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Abstract: This article provides a comprehensive survey of contemporary language modeling approaches
within the realm of natural language processing (NLP) tasks. This paper conducts an analytical ex-
ploration of diverse methodologies employed in the creation of language models. This exploration
encompasses the architecture, training processes, and optimization strategies inherent in these models.
The detailed discussion covers various models ranging from traditional n-gram and hidden Markov
models to state-of-the-art neural network approaches such as BERT, GPT, LLAMA, and Bard. This article
delves into different modifications and enhancements applied to both standard and neural network
architectures for constructing language models. Special attention is given to addressing challenges
specific to agglutinative languages within the context of developing language models for various NLP
tasks, particularly for Arabic and Turkish. The research highlights that contemporary transformer-based
methods demonstrate results comparable to those achieved by traditional methods employing Hidden
Markov Models. These transformer-based approaches boast simpler configurations and exhibit faster
performance during both training and analysis. An integral component of the article is the examination
of popular and actively evolving libraries and tools essential for constructing language models. Notable
tools such as NLTK, TensorFlow, PyTorch, and Gensim are reviewed, with a comparative analysis
considering their simplicity and accessibility for implementing diverse language models. The aim is to
provide readers with insights into the landscape of contemporary language modeling methodologies
and the tools available for their implementation.

Keywords: NLP; language modeling; neural networks; transformer; BERT; GPT

1. Introduction

Language modeling (LM) has steadily evolved into a cornerstone of modern com-
putational linguistics and natural language processing (NLP), laying the foundations for
sophisticated text analysis, generation, and understanding. The quintessence of language
modeling lies in its ability to delineate probability distributions over sequences of words,
thus furnishing a computational fabric for analyzing linguistic phenomena [1]. Contempo-
rary trajectories in language modeling are significantly informed by robust mathematical
and computational frameworks, big data analytics, neurophysiological methods, and tra-
ditional laboratory experimentation, all of which converge to elucidate the social and
cognitive mechanisms underpinning language learning and processing [2].

The epochs of language modeling can be broadly demarcated into two epochs: the
era of statistical models and the epoch of neural-network-based models. The statistical
models, primarily hinged on probability theory and formal language theory, were adept
at handling relatively small corpus sets, with models like n-grams and Hidden Markov
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Models (HMMs) being emblematic of this era [3]. Conversely, the advent of neural-network-
based models heralded a data-driven approach, leveraging substantially larger corpus sets
and sophisticated neural architectures to attain unprecedented levels of performance across
a spectrum of NLP tasks.

A notable inflection point in this evolutionary narrative was the inception of pre-
trained language models (PLMs) like BERT, GPT, LLAMA, and BARD, which significantly
elevated the state of the art in numerous content-understanding tasks [4]. These models,
undergirded by the transformer architecture, have not only outperformed traditional
models utilizing HMMs but have also demonstrated remarkable efficiency and simplicity
in configuration and operation during both training and analysis phases.

Moreover, an assortment of neural network approaches, including those based on n-
gram and hidden Markov models (HMMs), alongside modern neural network architectures
such as transformer-based models (e.g., BERT, GPT), have been meticulously examined,
encapsulating their architectures and training and optimization processes. These explo-
rations have precipitated a plethora of modifications and enhancements to both standard
and neural network architectures, thereby propelling the frontiers of language modeling to
novel vistas of capabilities and applications.

Furthermore, the discourse around language modeling has extended to its applicabil-
ity to agglutinative languages, presenting unique challenges and opportunities for the NLP
community. The burgeoning ecosystem of libraries and tools like NLTK, TensorFlow, Py-
Torch, and Gensim has catalyzed the development, deployment, and evolution of language
models, thereby democratizing access to sophisticated language modeling capabilities
across the global research community.

In conclusion, the alacritous advancements in language modeling methodologies
and technologies have not only significantly augmented the capabilities of NLP systems
but also engendered a rich tapestry of research inquiries and applications across a broad
spectrum of computational linguistic and NLP tasks. This article endeavors to provide a
comprehensive exposition of the contemporary approaches in evolving language models,
elucidating their architectures and training and optimization processes.

2. Statistical Approaches to Language Modeling

At the outset, traditional models such as n-grams and Hidden Markov Models (HMMs)
are considered. These methods are statistical in nature and can be employed to evaluate
the performance of emerging NLP models. Essentially, these models assign probabilities to
sequences of words. N-grams and HMMs have a wide range of applications in various tasks
of text analysis. They are used for the development of algorithms for automatic terminology
extraction, the construction of language and acoustic models, and the extraction of process
models from unstructured and structured data, among other functions. Although there
are more efficient methods of text analysis available, it is crucial to understand that these
models are more interpretable and can be tailored to specific NLP tasks. They can also
serve as a benchmark for assessing emerging models and methods.

2.1. N-Gram

The n-gram model is one of the statistical models used for language modeling, em-
ployed for predicting the next word in a sequence or for assessing the probability of a
sentence. The core principle revolves around predicting a sequence of n words or characters.
In an n-gram model, the probability of producing the next word is determined based on
transition probabilities and observations.

The general formula for calculating P(w) depending on the number of words in a
sentence is presented as follows (1):

P(w1, . . . , wn) = P(wn|wn−1, . . . , w1)·P(wn−1, . . . , w1), (1)

where w represents individual words, and n is the number of words.
There are various types of n-gram models (Figure 1), such as those listed below.
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- Unigrams, which evaluate each word independently;
- Bigrams, which consider the probability of a word given the previous word;
- Trigrams, which consider the probability of a word given the two preceding words,

and so on.

Unigrams play a fundamental role in n-gram models, assessing the probability of each
word occurring independently within a specific context. Known for their simplicity and
efficiency, unigram models serve as a foundational reference point for more intricate language
models. Despite assuming independence, unigrams make substantial contributions to lan-
guage comprehension and are essential in diverse natural language processing tasks, such as
information retrieval, text classification, and sentiment analysis. Integrating unigrams into an
n-gram model enhances its adaptability and suitability for various linguistic applications.

N-grams are relatively simple and efficient, yet they come with drawbacks:

- Data sparsity problem: This issue arises with low-frequency words or the absence
of word groups in training data. To alleviate this, a Laplace smoothing method or
Neyman–Morgenstern smoothing was proposed in [5]. In the realm of language
modeling, n-gram models inherently fail to account for the long-term contextual
dependencies present within word sequences.

- Model size problem: This leads to an exponential increase in possible combinations,
demanding high memory and computational resources.

- Ignoring full sentence context: N-gram models consider only the previous context,
overlooking the interrelation and broader context between words. Recurrent neu-
ral networks and their variants, as well as transformer-based models, have been
proposed [6,7].

- Incorrect modeling of incomplete sentences.: N-grams work well with complete word
sequences, but errors occur with incomplete phrases or sentences, a common scenario
in real life. Methods of stream data processing or incremental model updating were
applied to mitigate this drawback [8,9].

Some Modifications and Improvements

Chelba et al. [10] investigated the effective memory depth of RNN models by employ-
ing them for n-gram modeling. Experiments on a small UPenn Treebank corpus indicated
that the LSTM cell with dropout is a superior model for encoding n-gram state data com-
pared to a feedforward RNN. When maintaining the sentence independence assumption,
the LSTM n-gram achieves performance comparable to the LSTM LM for n = 9 and slightly
surpasses it when n = 13. The authors of [11] introduced the n-distant-max language
model, which significantly mitigated the shortcomings of n-gram models with a smaller
parameter for evaluation. However, a limitation of the n-distant-max model was identified:
it only considers the word with the highest probability, even though there are instances
in which a word is associated with more than one word. It was demonstrated in [12] that
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by incorporating multi-granularity information about unseen and domain-specific words
through word-based n-gram adaptation, the performance of the overall pre-trained model
saw significant modeling improvements. This includes the Transformer-based Domain-
aware N-gram Adaptor, which effectively learns and integrates semantic representations
of various word combinations into a new domain. Li et al. [13] combined n-grams with
neural LMs, allowing the neural component to focus on deeper language comprehension
while also offering a flexible means of tuning the LM by switching foundational n-grams
without altering the neural model. This approach demonstrated that one can effectively
adapt to a domain by merely switching to the domain-specific n-gram model area without
any additional training.

2.2. Hidden Markov Model (HMM)

The Hidden Markov Model (HMM) was one of the prevalent models used before
the adoption of artificial neural networks and is applied in various NLP tasks, including
language modeling (Figure 2). An HMM simulates the operation of a Markov process with
hidden internal states. The Markov process itself represents a sequence of random events
in which the probability of each event depends solely on the current state of the process
and is independent of prior states [14]. In language modeling, an HMM is utilized to model
word sequences while accounting for fundamental linguistic structures. An HMM consists
of two primary elements: a hidden Markov chain and an observable sequence. The former
comprises a series of hidden states with an unknown structure for observation. In many
instances, these states can correspond to parts of speech. The latter element, the observable
sequence, represents a series of characters or words observed during the modeling process.
The HMM is characterized by the following parameters:

− S = {s1, s2,..., sn}—the set of hidden states;
− O = {o1, o2,..., om}—the set of observable symbols or words;
− A = {aij}—the transition probability matrix, where aij is the probability of transitioning

from state si to state sj;
− B = {bj(k)}—the observation probability matrix, where bj(k)—is the probability of

observing the symbol ok in state sj;
− π = {πi}—the initial probability vector, where πi—is the probability of starting in state si.
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Figure 2. Example of a Hidden Markov Model.

