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Abstract: Currently, Unmanned Aerial Vehicles (UAVs) are considered in the development of various
applications in agriculture, which has led to the expansion of the agricultural UAV market. However,
Nano Aerial Vehicles (NAVs) are still underutilised in agriculture. NAVs are characterised by a
maximum wing length of 15 centimetres and a weight of fewer than 50 g. Due to their physical
characteristics, NAVs have the advantage of being able to approach and perform tasks with more
precision than conventional UAVs, making them suitable for precision agriculture. This work aims to
contribute to an open-source solution known as Nano Aerial Bee (NAB) to enable further research
and development on the use of NAVs in an agricultural context. The purpose of NAB is to mimic
and assist bees in the context of pollination. We designed this open-source solution by taking into
account the existing state-of-the-art solution and the requirements of pollination activities. This paper
presents the relevant background and work carried out in this area by analysing papers on the topic
of NAVs. The development of this prototype is rather complex given the interactions between the
different hardware components and the need to achieve autonomous flight capable of pollination. We
adequately describe and discuss these challenges in this work. Besides the open-source NAB solution,
we train three different versions of YOLO (YOLOv5, YOLOv7, and YOLOR) on an original dataset
(Flower Detection Dataset) containing 206 images of a group of eight flowers and a public dataset
(TensorFlow Flower Dataset), which must be annotated (TensorFlow Flower Detection Dataset). The
results of the models trained on the Flower Detection Dataset are shown to be satisfactory, with
YOLOv7 and YOLOR achieving the best performance, with 98% precision, 99% recall, and 98% F1
score. The performance of these models is evaluated using the TensorFlow Flower Detection Dataset
to test their robustness. The three YOLO models are also trained on the TensorFlow Flower Detection
Dataset to better understand the results. In this case, YOLOR is shown to obtain the most promising
results, with 84% precision, 80% recall, and 82% F1 score. The results obtained using the Flower
Detection Dataset are used for NAB guidance for the detection of the relative position in an image,
which defines the NAB execute command.

Keywords: precision agriculture; pollination; nano aerial vehicles; deep learning

1. Introduction

Agriculture plays a fundamental role in our society and is vital to global commercial
growth. From an agronomic point of view, pollination is an essential step in the production
process. It should be seen as another production factor, similar to fertilisation, irrigation, or
protection against frost. Pollination deficiency is often responsible for low yields and poor
fruit quality [1].

The Food and Agriculture Organisation of the United Nations estimates that 90% of
the world’s food is produced from 100 crop species, 71 of which are pollinated by bees.
The study of pollination is essential for maintaining biodiversity and attracts significant
economic interest because of the annual global monetary value of pollination (estimated at
hundreds of billions of euros) [1].
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Insects constitute the majority of pollinating animals, with honey bees (Apis mellifera L.)
being the principal pollinators of several crop species [2]. However, this species’ foraging
behaviour is distinctive because bees are sensitive to several factors. This behaviour is
closely related to the bee colony and the environment. Many factors can impact foraging
activity and they are divided into two main groups: in-colony and out-colony factors. The
first group (in-colony factors) refers to factors such as the queen’s presence, the queen’s case
(virgin or mated), infection of foragers with diseases or parasites, and the genotype of the
bee strains, among others. Regarding the out-colony factors, bees are sensitive to reward
volume, environmental factors (temperature and humidity), and insecticides, among others.
The presence of natural enemies (e.g., pollen beetles), predators (e.g., hornets), and other
bee communities also influences bee behaviour [3].

Honey bees are sensitive to various factors so there is a need to complement natural
pollination. The lack of pollination is currently addressed with alternatives such as artificial
pollination and self-fertile plants. Artificial pollination involves a tractor with a tiller
spraying pollen (often imported). However, the disadvantages of this technique are the
significant waste of pollen and the difficulty of controlling imported pollen. The use of self-
fertile plants drastically limits the supply, reducing the choice of varieties with a capacity
for self-pollination. Nano Aerial Vehicle (NAV) pollination collects and distributes pollen
from the site and is more advantageous than the alternatives.

Currently, solutions based on robotics, automation, and the Internet of Things (IoT)
are used to improve and optimise tasks in agriculture and forestry. Unmanned Aerial
Vehicles (UAVs) are often applied to diverse agriculture activities. Several classifications
are used based on size, weight, speed, and altitude, among others. The class selected
classifies UAVs according to their weight and wingspan [4]. The chosen class must be able
to balance the weight that can be placed onboard and the size of the propellers (which
cause the movement of pollen). The NAV class is the most suitable for the intended
pollination functions, with a weight of 3 to 50 g and a wingspan of 2.5 to 15 centimetres.
However, NAVs are still underutilised in this context, although they can perform tasks
more precisely than conventional UAVs. NAVs offer several advantages over traditional
UAVs in agriculture, the main ones being:

• NAVs are significantly smaller and lighter than traditional UAVs, reducing the risk of
injury to people, animals, and property in the case of an accident or other malfunction.
These characteristics make them more manoeuvrable and they can operate in tight
spaces and near crops.

• NAVs can fly closer to crops, which allows for more precise guidance and application
such as fertiliser or pest control chemicals.

• NAVs are typically quieter and cause fewer changes in their surroundings, which can
be important in certain applications such as tree pollination.

However, there are some crucial limitations of NAV systems, particularly when it comes
to their use in agriculture and other real-world applications, the main constraints being:

• NAVs have technological limitations such as limited flight time, limited payload
capacity, and control difficulties;

• NAVs can be significantly affected by weather conditions such as wind, rain, and
snow, making it difficult for them to fly and navigate.

These limitations have caught the attention of researchers and engineers, who are
actively working to address them through advances in technology and innovation.

Recently, there have been some efforts to explore the potential use of NAVs as robotic
bees [5–7]. The challenge remains open because of the restrictions on size and weight.

An NAB should be able to detect and pollinate flowers, i.e., it should be equipped
to pollinate the flowers. Pollination using a NAV can be a promising option because it
increases pollination efficiency and, consequently, the yields of some crops if executed cor-
rectly. The efficiency and robustness of an NAB should be tested by considering pollination
in different environments.
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Deep learning (DL) is a subfield of machine learning that has been increasingly applied
in agriculture to address various challenges. YOLO (You Only Look Once) is a convolutional
neural network (CNN)-based object detection algorithm. YOLO divides an input image
into a grid and applies a CNN to each grid cell to predict the object bounding boxes and
class probabilities. YOLO uses a single-pass approach to predict both the object class
probabilities and bounding box coordinates, making it more efficient and accurate for object
detection tasks compared to other models [8]. YOLO’s ability to detect multiple objects
in a single image may be an advantage over other models for highly complex data such
as images with many objects or intricate patterns. YOLO uses a grid-based approach to
detect objects within the image at different scales and locations. In contrast, Support Vector
Machines (SVM)-based solutions and other convolutional neural network (CNN)-based
approaches may be better suited for tasks that require more nuanced feature extraction
and pattern recognition. It should be noted that SVM cannot extract/learn features of a
dataset; therefore, the design of a feature extraction system requires more human effort.
Additionally, YOLO is known for its fast and efficient processing of object detection tasks,
as it can detect objects in real time on a CPU or GPU. However, if the size of the dataset is
relatively small, SVM or Long Short-Term Memory (LSTM) may be better suited for the
task, as they tend to perform better than CNN or YOLO on smaller datasets. SVM and
LSTM are less prone to overfitting on small datasets, whereas CNN and YOLO require
larger datasets to learn complex features and avoid overfitting. Although the dataset of
this work is small, the intention is to increase its size by adding different flower varieties
and growing stages to the hundreds of thousands of images to increase the YOLO accuracy
and drone swarm efficiency in the pollination work.

YOLOv5, YOLOv7, and YOLOR share many standard features in their network struc-
tures. Here are the fundamental similarities of the network structures of these three models:

• Utilisation of CNN architecture, which is well suited to image analysis tasks such as
object detection;

• Division of the network into three parts. The backbone network extracts the features
from the input image, the neck network connects the backbone to the head, and the
head network generates the final object detections;

• Multi-scale processing, i.e., processing the input image at multiple scales, helps to
improve performance by considering objects of different sizes;

• The head network generates the object detections by outputting the bounding boxes,
class scores, and confidence scores for each object in the image;

• Upsampling layers in the head network increases the spatial resolution of the output,
which helps to improve the accuracy of the object detections;

• Multi-task loss function that considers both the localisation and classification tasks
involved in the object detections.

