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Abstract: Sustainable development strategies, as well as the shift toward a circular bioeconomy,
has led to high interest in the development and implementation of technologies that efficiently
utilize biomass as a raw material. Switching from fossil-based to bio-based resources requires the
consideration of many new challenges and problems. One of the crucial issues is the solubility of
lignocellulose or at least its ingredients. According to the trends and legislation, the selected chemicals
and methods of dissolution/treatment should also be environmentally friendly. The pretreatment
processes prepare biomass for further transformations (e.g., chemical, thermal including pyrolysis, or
biological) to valuable products such as biofuels, bio-oils, Fine Chemicals, solvents, plastics, and many
others. This review discusses the latest findings on the dissolution of biomass and its ingredients.
The application of novel, green solvents such as ionic liquids or deep eutectic solvents is discussed
in detail. The impact of the composition and structure of these solvents on the biomass/cellulose
dissolution process, as well as the mechanism of cellulose–ionic liquid interaction, is presented. Some
novel achievements in the usage of inorganic salts and specific metal complexes are also overviewed.
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1. Introduction

The depletion of fossil resources, as well as extreme environmental pollution, re-
sulted in several strategies and regulations on the use of renewable raw materials and the
development of greener, environmentally friendly technologies.

The trends are also reflected in world politics. For example, starting in 2020, the
development of the energy sector in the European Union is focused on renewable energy
sources (RES), such as solar energy (photovoltaics), wind energy (wind farms), hydropower
(hydropower plants), or biomass [1].

The problem with limited fossil resources and the negative environmental impact of
fuels based on crude oil derivatives is very serious, so the strategy of many countries is
to replace vehicles running on diesel or gasoline with electric ones. However, sustainable
development does not only apply to energy. It is also necessary to increase the use of
renewable raw materials in the chemical industry, ensuring biodiversity and environmental
protection. Lignocellulosic biomass plays a crucial role in renewable materials and can
be used in the production of so-called biochemicals. According to the report “Biomass
production, supply, uses and flows in the European Union”, prepared for the European
Commission, annual biomass production in Europe is estimated at 1466 Mt of dry matter
(agriculture 956 Mt and forestry 510 Mt) [2].

It is estimated that almost 50% of the world’s biomass is lignocellulosic biomass,
which is not used as food and has a higher energy value than the world’s demand. For
this reason, lignocellulosic biomass is the subject of many studies, aimed at developing
efficient methods of its processing. The first goal of biorefineries is to selectively separate
the major constituents of biomass (cellulose, hemicellulose, and lignin) and transform them
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into valuable bioproducts. This includes the production of Fine Chemicals and solvents (e.g.,
lactic acid, furfural, levulinic acid, 5-hydroxymethylfurfural), biofuels (e.g., bioethanol), or
energy (Figure 1).
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come all handling difficulties. After pretreatment. the biomass is more susceptible to fur-
ther transformations (chemical, enzymatic, chemoenzymatic, or thermal) into desired 
products. When the production of biofuels is considered, many thermal methods have 
been investigated (e.g., torrefaction, gasification, pyrolysis, and hydrothermal methods). 
One of the most promising methods is the pyrolysis of biomass (biomass degradation un-
der elevated temperature, in the absence of oxygen), where biofuels, bio-oil, biogas, and 
biochar can be produced [3]. 

The dissolution of lignocellulose and/or extraction of its constituents is an important 
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discuss novel, environmentally friendly methods and solvents for effective biomass and 
biomass constituent dissolution. Ionic liquids and deep eutectic solvents are discussed in 
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Figure 1. Possible methods of biomass processing in chemical industry.

The interest in biomass treatment is growing each year, which is reflected in the
number of publications, e.g., in ScienceDirect (Figure 2).
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Figure 2. Number of publications for “lignocellulosic biomass” term (according to ScienceDirect).

Biomass pretreatment is an important part of its further conversion and can be classi-
fied as physical, physicochemical, chemical, and biological. In many cases, the combination
of several methods is used. Selection of the appropriate pretreatment method depends
on many factors, e.g., the type of biomass, further conversion methods, or desired prod-
ucts. The goal of this step is to obtain more homogeneous raw materials and overcome
all handling difficulties. After pretreatment. the biomass is more susceptible to further
transformations (chemical, enzymatic, chemoenzymatic, or thermal) into desired products.
When the production of biofuels is considered, many thermal methods have been investi-
gated (e.g., torrefaction, gasification, pyrolysis, and hydrothermal methods). One of the
most promising methods is the pyrolysis of biomass (biomass degradation under elevated
temperature, in the absence of oxygen), where biofuels, bio-oil, biogas, and biochar can be
produced [3].