In Figure 2, X represents the hidden state which depends on Y. Y in turn is the
observable element, that is, a word, whereas a signifies the transition probability from one
state to another and b stands for the emission probabilities.

In the domain of speech recognition, HMMs are typically employed in the construction
of an acoustic model. They model the temporal sequences of phonemes and determine
the most probable sequence of a model’s states. This, in effect, accommodates both the
transition probabilities between states and the observation probabilities. Moreover, HMMs
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are used in tasks like speaker identification and analysis and speech classification, among
others [15].

HMMs have certain limitations to consider in the context of language modeling:

- Insufficient realism and model simplification: HMMs make independence assump-
tions that might be inconsistent in real-world conditions. In actual scenarios, observa-
tions might depend on hidden states with a more intricate structure [16,17].

- The emergence of advanced models: To address this limitation, more sophisticated
models have been introduced, such as the Conditional Random Fields (CRFs) and Deep
Hidden Markov Models (DHMMs). CRFs cater to dependencies between observations
and hidden states by considering contextual information. Meanwhile, DHMMs meld
the principles of deep learning and HMMs, allowing for the modeling of intricate
dependencies and providing a more precise description of linguistic structures.

While HMMs were prevalent in the past, recent advancements in deep learning, such
as recurrent neural networks (RNNs) and transformer-based models like BERT and GPT,
have largely supplanted HMMs in many NLP tasks. These contemporary models better
capture long-term dependencies and have achieved state-of-the-art results across a broad
spectrum of NLP applications. Nonetheless, understanding HMMs and their principles can
provide valuable insights into the fundamentals of sequence modeling and probabilistic
modeling in language processing.

3. Neural Network Models

Some of the pivotal mechanisms in the domain of NLP have been artificial neural net-
works (ANNs), the deployment of which has ushered in new horizons for natural language
generation. The evolution and amalgamation of various neural network architectures have
paved the way for addressing an array of challenges, among which is the automated extrac-
tion of intricate language structures and patterns, realized through increasingly powerful
and precise language models. ANNs employ embeddings, which denote continuous word
representations for aligning phrases at both the semantic and syntactic levels. Subsequent
subsections will delve into various facets of ANNs’ application for language modeling and
their contribution to the advancement of this field.

3.1. Word Representation
3.1.1. Word2Vec

Word2Vec is a neural model designed for deriving vector representations (embed-
dings) of words from vast textual corpora which was introduced by Mikolov and his
colleagues [18,19]. It was conceived with the intent of capturing the semantic properties of
words, facilitating their representation as numerical vectors. Notably, there is no need for
corpus annotation as the Word2Vec application entails training on raw, unlabeled data. In
the Word2Vec model, there is an encapsulation of inter-relational nuances and similarities
among words.

Distinguishing it from other neural network architectures tailored for learning word
vector representations, Word2Vec proved to be highly computationally efficient. It show-
cased the capacity to handle vast lexicons encompassing millions or even billions of words
while evading dense matrix multiplications. In collaboration with his peers, Mikolov intro-
duced two training methodologies based on hierarchical softmax and negative sampling.
To address the inherent complexity of words, word embeddings offer a solution by linking
each word to a dense vector of real numbers usually falling within the range of 50 to
300 dimensions. Throughout the training process, the model fine-tunes the embedding
parameters, iteratively adapting them to minimize the loss function. This function measures
the difference between the predicted outcome and the ground truth, providing guidance
for the optimization process.

A salient property of vectors discerned through Word2Vec models pertains to their
translational characteristics, furnishing crucial linguistic and relational parallels. Specifi-
cally, Mikolov and his team’s investigations illuminated that vector arithmetic can engender
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qualitative analogies and affinities between words. Word2Vec retains the property of pre-
serving semantic relationships among words in their vector representations. Semantically
congruent words are proximal in the embedding space, rendering them invaluable for a
plethora of tasks in natural language processing.

There exist two primary variants of the Word2Vec model: Skip-gram and Continuous
Bag of Words (CBOW). Both variants employ neural networks with one or two hidden
layers for training embeddings.

Continuous Bag of Words (CBOW) Model

In the CBOW model, context words are utilized to predict a target word. For every
target word, a window of context words is chosen, and the neural network is trained to
predict the target word based on these context words.

The CBOW architecture employs a projection layer designed to forecast the target
word when presented with a context window that contains c words to both the left and
right of the target word (Figure 3). At the input layer, each context word is transformed by
an embedding matrix W into a dense vector of dimension k, and these resulting vectors
represent context words are then averaged dimension-wise, culminating in a single k-
dimensional vector. The embedding matrix W is shared across all context words. Notably,
due to the aggregation of context words, their sequence does not influence the summation
process, rendering this model akin to the bag-of-words approach, albeit with continuous
representation. The primary objective of the CBOW model is to maximize the average
logarithmic likelihood (2).

1
T

T

∑
t=1−q<j<q, j 6=0

∑ log
(

p
(
wt
∣∣wt+j

))
(2)
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Within this context, the variable q denotes the number of context words positioned on
both sides of the target word. In the fundamental CBOW model, the resultant representation
of the average vector, derived from the outputs of the projection layer, is passed through a
softmax function. This softmax function makes predictions across the entire vocabulary of
the corpus, facilitated by the use of backpropagation to optimize the objective of maximizing
the logarithmic likelihood (3).

p
(
wt
∣∣wt+j

)
=

exp
(

v
′ T
wt vwt+j

)
∑V

w=1 exp
(

v′ T
wt vwt+j

) (3)
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Skip-Gram Model

In the Skip-gram model, the target word is used to predict its surrounding context
words. For every target word, multiple examples are created in which context words are
selected from a window around the target word, and the neural network is trained to
predict these context words based on the target word.

While the CBOW model is trained to predict a target word based on its surrounding
context words, the Skip-gram model aims to predict these surrounding context words given
a specific target word. Once again, the order of the words is not considered. With a context
size of c, the Skip-gram model is trained to predict c words surrounding the target word
(Figure 4). The objective of the Skip-gram model is to maximize the average logarithmic
likelihood (4).

1
T

T

∑
t=1−q<j<q, j 6=0

∑ log
(

p
(

wt+j
∣∣w t

))
(4)
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Here, the value q represents the size of the training context. Higher values of q result
in more training samples, which could potentially lead to increased accuracy at the expense
of a longer training time. In its most basic form, the Skip-gram model utilizes a softmax
function (5): (
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(
v′ T

w vwt

) (5)

Here, V denotes the number of words in the vocabulary.

3.1.2. GloVe

Global co-occurrence-based models provide an alternative to predictive methods, like
the local context window approach employed by word2vec. Co-occurrence techniques
are often high-dimensional and memory-intensive. Dimensionality reduction methods
such as latent semantic analyses are applied, but they typically fail to capture the nuanced
semantic relationships of words and are dominated by frequently occurring terms. On the
other hand, predictive methods like word2vec, which rely on local context, often struggle
to gather comprehensive corpus statistics.

In 2014, Pennington and his colleagues introduced a logarithmic bilinear model that
merges the strengths of global co-occurrence methods with shallow window techniques [22].
They named this model GloVe, a fusion of the words “Global” and “Vector”. GloVe is
trained using a least squares optimization with a cost function (6):

J =
V

∑
i=1,j=1

f
(
Xij
)(

uT
i vj − log

(
Xij
))2

(6)
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where V represents the size of the vocabulary, Xij indicates the number of times words
i and j co-occur in the corpus, f is a weighting function that diminishes the influence of
frequent occurrences, and ui and vj are the vector representations of the words. Typically, a
truncated power form is used for the function f (7):

f
(
Xij
)
= f (x) =


( Xij

Xmax

)2

, i f Xij < Xmax

1, otherwise
(7)

The parameter Xmax is determined during the training process based on the data
available in the corpus. It is noteworthy that the model trains the context vectors U and
word vectors V independently of each other, and the vector embeddings created by the
GloVe method are formed by adding these two vector representations together (U + V).
Analogous to word2vec, GloVe’s vector embeddings are capable of expressing semantic and
syntactic relationships through vector addition and subtraction operations. Furthermore,
the word embeddings obtained using GloVe surpass word2vec in many natural language
processing tasks, especially in scenarios in which global context is crucial, such as in
named-entity recognition tasks.

GloVe has an advantage over word2vec when working with smaller datasets or when
there are not enough data to accurately reflect local contextual dependencies. However,
word-embedding models have some well-known limitations, like the inability to handle
out-of-vocabulary words and a limited capacity to account for antonyms, polysemy (words
with multiple meanings), and biases.