Although they share some similarities, some key differences between these models set
them apart. YOLOv5 has a hybrid architecture that combines the strengths of YOLO with
those of feature pyramids. It includes several innovations, such as anchor-free detection
and generalised anchor tuning, that help to improve its performance. However, YOLOv5
also has a more significant number of parameters. YOLOv7 is a lighter and faster version of
YOLO that is designed to be more computationally efficient. This version has the smallest
parameters and uses a more optimised architecture to reduce the required computation [9].
YOLOR uses a recurrent neural network (RNN) structure that allows the model to process
multiple frames simultaneously and make predictions over time. The main difference
between YOLOR and the other YOLO models is the use of residual connections, which
address the problem of vanishing gradients and improve the overall performance [10].

In the literature, numerous works can be found that use YOLO models to detect objects
in various [11,12] scenarios. Currently, works are being developed that integrate YOLO
neural networks into UAVs [13,14]. This model has been applied to various problems in
agriculture to address challenges such as crop weeds [15], yield prediction [16], and pest
control [17], among others.
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In this work, DL is essential for detecting flowers. YOLO networks are widely used
for object detection due to their fast and efficient performance. The choice of YOLOv5,
YOLOv7, and YOLOR as the models for detecting flowers is likely due to their strengths
and capabilities as object detection algorithms.

This work aims to contribute to an open-source solution known as the Nano Aerial
Bee (NAB) to enable further research and development on the use NAVs in an agricultural
context. The NAB is a new open-source NAV with an autonomous flight used for tree
pollination to assist bees. The main contributions of this work are:

• Discussion of the related works on the topic of NAVs;
• Analysis and development of a schematic and PCB of the intended NAB, an open-

source solution to enable more research and development on the use of NAVs in an
agricultural context;

• Use of the Flower Detection Dataset (https://doi.org/10.5281/zenodo.7560779, ac-
cessed on 27 March 2023), which is an original and publicly available dataset contain-
ing 206 images with a resolution of 320 × 240;

• Annotation (https://doi.org/10.5281/zenodo.7768292, accessed on 27 March 2023)
of the publicly available TensorFlow Flower Dataset (https://www.tensorflow.org/
datasets/catalog/tf_flowers, accessed on 27 March 2023);

• Evaluation results using three of the most recent versions of YOLO;
• Integration of the trained models into a developed script, which defines the command

to be executed by the NAB based on the position of the closer detection.

This work is innovative in terms of the existing literature, as it develops custom
hardware for the intended function and documents the reasons for the choice of each
component. Furthermore, a public dataset for flower identification is generated and tested
using three of the most recent versions of YOLO.

The development of the NAB allows crops to be pollinated continuously without
being affected by environmental factors, unlike bees. The aim is not to replace bees but
to help them pollinate. Artificial pollination makes the natural process more efficient and
constant [18–20]. The use of NAVs to complement natural processes could revolutionise
agriculture. The market for agricultural NAVs is expected to continue to grow with
other applications.

Besides this Introduction, the paper is composed of four distinct sections:

• Section 2 focuses on the literature review;
• Section 3 defines the component selection, schematic realisation, and Printed Circuit

Board (PCB) design, as well as the procedures for data collection, dataset generation,
and model training;

• Section 4 presents an evaluation of the results obtained using the trained models. We
present the developed NAB control software for flower pollination through the trained
models using the developed dataset;

• Section 5 presents the most relevant conclusions of this paper.

2. Related Works

This section is divided into two areas. Firstly, some robotic solutions for pollination
are presented. Secondly, the existing works in the literature on NAVs are discussed.

2.1. Robotic Solutions for Pollination

Using robotics for pollination has been an active area of research in recent years.
Researchers have explored various types of robotic systems to pollinate crops in a variety
of scenarios. To be able to detect the flowers to perform pollination, automated solutions
are usually equipped with a camera. These studies illustrate the potential of using deep
learning-based object detection algorithms in precision pollination:

• A convolutional neural network (CNN) for the highly accurate real-time detection
of kiwi flowers in an orchard environment using a camera on a UAV. The authors

https://doi.org/10.5281/zenodo.7560779
https://doi.org/10.5281/zenodo.7768292
https://www.tensorflow.org/datasets/catalog/tf_flowers
https://www.tensorflow.org/datasets/catalog/tf_flowers
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trained a CNN on a dataset of kiwi fruit flowers. The proposed system achieved high
accuracy in the real-time detection of kiwi fruit flowers, even in challenging lighting
conditions [21];

• An R-CNN mask for identifying flowers on apple trees for proper pollination. The
authors trained an R-CNN mask on a dataset of images of the flowers of apple trees.
The proposed model detected flowers in images taken by a UAV [22];

• YOLOv5 and Euclidean distance algorithm for identifying the distribution of kiwi
fruit flowers in an orchard. The authors developed a multi-class detection algorithm
based on YOLOv5 to detect kiwi fruit flowers in images taken by a UAV and then
used the Euclidean distance algorithm to identify the distribution of the flowers [23];

• Autonomous visual navigation for a flower-pollinating UAV. The system uses a cam-
era mounted on a UAV to capture images of the environment and then uses image
processing and machine learning algorithms to detect and locate flowers. The system
also uses information from the camera to control the UAV’s movement and maintain a
constant pause over the flowers as it pollinates [24];

• A simulation model was used to simulate the movement of multiple UAVs in a facility
agriculture environment and their interactions with plants. The authors used the
simulation model to test different compensatory pollination strategies and evaluate
their effectiveness. The results showed that the proposed simulation model could
effectively simulate the behaviour of multiple UAVs for compensatory pollination in
facility farming [25].

2.2. Nano Aerial Vehicles

Careful examination of the obtained articles is a crucial step in the development of
the NAB. This analysis aims to verify the market’s existence and identify the optimal
solutions for developing a NAV with autonomous flight. Table 1 summarises the relevant
information in each article, which is discussed next.

Table 1. Aggregation of research results.

Reference Communication Localisation Obstacle
Avoidance

Applications

[26]
[27] X X X X
[28] X X X X
[29] X X
[30] X X X X
[31] X X X X
[32] X
[33] X

The development of NAVs is a growing area. An examination of the state-of-the-
art literature reveals that the articles developed in this area used the Crazyflie 2.0 (https:
//www.bitcraze.io/products/old-products/crazyflie-2-0/, accessed on 27 March 2023),
a commercial open-source NAV weighing 27 g. These works did not create a NAV from
scratch. Instead, depending on the intended application, components were added to
Crazyflie 2.0.

2.2.1. Limitations

NAVs must have a weight of 3 to 50 g and a wingspan of 2.5 to 15 centimetres. This is
due to the weight and size restrictions imposed. In the publications reviewed, the following
limitations are highlighted:

• Poor flight endurance [26];
• Highly susceptible to aerodynamic effects (air currents, drift, and turbulence) [26];
• Asymmetries and inconsistencies, which can affect the performance [26];

https://www.bitcraze.io/products/old-products/crazyflie-2-0/
https://www.bitcraze.io/products/old-products/crazyflie-2-0/
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• Fragile and safety-critical systems [29].

The reduced flight time is due to the battery’s weight and size, which is how most
electronics are powered. To overcome this limitation, the article “Self-Sustainability in Nano
Unmanned Aerial Vehicles: A Blimp Case Study” [32] developed a nano blimp prototype
with a 55 g payload. A helium balloon and a solar panel were added to the Crazyflie
2.0, allowing it to have a flight time of up to 100 h under normal lighting conditions. On
the other hand, in the paper “Tensile Web Construction and Perching with Nano Aerial
Vehicles” [26], a method was implemented to mitigate flight time limitations by building a
structure within the environment where the NAV can perch, thereby conserving energy.