The dissolution of lignocellulose and/or extraction of its constituents is an important
issue, prior to any further transformations to value-added chemicals. In this paper, we
discuss novel, environmentally friendly methods and solvents for effective biomass and
biomass constituent dissolution. Ionic liquids and deep eutectic solvents are discussed
in detail.

2. General Characteristics of Lignocellulosic Biomass

The three main components of lignocellulosic biomass are cellulose (35–83% of dry
mass), hemicelluloses (0–30%), and lignin (0–43%) [4–6]. It also contains small amounts of
other molecules such as proteins, pectins, waxes, and minerals. The type and content of
these ingredients depend on the type of plant, e.g., grain husks (rice, wheat) and corn cobs
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are rich in silicon dioxide, while carbonates and phosphates can be commonly found in
wood (e.g., willow) [7–9].

The content of cellulose, hemicelluloses, and lignin depends on the type of plant, as
well as its part, age, and cultivating conditions. Generally, wooden species tend to have
a higher amount of lignin compared to green and softer plants such as grass. In Table 1,
the content of cellulose, hemicelluloses, and lignin in several examples of different plants
is presented.

Table 1. Content of cellulose, hemicelluloses, and lignin in different types of lignocellulosic biomass.

Type of Biomass
Content [%]

References
Cellulose Hemicelluloses Lignin

Grass 28.8–38.0 18.4–30.0 4.0–17.5 [10,11]
Sawmill wood chips 35.0–50.0 15.0–39.0 20.0–34.0 [6,12]
Walnut shells 25.6 22.7 29.9–52.3 [6,13]
Hazelnut shells 25.9 29.9 42.5 [14]
Walnut tree wood 40.8–49.8 33.4 21.8–29.1 [15]
Olive tree wood 31.5–31.9 11.3–15.5 32.5 [16]
Softwood 35.0–45.2 25.0–31.3 21.7–30.0 [14,17]
Hardwood 45.0–50.0 20.0–25.0 20.0–28.0 [14,17]
Poplar 42.7 21.7 26.9 [18]
Willow 44.3 22.6 25.1 [18]
Pine sawmill chips 44.0 26.0 26.0 [19]
Pine bark 19.0–21.9 18.3–25.0 38.0–40.7 [18,20]
Spruce bark 29.7 13.9 45.1 [18]
Olive tree leaves 5.7–8.5 3.8–5.4 39.6 [16]
Wheat straw 28.8–40.0 20.0–39.1 15.0–20.5 [14,17,18]
Switchgrass millet 30.0–50.0 10.0–40.0 5.0–20.0 [17]

Cellulose is a structural component of cell walls and occurs as microfibrils. A higher
number of tightly packed cellulose chains increases the mechanical strength, as can be
observed in hard biomass (e.g., wood) [21–23]. Physical resistance is also improved by
hemicelluloses, which are responsible for binding cellulose fibers to lignin [24,25]. The
major chemical, enzymatic, and mechanical resistance of plant cells is provided by lignin,
which is present in the external part of lignocellulose [26,27]. The general structure of
lignocellulosic biomass is presented in Figure 3.
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2.1. Cellulose

Cellulose is a homopolymer consisting of D-glucose monomers, linked by β-1,4-
glycosidic bonds (Figure 4).
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Figure 4. General chemical structure of cellulose.

A high number of hydroxyl groups on the surface of cellulose enables the formation of
hydrogen-bond networks and van der Waals linkages. They stabilize the cellulose molecule
and significantly improve its dissolution resistance (Figure 5) [28]. The amphiphilic char-
acter of cellulose, derived from the axial hydroxyl groups and ring surface CH groups,
dictates the selection of the appropriate solvent [29,30]. The study has shown that the
use of organic co-solvents (e.g., ethanol, acetone, γ-valerolactone, and tetrahydrofuran) in
water can significantly reduce the number of hydrogen bonds formed between the cellulose
chains and solvent [31].
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Cellulose consists of crystalline and amorphous domains. The content of highly
ordered, tightly packed crystalline regions in cellulose depends primarily on the type of
plant, e.g., wood biomass has many regions with high crystallinity (up to 65% crystalline
regions), which makes it insoluble in water and much more chemically and mechanically
resistant [22,32]. Loosely arranged molecular chains are called amorphous regions [33]. In
order to increase the reactivity, solubility, and susceptibility to the transformation of natural
cellulose, the crystalline structure has to be destroyed to obtain an amorphous, or at least
amorphized, biopolymer [34].