3.1.3. FastText

Word-embedding techniques like word2vec and GloVe offer varied vector representa-
tions for words in a vocabulary but fall short at capturing a language’s internal structure;
this is particularly noticeable in morphologically rich languages in which they overlook
syntactic connections between words. Improving vector representations for linguistically
complex languages becomes feasible by incorporating character-level information.

To enhance the quality of vector representations for morphologically rich languages,
the FastText approach [23] was introduced. FastText excels in its training speed, outper-
forming previous methods in efficiency and handling out-of-vocabulary (OOV) words.
FastText introduces character n-gram embeddings, representing words as the average
of these embeddings. Unlike the Word2Vec model, which emphasizes embedding entire
words, FastText delves into the word structure at the character n-gram level. Both Word2Vec
and FastText leverage the CBOW and Skip-gram methods for vector computation.

FastText can handle words not in the vocabulary, generating embeddings for OOV
words by embedding their character n-grams. In FastText, each word is depicted as the
average vector representation of its character n-grams and the word itself. For example,
considering the word “apple” with n = 3, its representation comprises the character n-grams
<ap, app, ppl, ple, le> and <apple>. Consequently, the word embedding for “apple” is
determined as the cumulative vector representation of its character n-grams and the word.

It was presented that fastText has various scoring functions to retain subword infor-
mation. For a given word w, the set of n-grams present in w is denoted as Tw ⊂ {1,..., T},
where T represents the n-grams’ dictionary size. A vector representation V is assigned to
each n-gram n and context word (Cw) and vector (Cv). Consequently, the derived scoring
function is defined as follows [24]:

F(w, Cw) = ∑
n ∈ Tw

VTCv

3.1.4. Co-Occurrence Matrix

A co-occurrence matrix is a tool used in linguistic modeling to study and represent
relationships between words within textual data. The underlying principle is grounded
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in the assumption that words with similar meanings often appear adjacent to each other
within a text. The matrix provides a way to visualize and assess how frequently word pairs
co-occur in the same context [25].

To create a co-occurrence matrix from a text corpus, one starts by defining a context
window around each word. Within this window, the frequency with which the given word
appears alongside other words is recorded. The outcome is a square matrix in which each
element [i, j] indicates the number of times words i and j appear together in proximity:

M[i, j] =
D

∑
d=1

Nd

∑
k=1

f
(
wi, wj, ck

)
(8)

Here, D represents the number of documents in the corpus, Nd is the number of words
in document d, and f

(
wi, wj, ck

)
is a function that equals 1 if the words wi and wj appear

within context ck and 0 otherwise.
The constructed co-occurrence matrix can be utilized for various tasks, such as identi-

fying semantic relationships between words, generating word vector representations (word
embeddings), and predicting the next word in a text sequence.

It is important to note that the co-occurrence matrix might be large and sparse, espe-
cially for extensive text corpora. This could necessitate additional processing and dimen-
sionality reduction to ensure its effective use in linguistic modeling tasks.

Comparative Analysis of the Methods Word2Vec, Skip-Gram, FastText, and GloVe in the
Language Modeling of Agglutinative Languages

Embedding words in agglutinative and other languages poses a complex challenge that
demands thorough analysis and development. In the context of agglutinative languages,
where morphological information is often expressed through affixes, challenges arise in
accurately representing the diverse forms of a single word. This complicates the task of
word vectorization as it requires accounting for numerous variations in morphological
changes, leading to an increased dimensionality of embedded representations. To address
these challenges, the development of vectorization methods is proposed, considering the
specific morphological structures of languages and ensuring the effective preservation of
semantic information.

In Ref. [26], the application of fastText at the encoding level for the Chinese, Japanese,
and Korean languages produced superior results compared to byte-level one-hot encoding
for convolutional networks in text classification tasks. Park et al. introduced an enhanced
method of distributed word representations for the Korean language which decomposes
words in Korean down to the so-called jamo level, which goes beyond the character level,
allowing for better utilization of subword knowledge [27].

Different text categories in Turkish utilized the word2vec word vector for classifica-
tion [28]. After extracting word vectors, each text was represented as the average vector
of its constituent words. As a result, the word2vec algorithm outperformed TF-IDF in
classifying Turkish documents. Moreover, word2vec demonstrated excellent results in a
sentiment analysis of Turkish texts [29]. To address the challenge of detecting semantic
and syntactic patterns, two approaches were implemented, namely, hypernyms in Turk-
ish based on biased classification embedding and semantic projection [30]. These similar
models significantly enhance system quality compared to baseline algorithms, provided
that the corpus includes several instances of hypernymy. Metin Bilgin compared CBoW
and SkipGram for sentiment analysis and showed that CBoW performs better in this task
on a Turkish dataset than SkipGram. The same author and his colleagues [31] conducted
experiments using the Distributed Memory (DM) and Distributed Bag of Words (DBoW)
algorithms of Doc2Vec, revealing that an insufficient volume of data negatively affects
sentiment analysis results.

In Ref. [32], the embedding of words was expanded, leveraging subword information
for the Arabic language in the domain of machine translation tasks. Nehad M. Abdel
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Rahman Ibrahim introduced a model enhancing both the accuracy and efficiency of the
clustering of Arabic articles, achieved through the application of word-embedding-based
clustering and discretization techniques. Abdulateef et al. [33] proposed an unsupervised
score-based method that amalgamated four distinct techniques: the vector space model,
continuous bag of words (CBOW), clustering, and a statistically based method. This
method surpassed other methods in the extraction of key sentences from Arabic text. In
Ref. [34], the authors compared the Word2Vec and Lemma2Vec models in tasks pertaining
to the disambiguation of Arabic words in context. They achieved this without resorting
to external resources or any specific contextual/sense embedding model. Their findings
revealed that both Lemma2Vec and Word2Vec performed commendably across various
sentence characteristics.

Khusainova et al. [35] crafted three datasets for the Tatar language and compared the
performance of Skip-gram, FastText, and GloVe models on datasets of both the Tatar and
English languages. Models trained on English datasets generally outperformed their Tatar
counterparts, with differences particularly notable in semantic and syntactic categories. The
study suggests that the higher effectiveness of English models may be related to the nature
of the questions posed and discrepancies in the training corpora. However, some correlations
between Tatar and English models are observed in specific categories. The lack of large parallel
corpora for both languages is acknowledged as a limitation in the comparison.

In Ref. [36], the word2vec and GloVe methods were implemented for semantic, syntactic,
and capital evaluation tasks based on an Azerbaijani dataset. The results highlighted that
enhancing the dimensionality of continuous vectors and training data amplifies the effectiveness
of word vectors for both architectures. Conversely, it was observed that compared to word2vec,
GloVe produced more accurate word embeddings for semantic evaluation tasks in Azerbaijani.
In contrast, for syntactic evaluation tasks, the inverse was true.

Assessment of the Results from Applying Methods Like Word2Vec, Skip-Gram, FastText,
and GloVe for the Language Modeling of Agglutinative Languages

In the Chinese, Japanese, and Korean languages, the FastText method offers significant
advantages in text classification tasks over byte-level one-hot encoding. This underscores
the importance of effective text representation, especially for languages that employ an
ideographic writing system.

The Turkish language, with its unique morphology and structure, demonstrates that
methods like Word2Vec are successfully employed across various scenarios, including
text classification and sentiment analysis. However, the specific choice in word modeling
approach, for instance, opting between CBOW and SkipGram or employing Doc2Vec, may
be contingent on the task at hand and data availability. This highlights the importance of
the experimental validation of diverse methods to optimize performance across different
NLP applications.

Furthermore, when exploring semantic relations, such as hypernymy in the Turkish
language, word-embedding-based methods, augmented by semantic projection and biased
classification, can provide deeper and more insightful representations of relationships
between words.

For the Arabic language, the focus is placed on morphological word embedding, con-
sidering its intricate morphology. There is also an emphasis on employing various methods
for clustering and key sentence extraction to enhance content analysis and automated text
annotation efficacy. Specifically, the use of subwords and unsupervised methods can be
particularly advantageous for machine translation and summarization, respectively.

Regarding the Tatar language, research emphasizes the importance of word embed-
ding method selection, taking into account the language’s specific linguistic features and
contextual situation. Comparing various word embedding methods, such as Skip-gram,
FastText, and GloVe, reveals that efficacy can vary significantly depending on the language’s
unique characteristics.
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As for the Azerbaijani language, the results are promising using Word2Vec and GloVe
for semantic and syntactic evaluations, with embedding dimensionality and data volume
emerging as crucial factors for optimizing the quality of embeddings.

3.2. Pretrained Language Models

The transformer is a sophisticated deep learning architecture employing an atten-
tion mechanism to analyze text sequences. In contrast to conventional models reliant
on recurrent neural networks, the transformer does not rely on sequential connections,
excelling at capturing extensive dependencies in text. It comprises two pivotal elements:
attention and transformer blocks. The attention mechanism empowers the model to assign
varying weights to words within a sequence, directing its focus to the most pivotal portions
of the text. Transformer blocks are layers applying nonlinear transformations to input
representations, facilitating the acquisition of language patterns and structures [37].