NAVs are fragile safety-critical systems that can overcome these barriers using Arti-
ficial Intelligence (AI) through neural networks. Real and simulated data are combined
in the developed algorithms. This approach requires the addition of a monocular [29]
or pulp-shield camera (which has an ultra-low-power grey-scale QVGA camera) [33] to
a NAV.

Determining the hardware is a crucial step in NAV development. The selection must
take into account the intended functionalities. The importance of the selection is due to the
weight restrictions and all the related limitations.

2.2.2. Communication

The Crazyflie 2.0 platform has an integrated nRF51822 component that enables com-
munication with a multiprotocol 2.4 GHz radio. The latest generation of this platform does
not require any additional components for the NAV to establish communication.

For radio communication, enhancements can be added with the installation of a
Crazyradio PA [28], which has a power amplifier of 20 dBm, thereby increasing the signal
range (https://www.bitcraze.io/products/crazyradio-pa/, accessed on 27 March 2023).

2.2.3. Localisation

Most articles define the location of the NAV using a Loco Positioning System (LPS)
(https://www.bitcraze.io/documentation/system/positioning/loco-positioning-system/,
accessed on 27 March 2023). This positioning system works together with the Loco Posi-
tioning Deck (LPD) and Loco Positioning Nodes (LPNs), similar to a Global Positioning
System (GPS). The LPD functions as a tag in an LPS and measures distances to anchors
(reference points). The LPS measures the distance by sending short high-frequency radio
waves. The system estimates the absolute position of the Crazyflie onboard using the
distances to the reference points. Thus, there is no need for an external computer for
position estimation [27,30,31].

The location of the NAV can be determined using an approach based on Simultaneous
Location and Mapping (SLAM). By placing a camera on the NAV, it is possible to collect
images of the environment. This information is transmitted to the ground station and used
by SLAM to map the surrounding environment. The Robotic Operating System (ROS) is a
framework for developing robotics algorithms. The computer vision algorithms required
for SLAM are developed using the ROS tool [28].

Both approaches provide satisfactory results. However, when using SLAM, it is not
necessary to place anchors in locations for the correct functioning of the system.

2.2.4. Obstacle Avoidance

The literature mentions different approaches to avoiding obstacles. The method
selected may depend on how the position of the NAV is determined.

Some publications that utilise LPS add an optical flow platform (https://www.bitcraze.
io/products/flow-deck-v2/, accessed on 27 March 2023). Flow Deck v2 allows the creation
of a 3D flying robot that can be pre-programmed to fly distances in any direction. Flow
Deck v2 has two components: the VL53L1X sensor and the PMW3901. The VL53L1X
sensor measures ground clearance with high accuracy. The PMW3901 optical flow sensor

https://www.bitcraze.io/products/crazyradio-pa/
https://www.bitcraze.io/documentation/system/positioning/loco-positioning-system/
https://www.bitcraze.io/products/flow-deck-v2/
https://www.bitcraze.io/products/flow-deck-v2/
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measures movements about the ground. These sensors acquire relevant information for
obstacle avoidance [30,31].

Obstacle avoidance can be achieved using the localisation provided by SLAM. This
approach maps the environment around the NAV, allowing the determination of the
positions of the surrounding obstacles and, consequently, leads to obstacle avoidance [28].

AI approaches require the addition of a monocular [29] or pulp-shield camera (which
has an ultra-low-power grey-scale QVGA camera) [33] to the NAV. This approach joins
real data (to learn about system dynamics) and simulated data (to learn a generalisable
perception system), allowing the NAV to avoid collisions.

2.2.5. Applications

Among the articles on this topic, it is possible to find NAVs developed for gas [27,30,31]
and fire detection [28]. The information found in these articles can help in the building
of NAVs with identical characteristics and different objectives. NAVs developed for gas
detection can be used in agriculture to determine the carbon footprint by measuring
CO2. Other articles focus on the improvement and evolution of NAVs concerning the
achievement of autonomous navigation.

3. Proposed Solution

The NAB is a project with two distinct parts, hardware and software, as shown in
Figure 1. At the hardware level, we defined the schematic and designed the PCB. As for the
software, we trained a DLNN for flower identification and developed an algorithm capable
of identifying the command to be executed by the NAB based on the position of the flower
detected in the frame.

Figure 1. Categories of developed works—NAB.

3.1. Hardware

As seen in the state-of-the-art literature, projects developed on the topic of Nano
Aerial Vehicles (NAVs) use the Crazyflie 2.0, which was developed by Bitcraze. However,
Bitcraze has discontinued the Crazyflie 2.0 and replaced it with a new version known as
the Crazyflie 2.1 (https://www.bitcraze.io/products/crazyflie-2-1/, accessed on 27 March
2023). This new version has a new radio and Inertial Measurement Unit (IMU), support for
dual antennas (onboard antenna and external antenna), and a new radio power amplifier
that improves the quality of the radio link. To improve the flight performance of the
Crazyflie 2.1, the IMU has been changed to a combination of BMI088 and BMP388 sensors.

https://www.bitcraze.io/products/crazyflie-2-1/
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The Crazyflie 2.1 is a 27 g commercial NAV that is limited to a 15 g payload. The NAV
has a LiPo battery that provides power for up to 7 min of continuous flight and charges for
40 min. The Crazyflie 2.1 has four DC motors and plastic propellers to attach the motors
to the NAV. The two most essential components of the Crazyflie are the microprocessors,
the STM32F4 and the nRF51822. The main microcontroller (STM32F4) is a 32-bit ARM
Cortex-M4 embedded processor that handles Crazyflie’s main firmware with all low-level
and high-level controls. The nRF51822 handles all radio communications and power
management and communicates with the ground station. The IMU described above
is onboard the NAV. Sensors provide measurements to stabilise the NAV’s flight. The
expansion ports directly access buses such as UART, I2C, and SPI.

Expansion decks that are designed for different purposes can be added to the Crazyflie.
One of these decks is the AI Deck 1.1 (https://www.bitcraze.io/products/ai-deck/, ac-
cessed on 27 March 2023), which includes a GAP8, an ultra-low-power monochrome
camera, and a NINA-W106 as its core components. Together, these characteristics form
a platform that enables the implementation of low-power AI from the edge of a drone.
The AI Deck 1.1 extends the computational capabilities and allows for complex artificial
intelligence-based workloads to run onboard, possibly achieving fully autonomous navi-
gation capabilities. The NINA-W106 adds Wi-Fi connectivity, which could potentially be
used for image transmission and manipulation control.

3.1.1. Schematic

To develop the schematic for the NAB, we began by studying the schematic of the
Crazyflie 2.1 and its component functions. Next, we checked the hardware available on the
market. Since most elements were out of stock, we had to search for alternative materials
with the same characteristics. After performing the aforementioned steps, we designed the
schematic for the NAB using the selected elements.

We divided the developed schematic into blocks for easier understanding. Figure 2
shows a high-level diagram of the NAB that demonstrates the fundamental blocks of the
schematic and the communication between them. Since we used Crazyflie 2.1 as a starting
point, this diagram represents the architecture of the schematic for the Crazyflie 2.1.

Figure 2. High-level diagram of the NAB.

https://www.bitcraze.io/products/ai-deck/


Appl. Sci. 2023, 13, 4265 9 of 26

To develop the schematic, we utilised EasyEDA (https://easyeda.com/, accessed on
27 March 2023) software with the existing library components because it is a free solution
with online collaborative tools. EasyEDA enables the creation of original schematics and
PCBs and displays the 3D visualisation of the designed boards.

Although we used Crazyflie 2.1 as the basis for developing the NAB, we made several
significant changes. Table 2 shows the components of both NAVs for all blocks.

Table 2. Components in each block of Crazyflie 2.1 and NAB.

Block Crazyflie 2.1 NAB

Microcontroller STM32F405RG RP2040

Communication NRF51822 NINA-W106
RFX2411N

Sensorial module BMI088 BMI088
BMP388 VL53L1X

Motors 4 × DC motors 5 × DC motors

USB micro USB micro USB

Flash Memory 24AA64FT-E/OT W25Q128JVSIQ TR

Power supply BQ24075 BQ24075
LP29075 LDK130M33R

NCP702SN30
SIP32431

Below, we explain each block and the changes we made. To achieve this, we compared
the schematic of the Crazyflie 2.1 with that of the developed NAB.

