci. 2022, 12, 3730. [CrossRef]

20. Mohamad, S.; Sayed-Mouchaweh, M.; Bouchachia, A. Online active learning for human activity recognition from sensory data
streams. Neurocomputing 2020, 390, 341–358. [CrossRef]

21. Cheng, X.; Zhang, L.; Tang, Y.; Liu, Y.; Wu, H.; He, J. Real-Time Human Activity Recognition Using Conditionally Parametrized
Convolutions on Mobile and Wearable Devices. IEEE Sens. J. 2022, 22, 5889–5901. [CrossRef]

22. Cengiz, A.B.; Birant, K.U.; Cengiz, M.; Birant, D.; Baysari, K.T. Improving the Performance and Explainability of Indoor Human
Activity Recognition in the Internet of Things Environment. Symmetry 2022, 14, 2022. [CrossRef]

23. Mekruksavanich, S.; Jitpattanakul, A.; Youplao, P.; Yupapin, P. Enhanced Hand-Oriented Activity Recognition Based on Smart-
watch Sensor Data Using LSTMs. Symmetry 2020, 12, 1570. [CrossRef]

24. Bragança, H.; Colonna, J.G.; Lima, W.S.; Souto, E. A Smartphone Lightweight Method for Human Activity Recognition Based on
Information Theory. Sensors 2020, 20, 1856. [CrossRef] [PubMed]

http://doi.org/10.3390/app10238482
http://dx.doi.org/10.1109/ICTS52701.2021.9609044
http://dx.doi.org/10.1016/j.mejo.2018.01.015
http://dx.doi.org/10.1016/j.patcog.2020.107561
http://dx.doi.org/10.3390/app122312042
http://dx.doi.org/10.1016/j.measen.2022.100512
http://dx.doi.org/10.1016/ j.measen.2022.100496
http://dx.doi.org/10.1016/j.patrec.2021.03.010
http://dx.doi.org/10.1016/j.promfg.2020.04.090
http://dx.doi.org/10.1016/j.neucom.2020.04.151
http://dx.doi.org/10.3390/app112412099
https://archive.ics.uci.edu/dataset/507/wisdm+smartphone+and+smartwatch+activity+and+biometrics+dataset
https://archive.ics.uci.edu/dataset/507/wisdm+smartphone+and+smartwatch+activity+and+biometrics+dataset
http://dx.doi.org/10.1016/j.asoc.2017.09.027
http://dx.doi.org/10.3390/s22062360
http://www.ncbi.nlm.nih.gov/pubmed/35336529
http://dx.doi.org/10.3390/s22145458
http://www.ncbi.nlm.nih.gov/pubmed/35891139
http://dx.doi.org/10.3390/e23081065
http://www.ncbi.nlm.nih.gov/pubmed/34441205
http://dx.doi.org/10.3390/s21227519
http://www.ncbi.nlm.nih.gov/pubmed/34833591
http://dx.doi.org/10.3390/electronics9121993
http://dx.doi.org/10.3390/app12083730
http://dx.doi.org/10.1016/j.neucom.2019.08.092
http://dx.doi.org/10.1109/JSEN.2022.3149337
http://dx.doi.org/10.3390/sym14102022
http://dx.doi.org/10.3390/sym12091570
http://dx.doi.org/10.3390/s20071856
http://www.ncbi.nlm.nih.gov/pubmed/32230830

Appl. Sci. 2024, 14, 329 20 of 20

25. Farag, M.M. Matched Filter Interpretation of CNN Classifiers with Application to HAR. Sensors 2022, 22, 8060.
. [CrossRef] [PubMed]

26. Mairittha, N.; Mairittha, T.; Inoue, S. On-Device Deep Learning Inference for Efficient Activity Data Collection. Sensors 2019, 19,
3434. [CrossRef] [PubMed]

27. Issa, M.E.; Helmi, A.M.; Al-Qaness, M.A.A.; Dahou, A.; Abd Elaziz, M.; Damaševičius, R. Human Activity Recognition Based on
Embedded Sensor Data Fusion for the Internet of Healthcare Things. Healthcare 2022, 10, 1084.
. [CrossRef] [PubMed]

28. Wang, X.; Shang, J. Human Activity Recognition Based on Two-Channel Residual-Channel Residual–GRU–ECA Module with
Two Types of Sensors. Electronics 2023, 12, 1622. [CrossRef]