Transformers, forming the foundation for large language models in natural language
processing (NLP), have revolutionized the field by endowing models with unparalleled
proficiency in understanding and generating text consistently. Transformers exhibit remark-
able efficacy across various NLP tasks for several reasons. Firstly, their high parallelizability
enables the simultaneous processing of multiple parts of a sequence, accelerating both
training and inference.

Moreover, transformers adeptly capture long-term dependencies in text, enhancing
the comprehension of overall context and fostering the generation of more cohesive text.
Their flexibility and scalability render them easily adaptable to diverse tasks and domains.
This section delves into large language models pre-trained with a transformer in NLP,
elucidating their operational mechanisms and discussing their merits and drawbacks.

3.2.1. BERT

In 2018, Google introduced BERT, which continues to be a frequently used modeling
architecture due to its high efficacy in various NLP tasks. This model is a pre-trained
one based on unlabeled textual data from open sources like BookCorpus and Wikipedia.
Rooted in the transformer framework, its unique bidirectional nature allows the model to
capture intricate dependencies between words. By fine-tuning the model on labeled data
from specific tasks, BERT achieves competitive performance.

In its structure, BERT employs the encoder component of the transformer architecture.
There are both base and large versions of the model, differing in the number of layers and
the number of self-attention heads they have, with 12 and 24 layers, respectively. The total
count of adjustable parameters reaches several hundred million, necessitating significant
computational resources. Although most of the high achievements initially came from
using the 24-layer BERT, issues often arose due to the limited computational power of
machines. To address this challenge, the ELECTRA model was proposed. ELECTRA is
designed to be more efficient than BERT, optimizing both training time and model size
while retaining, or in some cases even surpassing, the performance of larger models like
BERT. It rethinks the pre-training process and utilizes a replaced token detection task,
distinguishing it from BERT’s masked language model approach [38].

Like GPT, BERT uses contextual embedding. For each word, a fixed number of 768-
dimensional embedding vectors are determined, serving as the model’s input sequences.
BERT outputs a vector with 768 parameters for each word/phrase based on its internal
calculations. These output sequences then become embeddings, representing the sentence
sequence in the context of the data. In simpler terms, an initial input to BERT has a basic
vector layer, but after processing through BERT, a contextual vector is produced using the
entire word vector.

The model comprises input formatting and embedding extraction parts (Figure 5).
Special tokens like [CLS] and [SEP] are used to denote the beginning and end of a sentence,
respectively. [PAD] is used for padding, and [UNK] indicates an unknown word. The em-
bedding layers include token embeddings, segment embeddings, and position embeddings.
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For token embeddings in BERT, the WordPiece method is commonly used for tokenization.
Segment embedding examines the semantic relationship of up to two sentences. Position
embedding retains the position information of a word to create a word sequence.
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Even though BERT uses bidirectional encoding, it operates quite differently from
recurrent neural networks. This is because BERT maps the obtained position embeddings
of each token to segment embeddings to represent a word’s property and its location. In
other words, all that is needed is to format the input text using the embedding layer and let
the encoder provide the appropriate output.

BERT’s Pre-Training Algorithm

There are two main approaches, with one being the Masked Language Model (MLM).
The MLM is trained to predict words that are randomly masked in a sentence. For instance,
consider the sentence: “I [MASK] in Almaty”. Here, the word “live” has been masked. The
model then tries to predict this masked word, and its training is optimized based on the
associated loss. This method enables the model to learn to capture semantic relationships
and the context within a sentence. This specific technique is central to language modeling
in BERT.

Next sentence prediction (NSP): to further train the model, pairs of sentences are
presented, and the model must determine whether the second sentence is a continuation of
the first (Figure 6).
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One of BERT’s main advantages is its multilingual capabilities. It is trained on a
vast volume of polysemous texts, allowing it to work with data in multiple languages.
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Additionally, its bidirectional nature, which considers not only the preceding context
in a sentence but also the subsequent one, enables the model to understand semantic
relationships between phrases. Once pre-trained, BERT can be fine-tuned for specific tasks
such as named-entity recognition, text classification, text generation, and more.

Since the introduction of BERT, several improvements and variations have been made
to further optimize its performance and applicability. Some of these enhancements are
provided below (Table 1).

Table 1. Brief comparison of BERT models and variants based on various characteristics.

Model Key Features Features of Pretraining Parameters

BERT Based on the Transformer architecture.
Uses masked language models (MLM) for pre-training.

Masking 15% of words in a sentence.
Predicting the masked words. 110 M (BERT-base)

RoBERTa Optimized BERT.
Removes NSP.

More data and batches during
pre-training. Reduced use of masking. 340 M (BERT-large)

ALBERT Factorization of weight parameters. No NSP. Uses MLM. 125 M (RoBERTa-base)

XLNet Uses Transformer-XL.
Combines BERT and GPT.

Uses permutation language models
(PLM). 355 M (RoBERTa-large)

DeBERTa Introduction of enriched attention matrices.
Dynamic weighting of different attention layers. MLM 12 M (ALBERT-base)

DistilBERT Compressed version of BERT—40% fewer parameters
while maintaining 97% performance. MLM 18 M (ALBERT-large)

Electra Replacement of pretraining with discriminator
and generator.

Uses Replaced Token Detection instead
of MLM. 110 M (XLNet-base)

FinBERT (Financial Sentiment Analysis with Pre-trained Language Models) is a varia-
tion of BERT specifically trained for processing financial data to perform sentiment analy-
sis [39]. It is adept at understanding specialized “investment jargon” and precisely gauging
the emotional tone of a text. It is trained using text from financial news services and data
from the FiQA dataset.

RoBERTa (A Robustly Optimized BERT Pretraining Approach) is an enhanced ver-
sion of BERT developed by Facebook AI. While built on BERT’s foundations, RoBERTa
incorporates a more refined pretraining process, such as longer sequences, larger datasets,
and dynamic training parameter tuning. It employs an advanced methodology, signifi-
cantly more computational resources, and substantially more data. Additionally, RoBERTa
introduces dynamic masking that changes during training [40].

ALBERT (A Lite BERT for Self-supervised Learning of Language Representations) is
a model developed by Google Research which focuses on optimizing BERT’s parameter
usage. It utilizes a “factorized embedding parameterization” architecture to reduce the
total number of network parameters, allowing for more scalable models with constrained
resources [41].

XLNet (Generalized Autoregressive Pretraining for Language Understanding) melds
concepts from BERT and Transformer-XL. Unlike BERT, which predicts masked words,
XLNet considers the complete sentence context, aiding the model in capturing long-term
dependencies [42].

DeBERTa (Decoding-enhanced BERT) is built upon RoBERTa with added decoding
enhancements, dynamic masking, and a more intricate attention mechanism. In tests, it
exhibited superiority over human benchmarks in the SuperGLUE challenge [43].

DistilBERT (Distillation of BERT Model for Sequence-to-Sequence Tasks) is a stream-
lined version of BERT created using the knowledge distillation method. It learns to transfer
the knowledge from a more complex model, like BERT, into a more compact form, making
it faster and more efficient in operation [44].

Electra (Efficiently Learning an Encoder that Classifies Token Replacements Accu-
rately) is a model designed by Google Research. It introduces an efficient pretraining
method in which random words are replaced with words predicted by the model. This
enables a more effective utilization of supplementary resources. Despite this, DistilBERT
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remains a more resource-conservative version, even though it still demands substantial
computational resources [45].

These advancements show how researchers consistently aim to refine and expand
concepts associated with BERT, targeting higher performance and versatility in various
natural language processing tasks.

After its preliminary training, the BERT model can undergo further training for specific
tasks through fine-tuning. This enables BERT to grasp more intricate and higher-level
semantic nuances in the text, making it a potent tool for diverse NLP tasks.

The BERT model boasts numerous advantages. However, like all technologies, it also
has its downsides:

− BERT, especially its larger versions like BERT Large, encompasses a considerable
number of parameters. This leads to high computational demands during training
and deployment, presenting challenges for systems with restricted computational
capacities. Additionally, BERT has a set maximum sequence length it can handle,
which can be an issue for texts with long contexts or documents.

− BERT processes words and symbols alike, potentially leading to unnecessary pro-
cessing of punctuation and other non-essential text elements. Moreover, BERT does
not consider the internal order of characters within words (morphological structure),
which can be a limitation for languages with rich morphology.

− Effectively training BERT requires vast and varied data volumes. This can be chal-
lenging for languages with limited available data, such as agglutinative languages.
BERT also views context within a specific window, possibly overlooking more distant
dependencies between words.

− BERT might capture noisy data during pre-training, which could affect its generaliza-
tion ability on new data.

It is important to note that many of these drawbacks can be mitigated or overcome
with improved model versions, additional fine-tuning and adaptation methods, and the
integration of BERT with other techniques and architectures.