Microcontroller

The microcontroller is the most important component in the architecture since it is
impossible to control a vehicle without it. Changing this component can lead to more
efficient and effective control of the NAB. We decided to replace the STM32F405RG with
the RP2040.

The Raspberry Pi RP2040 is a microcontroller designed to achieve high performance.
The distinguishing features of this microcontroller are its scalable on-chip memory, dual-
core processor, and increased peripheral set. The RP2040 is a stateless device that supports
cached execute-in-place commands from external QSPI memory. This allows it to choose
the appropriate flash memory. The manufacturer of the RP2040 uses a 40 nm process node,
providing high performance, low dynamic power consumption, and low leakage (https:
//datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf, accessed on 27 March 2023).

In Table 3, we highlight some of the features of the RP2040 and STM32F405RG mi-
crocontrollers, which we used to perform a thorough comparison. The characteristics that
show that the RP2040 has an advantage are highlighted in purple. On the other hand, the
features that show that the STM32F405RG has an advantage are highlighted in green.

The RP2040 is dual-core, allowing it to run processes in parallel and making its
performance significantly better. On the other hand, the main disadvantage of the RP2040
is its ARM Cortex-M0+ because the ARM Cortex-M4 in the STM32F405RG is faster and
more energy-efficient. By analysing the Crazyflie 2.1 schematic, we found that the RP2040
had the required number of pins to connect the components to the microcontroller. The fact
that the RP2040 had fewer pins did not invalidate its utilisation in the schematic.

The determining characteristic for the choice was related to the dimensions of the
components. Since the goal was to build a NAV, the board dimensions were limited;
therefore, we selected the RP2040.

https://easyeda.com/
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf
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Table 3. RP2040 and STM32F405RG microcontroller characteristics.

Features RP2040 STM32F405RG
Cores Dual-core Single-core
Core architecture 32-bit ARM Cortex-M0+ 32-bit ARM Cortex-M4
CPU clock Flexible clock up to 133 MHz 168 MHz
RAM size 264 KByte SRAM up to 192 + 4 Kbytes SRAM
Flash size up to 16 MByte external flash up to 1 MByte external flash
MCU power voltage 3.3 VDC 3.3 VDC
GPIO 30 51
UART 2 2
I2C 2 3
SPI 2 3
Dimensions 7.75 × 7.75 mm 12.7 × 12.7 mm

The RP2040 is a recent purpose-built device that provides high performance and low
dynamic power consumption, which are essential features for a NAV. The RP2040 dual-core
component allows the running of parallel tasks and achieves significantly better perfor-
mance than the single-core STM32F405RG. Given the small dimensions of the NAV, we
selected the RP2040, as it was only 7.75 × 7.75 mm, whereas the STM32F405RG measured
12.7 × 12.7 mm.

Communication

Our goal was to develop a NAV capable of moving and pollinating autonomously.
Communication is central in an autonomous vehicle so information about the surroundings
is analysed and the NAV reacts in time.

The Crazyflie 2.1 uses the NRF51822 and RFX2411N as the core components of the
communication module. This hardware provides low-latency/long-range radio communi-
cation and Low-Energy (LE) Bluetooth. However, as these components were not available
due to the pandemic, it was necessary to find another way to communicate wirelessly.

The AI Deck 1.1 uses the NINA-W102 component to communicate via Wi-Fi. This
component allows communication through various protocols. The only difference between
the NINA-W102 and the NINA-W106 is the number of pins available. Since the NINA-
W106 was the only one in stock, we chose this component.

We chose to incorporate the NINA-W106 into the schematic. This device has the
following advantages: the ability to use different communication protocols and the fact
that it does not require additional components to ensure operation.

The NINA-W106 is a standalone multi-radio MCU module consisting of a radio for
wireless communication, an internal antenna, and a microcontroller. The radio supports
Wi-Fi and Bluetooth communications. The NINA-W106 includes several components,
making it a very compact standalone multi-radio module with dimensions of 10.0 × 14.0 ×
2.2 mm (https://content.u-blox.com/sites/default/files/NINA-W10_DataSheet_UBX-17
065507.pdf, accessed on 27 March 2023).

The purpose of the NAB is to pollinate flowers so flower detection is essential. By
adding the NINA-W106, a user can stream the images collected by the NAB over Wi-Fi and
run the detection and control code off-board. The NINA-W106 can use the same communi-
cation protocol as the Crazyflie 2.1 components, without the need for additional elements.

Sensorial Module

The sensor module consists of an IMU and a distance sensor. The purpose of this
module is to help in the navigation and control of the NAB.

The Crazyflie 2.1 has an IMU consisting of a gyroscope, accelerometer (BMI088), and
pressure sensor (BMP388). The BMP388 enables accurate altitude tracking. Light Detection
and Ranging (LiDAR) sensors can perform the pressure sensor function. We opted to use
the VL53L1X (https://www.st.com/resource/en/datasheet/vl53l1x.pdf, accessed on 27

https://content.u-blox.com/sites/default/files/NINA-W10_DataSheet_UBX-17065507.pdf
https://content.u-blox.com/sites/default/files/NINA-W10_DataSheet_UBX-17065507.pdf
https://www.st.com/resource/en/datasheet/vl53l1x.pdf
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March 2023) and BMI088 (https://download.mikroe.com/documents/datasheets/BMI088
_Datasheet.pdf, accessed on 27 March 2023).

The BMI088 is an IMU that combines a gyroscope and an accelerometer to detect
movements and rotations. The VL53L1X is equipped with a Time-of-Flight (ToF) laser-
ranging sensor that can accurately measure distances of up to 4 m and has a fast-ranging
frequency of up to 50 Hz, regardless of the target’s colour and reflectance. This component
is often used in drones to assist with flight.

By adding the VL53L1X component, we have upgraded the IMU module to a sensory
module. In addition to the features of an IMU, with the VL53L1X, it is possible to measure
the relative distance to the ground.

Motors

The schematic developed in the motor block maintained the structure of the schematic
of the Crazyflie 2.1. We chose to add a fifth motor with a vertical orientation. The aim
was to directly allow forward movement without modifying the roll angle. Managing the
direction of the NAV for flower pollination became more straightforward due to the fifth
motor. The addition of the fifth motor resulted in enormous advantages for NAB control.
As described in Section 4, after positioning the flower in the centre of the image, the NAB
approached it to pollinate. To achieve this, it only needed to activate the fifth motor.

Flash Memory

Flash memories are non-volatile memories that store information without an active
power source and have several different characteristics. The 24AA64FT-E/OT flash mem-
ory (https://ww1.microchip.com/downloads/en/DeviceDoc/21189T.pdf, accessed on 27
March 2023) used in the Crazyflie 2.1 schematic was unavailable. Therefore, we chose to
use the W25Q128JVSIQ TR (https://www.winbond.com/resource-files/w25q128jv%20
revf%2003272018%20plus.pdf, accessed on 27 March 2023). Table 4 lists the various features
of the memories mentioned above. The selected flash memory had more advantages and
was appropriate for the system.

Table 4. W25Q128JVSIQ TR (https://www.winbond.com/resource-files/w25q128jv%20revf%200327
2018%20plus.pdf, accessed on 27 March 2023) and 24AA64FT-E/OT (https://ww1.microchip.com/
downloads/en/DeviceDoc/21189T.pdf, accessed on 27 March 2023) flash memories characteristics.

Features W25Q128JVSIQ TR 24AA64FT-E/OT

Clock frequency (max) 133 MHz 400 kHz
Memory size 128 Mb (16 M × 8) 64 Kb (8 K × 8)
Write-cycle time 3 ms 5 ms
Access time (max) 6 ns 3500 ns
Supply voltage 2.7 V to 3.6 V 1.7 V to 5.5 V
Memory interface QSPI, QPI, DTR I2C

The flash memory selected for the NAB had better features such as a lower write-
cycle time and maximum access time. In addition, it could connect to the RP2040 via the
QSPI interface.

Power supply

The power supply block contains components that regulate the voltage received via
the USB port or the battery powering the NAB.