29. Elkelany, A.; Ross, R.; Mckeever, S. WiFi-Based Human Activity Recognition Using Attention-Based BiLSTM. In Proceedings
of the Artificial Intelligence and Cognitive Science. AICS 2022, Munster, Ireland, 8–9 December 2022; Longo, L., O’Reilly,
R., Eds.; Communications in Computer and Information Science; Springer: Cham, Switzerland, 2023; Volume 1662, pp. 121–133.
[CrossRef]

30. Weiss, G.M.; Yoneda, K.; Hayajneh, T. Smartphone and Smartwatch-Based Biometrics Using Activities of Daily Living. IEEE
Access 2019, 7, 133190–133202. [CrossRef]

31. Alexan, A.; Alexan, A.; Oniga, Ş. Smart watch activity recognition using plot image analysis. In Proceedings of the 2022 IEEE 2nd
Conference on Information Technology and Data Science (CITDS), Debrecen, Hungary, 16–18 May 2022; pp. 1–6. [CrossRef]

32. Harden, S.W. ScottPlot Library for .NET Source Code. Available online: https://github.com/ScottPlot/ScottPlot (accessed on 1
February 2023).

33. Alexan, A. Deployed Web App. Currently Not Available Online Anymore, Was Exposed for Testing under the Form of Secured
Web API Application. Available online: https://mlprocessorwebapi.azure-api.net (accessed on 1 February 2023).

34. Harden, S.W. ScottPlot Library for .NET. Available online: https://scottplot.net/ (accessed on 1 February 2023).
35. Harden, S.W. ScottPlot Library for .NET NuGet Package. Available online: https://www.nuget.org/packages/ScottPlot/

(accessed on 1 February 2023).
36. NVIDIA. CUDA Toolkit. Available online: https://developer.nvidia.com/cuda-toolkit (accessed on 1 February 2023).
37. NVIDIA. NVIDIA cuDNN. Available online: https://developer.nvidia.com/cudnn (accessed on 1 February 2023).
38. Microsoft. ML.NET Model Builder GPU Support. Available online: https://marketplace.visualstudio.com/items?itemName=

MLNET.ModelBuilderGPU2022 (accessed on 1 February 2023).
39. Microsoft. ML.NET Model Builder. 2022. Available online: https://marketplace.visualstudio.com/items?itemName=MLNET.

ModelBuilder2022 (accessed on 1 February 2023).
40. Roeder, L. Netron Web App. Available online: https://netron.app/ (accessed on 1 February 2023).
41. Alexan, A. Source Code. Available online: https://bitbucket.org/alexandruAlexan/publicwisdmsmartwatchhar/src/master/

(accessed on 1 February 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/s22208060
http://www.ncbi.nlm.nih.gov/pubmed/36298408
http://dx.doi.org/10.3390/s19153434
http://www.ncbi.nlm.nih.gov/pubmed/31387314
http://dx.doi.org/10.3390/healthcare10061084
http://www.ncbi.nlm.nih.gov/pubmed/35742136
http://dx.doi.org/10.3390/electronics12071622
http://dx.doi.org/10.1007/978-3-031-26438-2_10
http://dx.doi.org/10.1109/ACCESS.2019.2940729
http://dx.doi.org/10.1109/CITDS54976.2022.9914230
https://github.com/ScottPlot/ScottPlot
https://mlprocessorwebapi.azure-api.net
https://scottplot.net/
https://www.nuget.org/packages/ScottPlot/
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cudnn
https://marketplace.visualstudio.com/items?itemName=MLNET.ModelBuilder GPU2022
https://marketplace.visualstudio.com/items?itemName=MLNET.ModelBuilder GPU2022
https://marketplace.visualstudio.com/items?itemName=MLNET.ModelBuilder2022
https://marketplace.visualstudio.com/items?itemName=MLNET.ModelBuilder2022
https://netron.app/
https://bitbucket.org/alexandruAlexan/publicwisdmsmartwatchhar/src/master/

	Introduction
	Related Work
	Proposed System
	Our Contributions
	WISDM Biometrics Dataset
	Data Preprocessing App: Movement Data Plot Images Generation
	Machine Learning Core Processor
	Machine Learning Training Process
	Training Time
	Local Activity Recognition
	The Trained Deep Neural Network (DNN)

	Web API Activity Recognition System
	The Web API Project
	The Web API Endpoints and OpenAPI Specification
	Real-Time Activity Recognition Process

	Real-Time Cloud Human Activity Recognition System

	Materials and Methods
	Results
	Scatter-Plot-Images-Based Recognition
	Population-Based Images Recognition
	Comparison of Results with Other Studies

	Conclusions
	References