Enhancements and Modifications for Agglutinative Languages

In Ref. [46], two models, ARBERT and MARBERT, were introduced for data classifica-
tion tasks focusing on the Arabic language. Both ARBERT and MARBERT utilized the same
architecture as BERTBase; however, MARBERT did not incorporate NSP (Next Sentence
Prediction) and used the WordPiece tokenizer. The dataset was expanded with Twitter
data for pre-training the new MARBERT model. Fouzi Harrag and his team introduced
a combined ARABERT and GPT2 model using transfer learning to detect text produced
by various AI bots in Arabic. For generating fake sentences, GPT2-Small-Arabic was used.
The proposed model was found to significantly outperform RNN-based models.

In Ref. [47], a BERT-BGRU model was introduced for the task of recognizing Arabic-
named entities. Here, BERT combined multiple attention layers, and fine-tuning BERT as a
base input representation model effectively reduced the training time for the subsequent
deep-neuralnetwork-based model.

Bozuyla et al. [48] implemented a Turkish specialized transformer, BerTURK, to
determine the authenticity of Turkish COVID-19 news on social networks. The model’s
efficiency was achieved through a minimal fine-tuning strategy, boasting a prediction
accuracy of 98.5%.

AL-Qurishi et al. [49] developed AraLegal-BERT, a bidirectional encoder transformer
trained on legal documents. It followed the same procedure as in AraBERT by Antoun et al.
(2020) [50].

For the development of the AraLegal-BERT model, a lexicon of around 64,000 words
was used which was constructed based on a subword segmentation approach to divide
all tokens into prefixes, suffixes, etc. [51]. Comparative analyses showed that a model
pre-trained based on a specific domain performed better than the standard BERT models.
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In the 2022 [52], the BERT model was enhanced by feeding it with two sentences: the
first one containing word expressing sentiment and the second one providing information
about the aspect, essentially assisting in aspect-based sentiment analysis. Experiments
conducted on three Arabic datasets reached a peak accuracy of 89.51% for hotel reviews.

Alammary, in 2022, presented a systematic review of BERT models for Arabic-language
text classification, including models like Multilingual BERT, AraBERT, MARBERT, Ara-
bicBERT, ARBERT, XLM-RoBERTa, QARiB, GigaBERT, and ArabALBERT. Based on the
analysis, the author concluded that MARBERT, QARiB, ARBERT, AraBERT, and Ara-
bicBERT are the most effective models. A plausible explanation for this finding is the size
of the pre-training corpora used for training these models [53].

As evident from the review, research on BERT-like models for the Arabic language is
advancing and increasingly addressing diverse NLP tasks.

Acikalin et al. [54] introduced two methods in the context of sentiment analysis: (a) fine-
tuning the BERT model and (b) applying the base BERT model after translating Turkish texts
into English. Their findings indicated that (a) using the BERT model for sentiment analyses
yields better results than other methods, and (b) English-specific BERT models outperform
the multilingual BERT model when there are ample training data available.

Mutlu et al. [55] developed a manually annotated dataset of Turkish tweets containing
sentences of varying sentiment and polarity. They implemented base models and adapted
models named TBERTmarked, TBERTmarked-TS, and T-BERTmarked-MP. As a result, the
proposed models demonstrated superior performance in a target sentiment analysis.

In Ref. [56], a language model capable of understanding linguistic phenomena of the
Korean language was developed and trained on smaller datasets. By leveraging linguistic
features and part-of-speech (PoS) tagging during pre-training, models based on transformer
architecture and bidirectional language representations proved effective not just for Korean
but also for other agglutinative languages.

In Ref. [57], a clinical BERT model tailored to Japanese clinical narratives was intro-
duced. The model was pre-trained on a vast domain-specific dataset, facilitating accurate
phrase generation in complex tasks like question-answering or recognizing causal relation-
ships using genuine clinical texts.

In Ref. [58], an enhanced version of the multilingual BERT, termed E-MBERT, was
proposed. It integrates a target language by expanding the vocabulary, encoders, and
decoders and then continues pre-training. This approach can be applied to any language
with limited datasets not supported by multilingual BERT, especially for named-entity
recognition tasks. Feng et al. [59] developed a language-agnostic BERT sentence-embedding
model supporting 109 languages. Various methods were examined, including masked
language modeling (MLM), translation language modeling (TLM), dual-encoder translation
ranking, and additive margin softmax. The introduction of a pre-trained multilingual
language model significantly reduces the need for parallel training data, achieving an
80% reduction while attaining 83.7% bi-text retrieval accuracy over 112 languages on
Tatoeba. The combined methods outperform previous benchmarks and remain competitive
in monolingual transfer learning. Additionally, parallel data mined from CommonCrawl
using their model proved effective for training NMT models for English–Chinese and
English–German.

Mansurov et al. [60] introduced a BERT-based model, named UzBERT, pre-trained
on news websites for the Uzbek language. The proposed model was trained on a small
corpus of approximately 140 million words. Based on experiments, its accuracy on the
masked language model task was significantly higher than that of the multilingual BERT.
UzBERT has a smaller vocabulary size compared to mBERT, which means it demands fewer
resources for fine-tuning. This characteristic is theorized to enhance its ability to capture
the subtleties of the language, as it was exclusively trained on Uzbek texts.

Meanwhile, on the global stage research is pivoting toward multilingual and universal
strategies, notably the development of E-MBERT and the crafting of language models
that support scores of different languages, providing remarkable performance through
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cross-lingual embeddings. Thus, the adaptability and modifiability of the BERT architecture
render it promising for text-processing tasks across various languages and domains. Each
of the above-mentioned research endeavors underscores the importance of specialized
pre-training and language-specific adaptation to enhance model efficacy.

3.2.2. GPT

GPT (Generative Pre-trained Transformer) is a series of neural language models
developed by OpenAI. GPT basically uses the goal of training a language model with an
autoregressive approach, predicting the next word in a sequence based on the context of the
preceding words. Unlike BERT, GPT does not use MLM or NSP tasks. The models utilize
the transformer architecture but only employ the decoder blocks. One of GPT’s defining
features is its ability to generate texts as opposed to merely predicting the likelihood of
subsequent words. The original GPT-1 model was trained on the BooksCorpus dataset
(Table 2). The BooksCorpus contained about 7000 unpublished books, aiding in training
the language model on unseen data. GPT employed a 12-layer decoder, utilizing only the
transformer structure with masked self-attention for language model training. The masking
ensured that the language model could not access subsequent words to the right of the
current word during training.

Model Training Details:

− A Byte-Pair Encoding (BPE) vocabulary with 40,000 merges was used.
− The model utilized a 768-dimensional state to encode tokens into word embeddings.

Positional embeddings were also learned during training.
− A 12-layer model with 12 attention heads per self-attention layer was employed.
− A 3072-dimensional state was used for the positional feedforward layer.
− The Adam optimizer was used with a learning rate of 2.5 × 10−4.
− Attention, residual, and embedding dropout were applied for regularization, with a

dropout rate of 0.1. A modified L2 regularization was also applied to weights without bias.
− The GELU activation function was used.
− The model was trained for 100 epochs on mini-batches of a size of 64 and a sequence

length of 512. In total, the model had 117 million parameters.

One of the most significant achievements of this model is its impressive zero-shot
performance across various tasks. Studies have shown that the model achieved zero-shot
capabilities in various NLP tasks such as question-answering, coreference resolution, and
sentiment analysis, all thanks to its pre-training. GPT has proven that a language model
serves as an effective pre-training objective that can aid the model in generalizing well.
The architecture facilitates transfer learning and can execute a myriad of NLP tasks with
minimal fine-tuning. This model demonstrated the power of generative pre-training and
paved the way for subsequent models that could further harness this potential with larger
datasets and more parameters.

Since the debut of the original GPT model, several enhancements and variations have
been introduced to optimize its performance and capabilities. Some of the improvements
include the following:

1. GPT-2 is the successor of the original GPT model. GPT-2 was trained on a signifi-
cantly larger dataset and boasts a higher capacity (1.5 billion parameters). It showcased
impressive results in text generation. However, due to concerns about its potential misuse,
its release was restricted. To compile a comprehensive and high-quality dataset, the au-
thors scraped the Reddit platform and extracted data from outgoing links in highly rated
articles. The resultant dataset, named WebText, consisted of 40 GB of textual data from
over 8 million documents. This dataset was considerably larger than the Book Corpus used
to train the original GPT model. All Wikipedia articles were excluded from WebText since
many test sets incorporate Wikipedia articles.

GPT-2 had 1.5 billion parameters; this is tenfold the number in GPT-1, which had
117 million parameters. The primary differences from GPT-1 included the following:

− GPT-2 featured 48 layers and utilized 1600-dimensional vectors for word embeddings.
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− It employed a larger vocabulary of 50,257 tokens.
− A more substantial batch size of 512 and a larger context window of 1024 tokens were used.
− Layer normalization was moved to the input of each sub-block, and additional layer

normalization was added after the final self-attention block [61].

GPT-2 demonstrated that training on larger datasets and having a higher number of
parameters enhanced the language model’s ability to comprehend tasks, surpassing the
current state of the art in many zero-shot conditions. Additionally, the decrease in the
perplexity of language models showed no signs of plateauing and continued to drop as the
number of parameters increased.