Eliminating the components of the communication block of the Crazyflie 2.1 schematic
reduced the number of integrators required in the power supply block. The function of
the NCP702SN30 is to regulate the voltage to the nRF51822. Therefore, we removed that
component. We also eliminated the SIP32431 element, as the output signal powers some
optional shields on the Crazyflie 2.1. We did not need this element in the NAB. The NAB
schematic maintained the BQ24075 (https://www.ti.com/lit/ds/slusau3b/slusau3b.pdf?

https://download.mikroe.com/documents/datasheets/BMI088_Datasheet.pdf
https://download.mikroe.com/documents/datasheets/BMI088_Datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/21189T.pdf
https://www.winbond.com/resource-files/w25q128jv%20revf%2003272018%20plus.pdf
https://www.winbond.com/resource-files/w25q128jv%20revf%2003272018%20plus.pdf
https://www.winbond.com/resource-files/w25q128jv%20revf%2003272018%20plus.pdf
https://www.winbond.com/resource-files/w25q128jv%20revf%2003272018%20plus.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/21189T.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/21189T.pdf
https://www.ti.com/lit/ds/slusau3b/slusau3b.pdf?ts=1656253857759&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ds/slusau3b/slusau3b.pdf?ts=1656253857759&ref_url=https%253A%252F%252Fwww.google.com%252F
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ts=1656253857759&ref_url=https%253A%252F%252Fwww.google.com%252F, accessed on
27 March 2023) and LP2985 (https://www.ti.com/lit/ds/symlink/lp2985a.pdf?ts=165628
2441972&ref_url=https%253A%252F%252Fwww.google.com%252F, accessed on 27 March
2023) components.

The BQ24075 is the most critical component of this power pack, as it regulates the
system power supply (USB or battery). The device powers the system while independently
charging the battery. The power input source for charging the battery is a USB port,
connected via a VUSB signal. Furthermore, the nRF51822 controls the BQ24075 in the
Crazyflie 2.1 schematic.

The LP2985 is a low-dropout (LDO) regulator with an output current capability of
150 mA continuous load current. This component is available in many voltages. Since
3.3 V powers the system, the LP2985A-33DBVR circuit was chosen, which can regulate the
voltage up to 3.3 V. The VCC signal is 3.3 V and supplies the integrated microcontroller
and communication blocks. The VCCA signal is the filtered VCC signal, which results in
analogue power that is only used by the sensorial module block.

Table 5 shows the minimum and maximum consumption of the components supplied
by the LP2985A-33DBVR regulator, highlighted in green. By analysing the consumption, it
was found that the LP2985A-33DBVR regulator was unsuitable, given that the NINA-W106
consumes 627 mW and the LP2985A-33DBVR provides a maximum of 495 mW.

Table 5. Component consumption and power supplied by the LP2985A-33DBVR regulator.

Component V Imin Pmin Imax Pmax

RP2040 3.3 V 0.18 mA 0.594 mW 35.5 mA 117.15 mW
NINA-W106 3.3 V 0.005 mA 0.0165 mW 190 mA 627 mW

BMI088 accelerometer 3.3 V 0.003 mA 0.0099 mW 0.150 mA 0.495 mW
BMI088 gyroscope 3.3 V 0.025 mA 0.0825 mW 5 mA 16.5 mW

VL53L1X 3.3 V 0.003 mA 0.0099 mW 18 mA 59.4 mW
LP2985A-33DBVR 3.3 V 1 mA 3.3 mW 150 mA 495 mW

The total consumption of the components powered by the regulator is 820.545 mW so
we need a regulator that provides power equal to or greater than 820.545 mW. A higher
current is required, as the voltage must be 3.3 V. The LDK130M33R (https://www.st.
com/resource/en/datasheet/ldk130.pdf, accessed on 27 March 2023) meets all the criteria
(provides a maximum of 990 mW, which is higher than 820 mW) and is very similar to
the LP2985A-33DBVR. Table 6 shows the values of the new voltage regulator, which are
highlighted in green.

Table 6. Component consumption and power supplied by the LDK130M33R regulator.

Component V Imin Pmin Imax Pmax

RP2040 3.3 V 0.18 mA 0.594 mW 35.5 mA 117.15 mW
NINA-W106 3.3 V 0.005 mA 0.0165 mW 190 mA 627 mW

BMI088 accelerometer 3.3 V 0.003 mA 0.0099 mW 0.150 mA 0.495 mW
BMI088 gyroscope 3.3 V 0.025 mA 0.0825 mW 5 mA 16.5 mW

VL53L1X 3.3 V 0.003 mA 0.0099 mW 18 mA 59.4 mW
LDK130M33R 3.3 V - - 300 mA 990 mW

Table 7 shows the consumption of all the components used in the NAB. In this case, the
LiPo 25 mAh battery is the system’s power supply and its values are highlighted in green;
the values of the LDK130M33R regulator are shown for the consumer. For the values that re-
fer to the battery (https://store.bitcraze.io/collections/spare-parts/products/250mah-lipo-
battery-including-500ma-usb-charger, accessed on 27 March 2023) and motors (https://
www.bitcraze.io/documentation/hardware/motor_7mm/motor_7mm-datasheet.pdf, ac-
cessed on 27 March 2023), we used the same components as the Crazyflie 2.1. The total

https://www.ti.com/lit/ds/slusau3b/slusau3b.pdf?ts=1656253857759&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ds/slusau3b/slusau3b.pdf?ts=1656253857759&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ds/symlink/lp2985a.pdf?ts=1656282441972&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ds/symlink/lp2985a.pdf?ts=1656282441972&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.st.com/resource/en/datasheet/ldk130.pdf
https://www.st.com/resource/en/datasheet/ldk130.pdf
https://store.bitcraze.io/collections/spare-parts/products/250mah-lipo-battery-including-500ma-usb-charger
https://store.bitcraze.io/collections/spare-parts/products/250mah-lipo-battery-including-500ma-usb-charger
https://www.bitcraze.io/documentation/hardware/motor_7mm/motor_7mm-datasheet.pdf
https://www.bitcraze.io/documentation/hardware/motor_7mm/motor_7mm-datasheet.pdf
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maximum consumption of the system was calculated by summing the maximum consump-
tion of all the elements listed in Table 7. Note that the NAB uses five motors so to calculate
the total consumption, we multiplied the motor consumption by five. The value of the total
maximum consumption of the designed NAB is 21.919 W.

Table 7. Component consumption and power supplied by the LiPo battery.

Component V Imin Pmin Imax Pmax

RP2040 3.3 V 0.18 mA 0.594 mW 35.5 mA 117.15 mW
NINA-W106 3.3 V 0.005 mA 0.0165 mW 190 mA 627 mW

BMI088 accelerometer 3.3 V 0.003 mA 0.0099 mW 0.150 mA 0.495 mW
BMI088 gyroscope 3.3 V 0.025 mA 0.0825 mW 5 mA 16.5 mW

VL53L1X 3.3 V 0.003 mA 0.0099 mW 18 mA 59.4 mW
LDK130M33R 0.1 V - - 100 mA 10 mW

BQ24075 3.7 V 0.0043 mA 0.0159 mW 1.5 mA 5.55 mW
DC motor 4.2 V - - 1000 mA 4200 mW

W25Q128JV 3.3 V 0.001 mA 0.0033 mW 25 mA 82.5 mW
LiPo battery 3.7 V - - 3750 mA 13,875 mW

The developed schematic is similar to Crazyflie 2.1 schematic. We eliminated the
NCP702SN30, SIP32431, and LP29075 components and added the LDK130M33R regulator,
thereby decreasing the number of connections and elements on the NAB board.

This block underwent many changes that reduced the number of components and
connections, which was its most significant advantage, given the dimensions of a NAV.
The changes were made due to the power consumed by the introduced components. The
operation of this block is identical in both NAVs.

3.1.2. Printed Circuit Board

For the design of a PCB for a NAB, it is crucial to perform the following steps to
minimise the length of the tracks:

• Determine the PCB structure;
• Study and place the components and define the PCB layout;
• Analyse and make connections between components.

After defining the NAB schematic, we began work on the PCB design. The shape and
dimensions of the PCB are similar to those of the Crazyflie 2.1 to ensure aerodynamics. The
board consists of a 30 × 30 mm square with some arms at each vertex of 20 × 7 mm. As
with the AI Deck 1.1, we added a small platform for the NINA-W106 (12.7 × 8 mm).