An intriguing capability of GPT-2 is its zero-shot task transfer. Zero-shot learning
is a specific instance of task transfer in which no examples are provided and the model
understands the task based solely on the provided instruction. Instead of reshuffling
sequences, as was carried out with GPT-1 for fine-tuning, inputs in GPT-2 were provided
in a format expecting the model to grasp the task’s nature and supply answers. This
was designed to mimic behavior in zero-shot task transfer scenarios. For instance, for
an English-to-French translation task, the model was presented with an English sentence
followed by the word “French” and a hint (:). The model was expected to recognize this as
a translation task and provide the French equivalent of the English sentence.

2. GPT-3 boasts a considerable number of parameters, standing at 175 billion, making
it one of the most extensive neural models to date. It was trained on a combination of five
distinct corpora, each assigned a specific weight. High-quality datasets were prioritized,
with the model being trained on them for more than a single epoch. The datasets used
include Common Crawl, WebText2, Books1, Books2, and Wikipedia.

The architecture of GPT-3 remains consistent with GPT-2, featuring 96 layers, each
containing 96 attention heads. The word-embedding count was increased to 12,888, and
the context window size was expanded to 2048 tokens. The Adam optimizer was utilized
with β1 = 0.9, β2 = 0.95, and ε = 10−8. Additionally, alternating dense and locally striped
sparse attention patterns were implemented.

GPT-3 was evaluated on an array of language models and NLP datasets. It performed
admirably on NLP tasks such as closed-book question-answering, schema resolution, and
translation, often outpacing the most contemporary or comparably fine-tuned models.

However, certain shortcomings of this version were identified:

− Its unidirectional nature struggles with tasks like natural language inference, gap-
filling, and some reading comprehension tasks and loses coherence when framing
long sentences, often repeating text sequences [62].

− The model weighs each token equally and lacks task-awareness or goal-directed token fore-
casting. To mitigate this flaw, suggestions included enhancing training objectives, employing
reinforcement learning for model fine-tuning, and incorporating additional modalities.

− The model’s vast architecture complicates inferencing and offers reduced language
and result interpretability.

− Like other model versions, it can generate phishing emails, spam, and texts with racial
or ethnic biases.

3. The GPT-3.5 model comes in three variants with parameters of 1.3B, 6B, and 175B. While
this model is trained based on GPT-3 data, it undergoes an additional fine-tuning process with
human feedback to adjust the model’s behavior. The model was trained on data up to the fourth
quarter of 2021 and serves as the foundation for the ChatGPT dialogue bot.

4. GPT-4 (March 2023) represents the evolutionary stage in the GPT series, surpassing
its predecessor, GPT-3.5, by enhancing capabilities like processing longer text segments
and images. The essence of GPT-4’s training encompasses transferring the rich knowledge
acquired during preliminary training to diverse new tasks. Relying on large-scale pre-
training, this approach enables the model to grasp linguistic patterns and context, which
can then be fine-tuned for optimal performance in specific tasks. Memory and attention
mechanisms play a crucial role, ensuring GPT-4’s effective learning even with limited
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data. Enhanced linguistic capabilities and multilingual support augment its proficiency in
producing higher-quality and coherent responses in various interactions.

Table 2. Evolution of the GPT model [63].

GPT Versions Year of Publication Parameters Architecture Improvements Training Dataset

GPT-1 2018 117 million
12 decoder layers and 768 hidden

layers, including softmax and
linear layers

BookCorpus

GPT-2 2019 1.5 billion
48 decoder layers, 1600 hidden

layers, and the normalization layer
was extended

WebText

GPT-3 2020 175 billion 96 decoder layers and
12,288 hidden layers Common Crawl

GPT-3.5 First version: 2021 175 billion WebText2

GPT-4 Last version: March
2023 Undefined

Combines Transformer and
CNN+RNN models; it can process

and analyze images
Undefined

Other improvements and modifications of the GPT model for agglutinative languages
are described below.

In recent research efforts, various adaptations and evaluations of large language
models, such as GPT-3, for non-English languages have been undertaken. This section
provides an overview of studies that explore the performance, challenges, and applications
of GPT-based models in linguistic contexts beyond English.

1. For the Arabic Language:

Antoun et al. [64] developed the first refined model for Arabic language generation,
AraGPT2, trained from scratch on a large corpus of Arabic Internet texts and news articles.
Their larger model, ARAGPT2-MEGA, which has 1.46 billion parameters, has shown
success in various tasks including synthetic news generation and zero-shot question-
answering. Regarding text generation, their best model achieves a perplexity of 29.8 on
held-out Wikipedia articles. A human evaluation study showed that AraGPT2-MEGA
significantly excels in creating news articles that are hard to differentiate from those written
by humans. In [65], researchers evaluated the efficacy of 24 models for detecting sentiment
and sarcasm in Arabic texts. The findings indicated that the AraGPT2 variants show
relatively lower performance, especially when compared to BERT-based models, suggesting
a potential unsuitability for classification tasks, i.e., revealing potential limitations of the
GPT-2 architecture for Arabic in text-classification tasks.

Nagoudi et al. [66] created a set of five autoregressive language models named JASMINE,
based on GPT-3 for the Arabic language, with parameters ranging from 300 million to 13 billion.
The models were trained on approximately 400 GB of texts representing various domains and
dialects of the Arabic language. JASMINE underwent rigorous testing on various natural
language processing (NLP) tasks across different training regimes, and the results showed that
the models can generate text indistinguishable from that written by a human.

In Ref. [67], an ensemble learning model for Arabic sentiment analysis was proposed
which incorporates a bidirectional long short-term memory (BiLSTM) model and a Gener-
ative Pre-trained Transformer (GPT) model. Experiments were conducted that involved
separate applications of BiLSTM and GPT and a comparison with the ensemble model. The
proposed ensemble model demonstrated an accuracy improvement of approximately 7%
compared to individually trained models, indicating that model accuracy can be enhanced
when combining different architecture”.

2. For the Korean Language:

Kim et al. [68] emphasized the challenges and opportunities associated with using
large-scale language models, like GPT-3, especially in the context of non-English data such
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as the Korean language, and various aspects of model performance. The authors introduced
HyperCLOVA, a Korean version of the 82B GPT-3, trained on a Korean-centric corpus of
560B tokens. It was enhanced through “kenization” (a play on tokenization), adapted for the
Korean language, with a customized training configuration. Thus, the research underscores
the importance of adapting large language models to specific languages and cultures,
supporting this with results obtained from the Korean version of GPT-3, HyperCLOVA.
The study also suggests approaches to optimize AI design and integration processes in
application development without deep technical expertise. Many studies emphasize that
large language models (LLMs) not only learn language patterns during training but also
the social biases present in the data they are trained on, which can pose risks when they are
used. Due to linguistic and cultural characteristics in South Korea, existing bias research
and resources are challenging to apply, emphasizing the need for localized datasets on this
issue. To address this, KOSBI—a new dataset on social biases in the Korean language—was
introduced. It includes 34,000 pairs of contexts and sentences, covering 72 demographic
groups in 15 categories [69]. Experiments showed that using moderation based on filtering
can reduce social biases in content generated by models, such as HyperCLOVA and GPT-3,
by an average of 16.47%.

In Ref. [70], researchers introduced another dataset, “Sensitive Questions and Accept-
able Answers” (SQUARE), which comprises 49,000 sensitive questions and 88,000 answers
(of which 42,000 are acceptable and 46,000 are unacceptable) in the Korean language. This
dataset was created using HyperCLOVA technology and is based on real news headlines.
Experimental data indicate that using SQUARE enhances the ability of models, such as
HyperCLOVA and GPT-3, to generate acceptable answers, underscoring the practical utility
of the new dataset. However, comparative experiments applying both corpora to address
set tasks have not yet been investigated.

3. For Japanese:

Kasai et al. [71] assessed the performance of large language model (LLM) APIs, in-
cluding ChatGPT, GPT-3, and GPT-4, in relation to Japanese national medical licensing
exams over the past five years. The study provides the IGAKU QA test dataset. The results
showed that GPT-4 outperforms the other models, successfully passing all exams during
the specified period. Despite this, the study identified critical flaws in existing LLM APIs.
Furthermore, the analysis revealed high costs for the API and a reduced maximum context
size for the Japanese language due to the peculiarities of tokenizing non-Latin scripts.

Lai et al. [72] evaluated the multilingual capabilities of ChatGPT and other large lan-
guage models (LLMs) in performing various natural language processing (NLP) tasks, such
as part-of-speech tagging, named-entity recognition, relation extraction, natural language
text generation, question-answering, commonsense reasoning, and text summarization.
The evaluation was conducted in 37 languages with varying levels of available resources.
The results show that ChatGPT exhibited diminished efficiency in zero-shot learning across
different languages in the considered NLP tasks, underscoring the importance of develop-
ing models specific to particular tasks and languages to enhance performance.

3.2.3. Large Language Model Meta AI (LLAMA)

A base model refers to a model trained on a large volume of unlabeled training data
in an unsupervised manner. This state of the model is leveraged for various NLP tasks
without the need for retraining or with minimal parameter tuning.

Many models have emphasized scaling, believing that more parameters lead to higher-
quality outcomes. However, the costliness of the training process does not always resonate
well with every researcher. Studies, such as [73], have highlighted in their research that high
performance can be achieved by training models based on quality-rich and voluminous data.

This year, Meta released its large language model, LLaMa, with up to 65 billion param-
eters, which, like its predecessors, employs the transformer architecture. The primary focus
was on expanding the training data and reducing the weight count, ensuring that it does
not exert substantial computational pressure during data training. The BPE algorithm was
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used for data tokenization. Ultimately, the model was trained based on 1.4 trillion tokens
gathered solely from open sources like Wikipedia, ArXiv, and GitHub [74]. The model
provides a user-friendly interface for conducting experiments, encompassing automatic
parameter optimization and an auto-stop feature when deemed necessary. It incorporates
a robust tool for analyzing and visualizing experiment outcomes, assisting researchers in
understanding why certain models demonstrate greater efficiency than others. LLaMA
also has been adapted and refined for medical applications, as evidenced by a model
called ChatDoctor which utilized LLaMA and was fine-tuned using a large dataset of
patient–doctor dialogues to achieve better performance in medical consultations [75].

Initially, to gain access to the model weights, one had to submit an application for
academic research or other specific purposes. Later, all the weights were posted on the
imageboard 4chan, leading to their active dissemination among researchers and developers.
With 13 million parameters, LLaMa outperformed GPT-3 on various test tasks using fewer
tunable parameters. The following improvements were made to the transformer model:
(1) A normalization layer was incorporated at every sub-layer of the model, enhancing the
stability of the training process. In practice, the root mean square normalization function
is applied to normalize the input signal of each transformer layer. This approach revisits
invariance properties and the capability of adapting the implicit learning rate. (2) The
SwiGLU activation function was used instead of the standard ReLU activation function.
This modification noticeably enhances training efficiency. (3) The use of rotary embeddings
borrowed from the GPT-Neo-X project. These embeddings are added at every layer of the
network, aiding in accounting for positions within the text.

A refined version, LLaMa 2, was recently released. One of the major changes includes
an increased context length and attention to Grouped Query Attention (GQA). The context
window size was expanded from 2048 to 4096 tokens, enabling the model to process and
generate more extensive information. This is particularly beneficial when dealing with long
documents, chat histories, and summarization tasks. Moreover, certain modifications were
made to the attention mechanism to handle the scale of contextual data. Various attention
paradigms were compared within the study, including using multiple heads, a multi-query
format with a single key-value projection, and a GQA format incorporating eight key-value
projections. This allowed for more efficient handling of vast amounts of data and context.

LLaMa 2 introduced a significantly updated and expanded training dataset. The new
dataset is anticipated to be 40% larger in volume compared to the data used for training
the initial LLaMa model. In total, the researchers utilized over 2 trillion tokens for training.
This indicates that the model was trained on a much larger volume of information, which
might enhance its performance and generalization capability.

Researchers noted that when working with long contexts or large batch sizes, the com-
plexity of the attention mechanism in the original MHA format significantly increases. Thus,
employing multiple key-value projections and Grouped Query Attention (GQA) assists in
managing this complexity and provides more efficient processing of contextual data.

3.2.4. StableLM

A base model refers to a model trained on a large volume of unlabeled training data
in an unsupervised manner. This state of the model is leveraged for various NLP tasks
without the need for retraining or with minimal parameter tuning.

StableLM was trained on unlabeled data from Wikipedia, YouTube, and PubMed,
all part of The Pile dataset, amounting to 1.5 trillion tokens. The initial version of the
model contains between 3 and 7 billion parameters, with a high likelihood of scaling up to
65 billion. The open-source base model facilitates customization for various tasks aligning
with scientific and other objectives. However, it is worth noting that this model supports a
limited set of languages, which constrains its application breadth. StableLM is predicated
on the NeoX transformer model. A significant advantage of StableLM is its ability to
maintain a consistent internal state, thereby ensuring lexical and grammatical coherence
in the generated text. This feature empowers StableLM to produce extensively long and
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verbose texts, positioning it as a competitive tool for automatic text generation. The stability
of the internal state and the capability to produce high-quality texts with minimal training
overhead are the primary assets of this model [76].

The training process of StableLM is executed through a masked language modeling
task which entails presenting a sequence of text data with specific masked tokens. The
subsequent step involves the model attempting to restore these masked tokens. This
training methodology fosters the development of StableLM’s capability to generate text
that adheres to grammatical norms and holds semantic relevance.

3.2.5. Bard

Bard is one of the modern deep learning models released by Google in March 2023.
Notably, Bard addresses the issue of reducing computational power requirements by
creating an efficient AI model. Through reducing the number of parameters during training,
the model becomes faster, cost-effective, and energy efficient. Its architecture also boasts
greater scalability, enabling easy adaptation to a myriad of NLP tasks and applications [77].

Based on the Transformer-XL architecture, Bard represents a large language model (LLM)
designed for processing extensive text sequences. This architecture, an extension of the original
transformer, excels in language modeling tasks by adapting to extended text sequences.

Comprising two main components, an encoder and a decoder, Bard operates through
a stack of internal attention layers. Self-attention facilitates the model’s capacity to capture
long-range word relations, an essential trait for generating coherent natural-language text.
Bard also integrates a positional encoding layer, assisting the model in understanding the
positions of words within the input text. Additionally, there is a residual connection layer,
which prevents overfitting while maintaining model generalization, and a normalization
layer, stabilizing the training dynamics for sequential learning. The model was trained
using a comprehensive dataset encompassing various textual forms, such as books, articles,
and code. Furthermore, by employing an MLM objective, the model predicts occluded
words in a given text sequence.

Unlike the ChatGPT chatbot, Bard, when generating responses, leverages current
online information by accessing the Internet, offering more accurate and specific answers
to queries. Other distinctions from ChatGPT are Bard’s multilingual capabilities, which
enable it to understand natural language in various linguistic contexts, catering to a broader
audience. Furthermore, Bard was implemented based on the LaMDA language model
(Language Model for Dialogue Applications) [78]. Following the advent of the Bard chatbot,
Google opted to integrate it into its search engine, enhancing query processing to yield
superior results. This enhancement arises from the model’s ability to analyze the context
and semantics of a query, which refines the precision of the results. This proves particularly
beneficial for processing niche queries that traditional search engines might struggle to
satisfactorily address.

Experimental outcomes have demonstrated that the Bard model surpasses the GPT
model in recognizing user intents, as well as in sentiment analysis and text classification.

However, the Bard model does have its shortcomings. Despite its capacity to generate
seemingly coherent text, a more profound understanding of factual accuracy, originality in
expression, and the ability to capture the intentions and objectives of the text are essential
for its optimal operation. Furthermore, the model’s efficacy largely hinges on the quality of
training data, necessitating meticulous curation and a timely examination of the influence
of various datasets on language modeling.

4. Tools and Frameworks for Language Modeling

There are plenty of frameworks available for developing language models. Listed
below are commonly used libraries and tools that are user-friendly and open-source.

NLTK is an open-source library that offers a plethora of tools for natural language
processing. It provides tools for text processing, information extraction, and language
model training (https://www.nltk.org/ (accessed on 19 July 2023)).

https://www.nltk.org/
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NLTK provides a user-friendly interface for various tasks, including tokenization,
stemming, lemmatization, syntactic analysis, and sentiment analysis. Researchers, develop-
ers, and data processing specialists worldwide widely utilize NLTK to develop applications
in natural language processing and text data analysis. One of the key advantages of NLTK
is its extensive collection of corpora, incorporating textual data from diverse sources such
as books, news articles, and social media platforms. These corpora serve as a rich source of
data for training and testing models in the field of natural language processing [79].

Despite the wide benefits of the framework, there are some limitations.

- It may not scale efficiently for large-scale production systems;
- Some components may run slower than optimized platforms.

TensorFlow is an open-source deep learning framework that is widely used to imple-
ment language models. It offers many features that simplify the creation and training of
language models, including the following:

− Libraries for handling textual data;
− Algorithms for training language models;
− Tools for evaluating language models (https://www.tensorflow.org/ (accessed on 19

July 2023)).

TensorFlow stands out as a widely adopted deep learning framework supported by
a vibrant and robust community. It offers specialized libraries tailored for tasks such as
processing textual data, training language models, and evaluating model performance.
The ecosystem of TensorFlow is resilient, providing robust support for deploying models
across diverse environments. However, TensorFlow falls short on both usability and
speed, and debugging deep learning models within the TensorFlow framework can pose
challenges [80].

PyTorch is an another popular open-source deep learning framework used for lan-
guage model implementations (https://pytorch.org/ (accessed on 19 July 2023)). It has
functionalities similar to TensorFlow but is often lauded for its more user-friendly syntax.

PyTorch provides many capabilities and is particularly influential in deep learning
areas such as natural language processing (NLP) and computer vision.