Board mapping was analysed to minimise track length. In particular, the following
constraints in terms of the level of orientation and/or the position of each element on the
board were considered:

• Since the RP2040 is connected to the highest number of components, the microcon-
troller should be in the centre of the board. Additionally, it is crucial to avoid placing
any elements that could interfere with vias in the opposite layer.

• The voltage decoupling capacitors must be placed close to the RP2040 power supply
pins to reduce noise.

• The NINA-W106 must be in the top layer, given the size and weight of the component.
• The micro USB connector must be on the top layer, closer to the edge, and oriented for

easy access.
• The 8-pin connectors must be on the sides of the board. None of these sides must

coincide with the micro USB connector.
• Four motors must be at each end of the arms so the corresponding connectors must be

at the start (by arms, we mean the rectangular platforms of the board).
• The fifth motor must be on the edge of the board.
• The VL53L1X must be on the bottom layer to measure the distance to the ground.
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• The buttons of the flash memory must be on the top layer for easy access.

In addition, it is crucial to check the pinout of the RP2040 to place the other components
accordingly. A board layout that minimises track length based on the RP2040 pinout was
studied, along with the previously mentioned constraints. To ensure the NAB was balanced
and the connections between components could be easily made, we carefully considered
the weight distribution and orientation of the components when placing them on the PCB.

Additionally, different track specifications were considered when tracing the connec-
tions, namely:

• For the connections of the microcontroller, it was necessary to use tracks with a width
of 9 mil so that there was no contact between pins.

• Most of the links were 10 mil wide.
• The motor tracks were 14 mil wide to facilitate heat dissipation.

To facilitate communication between the different layers, we utilised vias—small holes
that establish electrical connections—between all layers, with a diameter of 24 mil and a
drilling diameter of 12 mil.

Figure 3 shows the components and connections of each layer. The upper and lower
layers are the most populated. The wider tracks related to the motors are in the inner
1 layer.

Figure 3. The four layers of the NAB’s PCB. (1) Top layer. (2) Inner 1 layer. (3) Inner 2 layer.
(4) Bottom layer.

The development of the NAB’s PCB presented many challenges due to the reduced
board size that contained many components and increased connections.

3.2. Software

Since the NAB’s goal is pollination, it must be able to recognise flowers and execute
commands to approach them. Identification is possible using perception algorithms to
process the images a camera acquires. For this purpose, it is necessary to develop a Deep
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Learning Neural Network (DLNN) for flower recognition and implement an algorithm
that defines the command to be executed by the NAB based on the position of the flower
detected in the frame. From data collection to autonomous flower detection, three steps
were performed:

1. Data collection: collecting and storing images to build the input dataset;
2. Dataset generation: annotating images by drawing bounding boxes around the flowers;
3. Model training: training the DL models to be deployed in the NAV for real-time

flower detection.

3.2.1. Data Collection

For the flower detection process, it was necessary to build a new dataset. We utilised
the Flower Detection Dataset (https://doi.org/10.5281/zenodo.7560779, accessed on 27
March 2023) that contained images taken using an iPhone XR of a group of eight flow-
ers from various perspectives (https://www.gsmarena.com/apple_iphone_xr-9320.php,
accessed on 27 March 2023). The images with a 4032 × 3024 resolution were taken from
various distances while moving around the flowers. A total of 103 images were collected
and Figure 4 shows some examples of the photographs taken from different perspectives
and distances.

Figure 4. Sample images from the dataset.

3.2.2. Dataset Generation

The dataset generation was performed using the collected data to form the DL models.
Since a supervised learning approach was used, the models required the annotation of each
input image. Each annotation contained a bounding box around each object, representing
its area, position, and class.

Computer Vision Annotation Tool (CVAT) software (https://github.com/openvinotoolkit/
cvat, accessed on 27 March 2023) was used to perform the manual annotations by only
considering the class “flower”. In this process, 499 flowers were identified in the collected
dataset. The images were exported under the YOLO [34] format to train the YOLO models.

Since the AI Deck 1.1 module can use an RGB or grayscale camera with a resolution
of 320 × 320 pixels, an image-processing step was performed after annotation. First, the
images were resized from 4608 × 2592 to 320 × 240 pixels. Figure 5 shows some examples
of the resized images with a resolution of 320 × 240.

https://doi.org/10.5281/zenodo.7560779
https://www.gsmarena.com/apple_iphone_xr-9320.php
https://github.com/openvinotoolkit/cvat
https://github.com/openvinotoolkit/cvat
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Figure 5. Sample resized images from the dataset.

Next, the dataset was duplicated by converting the images from RGB to grayscale.
The conversion of the RGB images to grayscale while maintaining the three input channels
was performed using a Python script, without the need to change the network architecture.
Figure 6 shows some examples of grayscale images with a resolution of 320 × 240.

Figure 6. Sample grayscale images from the dataset.

The Flower Detection dataset containing 206 images (RGB and grayscale images) was
divided into three sets: training (60%) with 126 images, validation (20%) with 40 images,
and test (20%) with 40 images. This dataset containing 206 annotations and (RGB and
grayscale) images of flowers with a resolution of 320 × 240 is available at https://doi.org/
10.5281/zenodo.7708820, accessed on 23 January 2023.

3.2.3. Model Training

The final step was the training and deployment of the models. The YOLO models
(YOLOv5, YOLOv7, and YOLOR) were trained using Pytorch. For each model, we chose
the smaller version. Table 8 shows the characteristics of each selected version.

Table 8. Performance of YOLO versions.

Model mAP 50 AP 50 Speed
Validation Set Testing Set Batch Size 32

YOLOv5n 45.7% - 0.6 ms
YOLOv7 - 69.7% 2.8 ms
YOLOR-CSP - 71.2% 3.2 ms

https://doi.org/10.5281/zenodo.7708820
https://doi.org/10.5281/zenodo.7708820
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Each model was trained individually on the Flower Detection Dataset for 300 epochs
with a batch size of 64 images and an input resolution of 320 × 320 pixels using an
NVIDIA GeForce 3090 Graphics Processing Unit (GPU) with 32 GigaBytes (GB) of available
memory. Each training used the pre-trained weights and configuration provided by the
YOLO developers.

4. Results
4.1. Methodology

The selection of appropriate metrics to evaluate deep learning models depends on the
specific problem at hand. Metrics offer distinct perspectives on the performance of a deep
learning model and are often used in combination to gain a comprehensive understanding
of its behaviour. The metrics listed below are commonly used to evaluate the outcomes of
object detection and classification.

To determine the type of detection, it is necessary to understand the differences be-
tween a “correct detection” and an “incorrect detection”. One way is to use the intersection
over union (IoU).

Intersection over Union (IoU) is based on the Jaccard Index, which measures the
similarity coefficient for two datasets. In this paper, the IoU is used to measure the area
of overlap between two bounding boxes using the ground-truth and predicted bound-
ing boxes.

We can classify a detection as valid or invalid by comparing the IoU with a given
threshold t. If the IoU ≥ t, the detection is considered valid and if the IoU < t, it is consid-
ered invalid. To determine the types of detections, we utilised the concepts defined below:

• True Positive (TP): A valid detection of a ground-truth bounding box, i.e., IoU ≥ t;
• False Positive (FP): An invalid detection (incorrect detection of a non-existent object

or incorrect detection of a ground-truth bounding box), i.e., IoU < t;
• False Negative (FN): An invalid detection of a ground-truth bounding box;
• True Negative (TN): Not applicable in object detection. There is no need to find infinite

bounding boxes in each image during object detection.

The evaluation of the object detection methods mainly involved the concepts of
precision and recall:

• Accuracy calculates the ratio of the number of correct predictions to the total number
of predictions:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

• Precision measures the ability of the model to identify only the relevant objects, i.e.,
the percentage of valid detections out of all detections and is calculated by:

Precision =
TP

TP + FP
(2)

• Recall measures the ability of the model to find all ground-truth bounding boxes, i.e.,
the percentage of valid detections out of all ground truths and is calculated by:

Recall =
TP

TP + FN
(3)

• F1 score represents the harmonic mean between precision and recall and is used to
evaluate performance; it is calculated by:

F1 score = 2 ∗ Precision ∗ Recall
Precision + Recall

(4)

The precision × recall curve is a way to evaluate the performance of an object detector.
This procedure plots a curve as confidence changes for each object class. A good object
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detector maintains high precision as recall increases. In other words, by varying the
confidence threshold, precision and recall should remain high. A poor object detector
for recovering all ground-truth objects (increasing recall) needs to increase the number of
detected objects (increasing FP, which implies decreasing precision) to retrieve all ground-
truth objects (high recall). Therefore, an optimal detector identifies only the relevant objects
(FP = 0, indicating high precision) while finding all ground-truth objects (FN = 0, implying
high recall).

The Average Precision (AP) is another way to evaluate the quality of the object
detector. AP compares the performance of object detectors to calculate the area under the
precision × recall curve. AP is the average precision of all recall values between 0 and 1.
Therefore, a high area represents both high precision and recall.

The mean Average Precision (mAP) is a metric used to measure the accuracy of object
detectors across all classes. The mAP is the average AP across all classes. In this case, mAP
and AP represent the same value since only one class exists.

4.2. Evaluation

To evaluate the Flower Detection Dataset, the validation set results were generated
using an exact input resolution of 320 × 320 with a batch size of 64. Additionally, an
IoU threshold of 50% was considered. Table 9 shows the confidence threshold value that
maximised the F1 score for each model in the validation set.

Table 9. Confidence threshold values that optimised the F1 score for each YOLO.

Model Confidence Threshold F1 Score

YOLOv5 71% 94%
YOLOv7 70% 96%
YOLOR 69% 97%

The confidence threshold values presented led to the best balance between precision
and recall, which maximised the number of true positives and minimised the number
of false positives and false negatives. All three models had similar confidence threshold
values and similar confidence in their predictions.

Table 10 shows the results of the test set. The inference was performed for a 0%
confidence threshold and the confidence threshold value that maximised the F1 scores in
the validation set. The inference was performed with a batch size of 8 and an IoU threshold
of 50 %. In the test set, a batch size of 8 was used, as the processing capacity was smaller.

Table 10. Detection results of the testing set obtained from the Flower Detection Dataset.

Model Confidence
Threshold Accuracy Precision Recall F1 Score mAP Time

per Image

YOLOv5 >0% 25% 25% 99% 40% 71% 1.9 ms
71% 92% 97% 95% 96% 69% 2.0 ms

YOLOv7 >0% 15% 15% 100% 26% 81% 3.4 ms
70% 97% 98% 99 % 98% 80% 2.3 ms

YOLOR >0% 44% 44% 99% 61% 82% 4.6 ms
69% 97% 98% 99% 98% 81% 2.7 ms

Lower confidence rates typically lead to an increase in false positives and a decrease
in false negatives. As a result, precision decreases due to the increase in false positives and
recall increases due to the decrease in false negatives. The results show that limiting the
confidence threshold of the models resulted in a considerable increase in accuracy, precision,
and F1 score at the cost of a slight decrease in recall and mAP. When the confidence



Appl. Sci. 2023, 13, 4265 19 of 26

threshold is set to maximise accuracy, precision and F1 score remain in the range of 90%
to 99%.

Figure 7 shows two images (grayscale and RGB) from the test set and the ability of the
models to detect flowers.

(a) RGB example - YOLOv5 (b) RGB example - YOLOv7 (c) RGB example - YOLOR

(d) Gray example - YOLOv5 (e) Gray example - YOLOv7 (f) Gray example - YOLOR

Figure 7. Detection of flowers in sample images from the test set of the Flower Detection Dataset.
(a–c) RGB example and (d–f) grayscale example. Orange bounding boxes present ground truth. Light
green bounding boxes present the predictions from YOLOv5. Dark green bounding boxes present the
predictions from YOLOv7. Blue bounding boxes present the predictions from YOLOR.

The three models achieved outstanding performance in the detection of flowers, even
at a resolution of 320 × 240 pixels. The models successfully detected flowers in the RGB
and grayscale images. These results demonstrate the robustness of the model and its ability
to successfully handle different scenarios.

The Flower Detection Dataset was designed to detect one type of flower. The three
trained networks were tested on a public dataset to evaluate the robustness of the three
trained models. In the literature, there are many datasets that are only used for classification
and do not have annotations. The TensorFlow Flower Dataset is a public open-access
flower dataset used for classification that contains images characterised by distinct flower
types, backgrounds, and resolutions. The TensorFlow Flower Detection Dataset (https:
//www.tensorflow.org/datasets/catalog/tf_flowers, accessed on 23 March 2023) contains
the same images and associated annotations in a YOLO format, which can be utilised
for flower detection. We used CVAT software to annotate more than 3500 images, which
resulted in more than 14,000 bounding boxes.

Table 11 shows the results obtained from the TensorFlow Flower Detection Dataset
using each trained model. The inference was performed with a 0% confidence threshold,

https://www.tensorflow.org/datasets/catalog/tf_flowers
https://www.tensorflow.org/datasets/catalog/tf_flowers
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which can maximise the F1 scores. The inference was performed with a batch size of 8 and
an IoU threshold of 50%.

Table 11. Detection results obtained from the TensorFlow Flower Detection Dataset.

Model Confidence
Threshold Accuracy Precision Recall F1 score mAP Time

per Image

YOLOv5 >0% 3% 3% 68% 5% 12% 1.1 ms
71% 13% 69% 14% 23% 6% 0.9 ms

YOLOv7 >0% 1% 1% 70% 2% 12% 1.8 ms
70% 11% 64% 12 % 21% 5% 1.4 ms

YOLOR >0% 3% 3% 66% 6% 18% 2.4 ms
69% 20% 67% 22% 33% 11% 2.2 ms

As we can see in Table 11, when the confidence ratio was greater than zero, there
was a decrease in accuracy (increase in FP) and an increase in recall (decrease in FN).
As the Flower Detection Dataset was only trained for one flower type, the values of the
metrics decreased. By assuming the confidence threshold value that maximises the F1
score, the values of the metrics stabilised at around the same values. Precision was the
best-performing metric for the three models when the confidence threshold maximised the
F1 score, which means that there were more FNs than FPs.

To better understand the results obtained with the Flower Detection Dataset, we
decided to train the three YOLO models with the TensorFlow Flower Detection Dataset. As
before, the training was performed for each model individually for 300 epochs with a batch
size of 64 images and an input resolution of 320 × 320 pixels using an NVIDIA GeForce
3090 Graphics Processing Unit (GPU) with 32 GigaBytes (GB) of available memory. It was
also chosen so we could use the pre-trained weights and configuration provided by the
YOLO developers.

The results of the validation set were generated using an exact input resolution of 320 × 320
with a batch size of 64 and an IoU threshold of 50%. Table 12 shows the confidence threshold
values that maximised the F1 score for each model in the validation set.

Table 12. Confidence threshold values that optimised the F1 score obtained with the TensorFlow
Flower Detection Dataset.

Model Confidence Threshold F1 Score

YOLOv5 56% 80%
YOLOv7 75% 80%
YOLOR 73% 82%

This value represented the best balance between precision and recall, which max-
imised the number of true positives and minimised the number of false positives and false
negatives. All three models had similar confidence threshold values and similar confidence
in their predictions.

Table 13 shows the results of the test set. The inference was performed for a 0%
confidence threshold and the confidence threshold value that maximised the F1 scores in
the validation set. The inference was performed with a batch size of 8, as the processing
capacity was smaller, and an IoU threshold of 50%.
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Table 13. Detection results of the testing set obtained with the TensorFlow Flower Detection Dataset.