Some of the outstanding characteristics of PyTorch include its high execution speed,
which is achievable even when processing complex graphs. This flexible library can run
efficiently on simple processors or in conjunction with graphics processors. PyTorch has
powerful APIs that make the library extensible and also provide a set of tools for natural
language processing.

Strengths:

- A dynamic computation graph allows for easier debugging and model modification;
- It is a popular choice for researchers due to its flexibility.

Weaknesses:

- A typical machine learning toolkit;
- In-depth knowledge of fundamental NLP algorithms is necessary [81].

Hugging Face is an open-source library specializing in transformer-based language
models. It encompasses pre-trained models as well as tools for fine-tuning and evaluating
them (https://huggingface.co/ (accessed on 19 July 2023)). The library stands out for its
extensive collection of pre-trained transformer models, offering a repository that includes
models for tasks such as text classification, named-entity recognition, summarization, and
translation.

Key information about Hugging Face in language modeling includes the following:

- It is known for its focus on transformer architectures, making it particularly suitable
for tasks that benefit from the attention mechanism and contextual embeddings;

- The library provides a rich selection of pre-trained transformer models, enabling users to
leverage state-of-the-art language representations for their specific NLP applications;

https://www.tensorflow.org/
https://pytorch.org/
https://huggingface.co/
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- It offers tools for fine-tuning pre-trained models on domain-specific data and evaluat-
ing their performance on targeted tasks. This allows users to adapt models to their
specific needs;

- It is designed to be user-friendly, providing straightforward interfaces for loading pre-
trained models, conducting inference, and fine-tuning for custom tasks. This accessibility
contributes to its popularity among both beginners and experienced practitioners.

Despite these strengths, it is essential to note that Hugging Face’s specialization in
transformer architectures may limit its suitability for tasks that require different model
structures. Additionally, customization options might be more constrained compared to
lower-level frameworks for users with specific requirements beyond transformers.

Gensim is also an open-source library primarily known for topic modeling and similar
tasks. While it provides tools based on Hidden Markov Models (HMM), it is better known
for its word-embedding functionalities, like Word2Vec, rather than HMM-based language
models. It offers tools for training, evaluating, and visualizing models.

Gensim excels in handling input data that exceed the capacity of RAM, employing
algorithms for efficient processing. With user-friendly interfaces, Gensim offers a multi-core
implementation of algorithms like Latent Semantic Analysis (LSA) and Latent Dirichlet
Allocation (LDA). Common applications of the library involve text similarity searches and
the transformation of words and documents into vectors.

Some of the key advantages of Gensim are as follows:

- A user-friendly interface;
- Scalability;
- Effective implementation of popular algorithms like LSA and LDA.

Despite the wide benefits of the framework, there are some limitations:

- It was primarily designed for unsupervised text modeling;
- It often requires integration with other libraries such as NLTK [81].

Evaluation Criteria in Language Modeling

There are various evaluation criteria that can be utilized to assess language models.
Some of the most common criteria include the following:

Perplexity—a measure of how well a language model predicts the next word in a
sequence [82–88]. A lower perplexity value indicates that the language model is better at
predicting the subsequent word (9).

Perplexity =
n

∏
i=1

p(wi|w1, ..., wi−1) (9)

where n is the total number of words in the corpus, wi represents the i-th word in the
corpus, and, p(wi|w1, ..., wi−1) is the probability of the i-th word given the preceding words
as predicted by the model.

Bits-per-character (BPC)—a metric that measures the average number of bits required
to encode a character in a language model [89–91]. A lower BPC indicates that the language
model is more efficient at encoding characters (10).

Bits− per− character = − 1
L
·∑i log2(P(xi)) (10)

where L is the length of the text, xi represents the i-th character in the text, and P(xi) is the
probability of the i-th character appearing according to the language model.

Cross-entropy—another measure of how well a language model predicts the next
word in a sequence [92,93]. It is similar to Perplexity but is calculated differently. Cross
Entropy compares two probability distributions, P(x) and Q(x). In the context of language
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models, we are comparing the predicted word probability distribution against the actual
word probability distribution (11).

Cross− entropy = −∑i P(xi)log(Q(xi)) (11)

Here, P(xi) is the probability of the i-th word appearing according to the language
model, while Q(xt) is the probability of the t-th word in the actual sequence.

There is also human evaluation which involves having people rate the quality of a
text produced by a language model. While this approach may be more subjective than
alternative tests, it helps in assessing the overall superiority of the language model’s
outputs. The best evaluation metrics for a specific language model depend on the task it is
being used for. For instance, if the language model is being used for machine translation,
Perplexity or cross-entropy might be more relevant. If it is used for text generation, human
evaluations might be more pertinent.

In addition to the aforementioned metrics, there are several other factors to consider
when evaluating language models. These include the following:

− The size of the language model’s training dataset;
− The architecture of the language model;
− The computational resources used for training the model;
− The specific task for which the language model is used.

Language model evaluation remains an active area of research. As language mod-
els become more potent, new evaluation metrics are being developed to better measure
their performance.

5. Key Challenges of Language Modeling for Languages with Morphological Structure

Many NLP research studies focus on popular languages with simple morphological
structures, such as English and Chinese. Based on these studies, it is challenging to
assess the effectiveness of various methods and their enhancements for other languages,
especially for agglutinative languages which have complex morphological structures [94].
This question remains unresolved since the efficiency of these methods for languages of
different typologies has not been fully determined.

Researchers Gerz et al. [95] implemented n-gram and neural language models for
50 languages. They found that a model’s effectiveness heavily depends on the language’s
morphological structure. Their results suggest that the complexity of modeling varies for
each language, which stems from the diverse morphological makeup of these languages.
These languages fall into different linguistic groups, such as agglutinative (mostly Turkic
languages), isolating, fusional, and introflexive.

From this, one can infer that a language’s morphological structure influences the
complexity of language modeling. There are several aspects related to language modeling
for languages with rich morphology:

− Languages with rich morphological diversity have a multitude of grammatical forms
and rules, leading to an increase in word form variations, making modeling and
understanding them more challenging. Complex morphology can result in ambiguity
in which the same word form can have different grammatical meanings in various
contexts, complicating precise interpretation and text generation.

− Different language types (agglutinative, isolating, fusional, etc.) have their unique morpho-
logical characteristics. This demands the development of specialized modeling methods
that effectively account for these differences. Many languages with rich morphological
structures, like several agglutinative languages, are often under-researched and have
limited data for model training, impacting the quality of produced language models.

− In some languages, words can be lengthy due to the presence of various morphemes.
This poses challenges when processing them with neural models, especially if the
model has a limited context length.
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Considering these complexities, research in language modeling should account for the
morphological intricacies of various languages and refine methods specifically tailored to
their unique requirements.

6. Conclusions

In this article, we navigated through the complex and evolving landscape of language
modeling, highlighting the breadth and depth of methodologies and technologies that
have been developed and refined to advance the field of NLP. From foundational statistical
approaches like n-grams and Hidden Markov Models to the groundbreaking advancements
brought forth by neural network models, the journey of language modeling reflects a
continuous quest for more sophisticated, accurate, and efficient ways to process and
understand human language.

The shift from traditional models like n-grams and Hidden Markov Models to neural-
network-based approaches marks a pivotal change, with the latter offering nuanced
means of capturing semantic relationships and contextual subtleties through models like
Word2Vec, GloVe, and FastText. The emergence of pretrained language models such as
BERT, GPT, LLAMA, StableLM, and Bard, primarily based on the transformer architec-
ture, represents a significant leap forward, significantly enhancing performance across a
spectrum of NLP tasks.

This article also highlights the exploration of language models for agglutinative
languages, emphasizing the need for versatile models that accommodate the diverse
linguistic structures worldwide. This endeavor is crucial for achieving inclusivity in
language technology.

While the analysis of various tools and frameworks—NLTK, TensorFlow, PyTorch,
and Gensim—demonstrate a rich landscape of options for language modeling, each with
its unique strengths and challenges, future work must focus on enhancing these tools for
greater accessibility and efficiency.

Future work in language modeling can be directed toward solving some key chal-
lenges, such as the following:

- Managing linguistic diversity: There is an increasing demand for the development of
models that can effectively handle a wide range of languages, especially those with
limited resources and morphologically complex languages. Future research should be
focused on creating more inclusive models that are capable of learning from limited
data and can be easily adapted to different linguistic contexts.

- Energy efficiency and scalability: Current models demand significant computational
resources. Future studies should investigate ways to make these models more energy-
efficient and scalable, which would enable their deployment in more varied environ-
ments with limited resources.

- Explainability and transparency: As models grow more complex, ensuring their ex-
plainability and transparency becomes essential. Research aimed at making these
models more understandable to users and developers will be critical for their respon-
sible and effective usage.

In conclusion, the field of language modeling is poised for continued innovation and
growth. The developments thus far have significantly enhanced our ability to process and
generate human language, bridging the gap between humans and machines. The future of
language modeling, while challenging, holds immense potential for further breakthroughs
that could redefine our interaction with technology and deepen our understanding of
language and communication.
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