Model Confidence
Threshold Accuracy Precision Recall F1 Score mAP Time

per Image

YOLOv5 >0% 6% 6% 98% 12% 63% 1.2 ms
56% 67% 83% 78% 81% 56% 1.1 ms

YOLOv7 >0% 7% 7% 99% 14% 67% 2.1 ms
75% 68% 87% 76 % 81% 57% 2.0 ms

YOLOR >0% 24% 24% 95% 38% 67% 2.4 ms
73% 69% 84% 80% 82% 62% 2.4 ms

Similar to the Flower Detection Dataset, the results indicate that this approach is only
applicable for mAP comparison and not for practical use, as the results for a confidence
threshold greater than 0% are not meaningful. A recall value higher than or equal to 95%
indicates that quite a few flowers were detected and correctly classified according to the
bunch conditions. However, a precision value lower than 25% indicates that there were
quite a few incorrect detections of flowers, which were also expected to have a low F1
score value.

Assuming the confidence threshold value that maximises the F1 score, there was a
considerable increase in precision and F1 score, albeit at the cost of a slight decrease in recall
and mAP. The precision values were above 80%, indicating that the models sometimes
made incorrect detections. However, a higher number of flowers were missed. An F1 score
above 80% demonstrates that the balance between precision and recall was much higher,
whereas the mAP value barely changed with the threshold change.

Overall, the results for the three models are promising and similar. YOLOR achieved
the best performance in most metrics. To better understand the outcomes of some of the
metrics it was necessary to observe the model detections on the test set images. Figure 8
presents the results of the ability of each YOLO version to detect grape bunches in a test set
image. The models had good responses despite the complexity of the image, i.e., flowers of
different sizes, overlapping, and with lower resolution.

(a) YOLOv5 (b) YOLOv7 (c) YOLOR

Figure 8. Detection of flowers in samples from the test set of the TensorFlow Flower Detection
Dataset. Orange bounding boxes present ground truth. (a) Light-green bounding boxes indicate the
predictions from YOLOv5. (b) Dark-green bounding boxes indicate the predictions from YOLOv7.
(c) Blue bounding boxes indicate the predictions from YOLOR.
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The three models had outstanding responses in the detection of distinct types of
flowers in different scenarios and at different resolutions. These results demonstrate the
robustness of the trained models and their ability to successfully handle different scenarios.

Discussion

In this work, we created the Flower Detection Dataset by collecting an original dataset
of flower images and generating additional data to expand the dataset. The YOLOv5n,
YOLOv7, and YOLOR-CSP models were used for training and testing. It should be noted
that the batch size was reduced for the test.

The results of the test set of the Flower Detection Dataset were satisfactory in the
detection of flowers when using a confidence threshold that maximised the F1 score in
the validation set. This was an essential step as it harmonised the results of the metrics
and decreased the number of false positives. All models showed satisfactory results, with
YOLOv7 and YOLOR achieving the best performances.

The models trained on the Flower Detection Dataset were also tested on the TensorFlow
Flower Detection Dataset to assess robustness. As expected, the results of the metrics did
not reach the same range of values. To verify the quality of the results achieved, the three
models were trained again but this time on the TensorFlow Flower Detection Dataset, which
had a greater variability of information. The results verified that a dataset with greater
variability of information can lead to better performance. Therefore, it is important to
invest in developing robust datasets with images of flowers of various species and different
scenarios to improve the performance of deep learning models.

4.3. Control

The pollination task requires a complex algorithm that controls the flight of the NAB
towards a flower. We added a camera to take photos of the surroundings of the NAB. For
the NAB to recognise at least one flower, the algorithm must determine the closest flower
to the centre of the image and guide the NAB to the selected flower.

The developed script is available at https://gitlab.inesctec.pt/agrob/NAB and in-
cludes the neural network trained to recognise flowers. We developed software that
identifies the command that the NAB should follow to efficiently approach and pollinate
a flower.

The algorithm analyses each frame and acts according to the information it has col-
lected so far. To begin with, the algorithm checks the detections in each frame. If there are
flower detections, the algorithm must calculate the centre of each detection and its distance
to the centre of the frame. After performing the calculations for all detections, the algorithm
determines the area that is closest to the centre of the image. Finally, the command that the
NAB should follow is determined. Figure 9 shows a flowchart of the script.

The algorithm defines the command to execute according to the active stage presented
in Figure 9. Once the detection closest to the centre of the frame is defined, it is necessary
to determine the command. The first goal is to place the flower in the centre of the height
of the frame. The algorithm determines whether the NAB should move up or down to
place the flower in the centre of the image height. When it reaches the centre of the height,
the algorithm positions the flower in the middle of the frame, i.e., the centre. This way,
whether the NAB should move to the left or right is defined. Upon reaching the centre, the
NAB should move closer to the flower until the bounding box fills 50% of the image area.
If the NAB is already close to the flower, it should proceed with pollination.

https://gitlab.inesctec.pt/agrob/NAB
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(a) RGB example—YOLOv5 (b) RGB example—YOLOv7

Figure 9. Flowcharts of the flight-control of the NAB. (a) Flowchart of the flight control algorithm
according to the recognition of flowers in the pollination phase. (b) Flowchart of the stages to define
the command.

5. Conclusions

The development of a NAV is particularly challenging given the weight and wingspan
limitations. A careful literature review analysis is crucial to determine the hardware to use.
State-of-the-art of NAVs are expanding in popularity but are still underutilised. All articles
examined used the Crazyflie 2.0 platform as a starting point.

Developing a hardware prototype is quite a complex task given the interactions be-
tween the hardware components. To design the NAB schematic, we analysed the Crazyflie
2.1 schematic and made some changes to make the NAB more efficient for pollination.
Developing the PCB of the NAB was quite challenging because it was a small board with
many components, indicating many connections.

At the software level, three YOLO models were tested for flower detection. To make
the images in the dataset similar to those displayed in the AI deck, the resolution was
reduced to 320 × 240, making flower detection more difficult. The training was performed
with the lighter version of each model with a batch size of 16 and 300 epochs. In the test set,
a batch size of 8 was used, as the processing capacity was smaller. All models demonstrated
satisfactory results. YOLOv7 and YOLOR achieved the best performances.

The Flower Detection Dataset was developed to detect one type of flower. To evaluate
the robustness of the three YOLO models trained on the Flower Detection Dataset, a public
dataset (TensorFlow Flower Dataset) was selected and annotated to test the performance.
The annotations are publicly available in the TensorFlow Flower Detection Dataset in a
YOLO format that can be utilised for flower detection. The results verified that a dataset
with higher variability of information leads to better performance. Investing in the devel-
opment of a more robust dataset with images of flowers of various species and different
scenarios could lead to better performance.

Furthermore, an algorithm that can define the command to be executed by the NAB
based on the position of the flower detected in the frame was implemented. The developed
software was tested on videos recorded with a smartphone that mimicked the flight of the
NAB, and the commands that the NAB would execute were printed on the video. However,
it would be necessary to add a camera to the NAB to test the script in an authentic context.
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As for future work, there are several crucial points for the development and testing of
the NAB. The main directions for future works are as follows:

• The study, development, and integration of an instrument for pollination into the
NAB [35];

• The development of the NAB and its application in a real context for field testing;
• Investing in the development of a more robust dataset with images of flowers of

various species and backgrounds;
• The study and comparison of deformable convolution and an attention mechanism to

show that these computer vision operations can improve the detection performance of
the detector [36,37];

• The analysis and implementation of NAB swarms to reduce the cost of pollination.
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Abbreviations
The following abbreviations are used in this manuscript:

AP Average Precision
CNN Convolutional Neural Network
CVAT Computer Vision Annotation Tool
DL Deep Learning
DLNN Deep Learning Neural Network
FN False Negative
FP False Positive
GB GigaByte
GPS Global Positioning System
GPU Graphics Processing Unit
IMU Inertial Measurement Unit
IoT Internet of Things
IoU Intersection over Union
LDO Low Dropout
LE Low Energy
LiDAR Light Detection And Ranging
LPD Loco Positioning Deck
LPN Loco Positioning Node
LPS Loco Positioning System
LSTM Long Short-Term Memory
mAP mean Average Precision
NAV Nano Aerial Vehicle
NAB Nano Aerial Bee
PCB Printed Circuit Board
R-CNN Region-based Convolutional Neural Network
ROS Robotic Operating System
SLAM Simultaneous Location and Mapping
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SVM Support Vector Machines
ToF Time-of-Flight
TP True Positives
TN True Negative
UAV Unmanned Aerial Vehicle
VOC Visual Object Classes
YOLO You Only Look Once
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