2.2. Hemicelluloses

Hemicelluloses are heteropolymers, consisting primarily of six-carbon sugars such
as mannose, glucose, fucose, and galactose and five-carbon sugars such as arabinose and
xylose. Therefore, several types of hemicelluloses are distinguished due to the dominant
saccharide in the polymer structure, such as xylans, mannans, galactans, glucans, glucoman-
nans, and arabinogalactans [35,36]. The sample chemical structure of xylan hemicellulose
is presented in Figure 6.
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The chemical composition mainly depends on the type and part of the plant. Generally,
hardwood contains a higher amount of xylan than softwood [37]. For example, in sapwood
of broad-leaved trees, the main component in hemicellulose is xylose (approximately 80%),
but in the leaves from the same species, the content of galactose and arabinose is higher
(15% and 25%) [38].

2.3. Lignin

Lignin is an amorphous heteropolymer with both aliphatic and aromatic fragments. The
main precursors are monolignols: p-coumaryl, coniferyl, and sinapyl alcohols (Figure 7) [39].
Depending on the source, different contents of particular precursors can be found in the
lignin structure, e.g., softwood lignin contains mainly coniferyl alcohol, while in hardwood,
coniferyl alcohol and sinapyl alcohol predominate. Grass lignin also contains p-coumaryl
alcohol. The monomers are linked by ether bonds C-O-C and C-C bonds. In biomass, lignin
forms a matrix with polysaccharides, which increases the physical strength of tissue and
makes it more resistant to chemical and enzymatic transformations [26,32,40,41].
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Natural lignin is insoluble in water and organic solvents. A major part of it is also
insoluble in acid solutions (Klason’s lignin) and shows better solubility in alkaline solu-
tions [42]. The lignin solubility can be changed via processing or chemical modification, e.g.,
in the Kraft process, the majority of hydroxyl groups are sulfonated, which makes it more
susceptible to solubilization, even in organic solvents such as DMSO [43,44]. Because
of this, delignification is one of the main methods of lignocellulose pretreatment. This
process allows one to loosen the rigid structure of biomass and make the cellulose and
hemicelluloses more accessible for chemicals and enzymes [45,46].

3. Dissolution of Biomass and Its Components

Biomass pretreatment and/or fractionation is a key step of the lignocellulose trans-
formation into valuable products. Thanks to the diverse properties of cellulose, lignin,
and hemicellulose, it is possible to fractionate the lignocellulose. There are several classic
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methods, applying strong acids (e.g., H2SO4) or bases (e.g., NaOH), but such media are
harmful, corrosive, and have a high negative impact on the environment. Additionally,
after the treatment of biomass with alkaline or strong acid solutions, extra water washing
steps are required to neutralize the mixture and remove the impurities before further
transformations. It results in the need for the disposal of a large amount of wastewater.
Because of that, new methods are constantly being developed, with the application of green
solvents such as ionic liquids or deep eutectic solvents. The choice of the most suitable
solvent depends on the type of biomass/biomass fraction, as well as on further conversion
methods and the desired final product. Moreover, the characteristics of a solvent should be
taken into consideration, such as toxicity, corrosivity, and thermal stability. In this chapter,
all the major groups of solvents used in the dissolution of biomass and its components,
especially cellulose and lignin, are discussed. Since classic alkaline and acidic solutions
have been discussed in many papers, they will only be mentioned, and major attention will
be paid to other, novel systems.

3.1. Alkaline Solutions

Cellulose is prone to swelling in alkaline solutions, such as sodium hydroxide or
lithium hydroxide, but because of its amphiphilic character, it is not suitable to dissolve
it completely [47]. Additionally, in the presence of NaOH, cellulose tends to form aggre-
gates. In order to avoid this, the addition of chemicals preventing aggregation, e.g., urea,
thiourea, and polyethylene glycol (PEG), is employed [48]. However, even in the presence
of these agents, alkaline solutions are not very efficient at dissolving cellulose, e.g., in a
NaOH/PEG mixture (a concentration of NaOH of 9%), only 13% of the biopolymer was
dissolved [30,49,50].

Although cellulose dissolution in alkaline solutions is not effective, these solvents
are capable of dissolving lignin. For instance, in an 18% NaOH solution, 66.6% (wt.%)
of lignin from eucalyptus chips could be dissolved [51]. Hydroxyl groups, present in an
alkaline solvent, can interact with lignin phenolic monomers, which results in polymer
fragmentation to smaller molecules. Moreover, in alkaline conditions, linkages between
lignin and polysaccharides can break [51,52]. However, because of the major disadvantages
of alkaline solutions, which make them less attractive from an ecological point of view, they
are not considered future solvents for biomass processing.

3.2. Acid Solutions

Acid solutions are commonly known for their ability to dissolve cellulose. Diluted
acids can be applied for cellulose swelling, but in order to dissolve cellulose completely,
more concentrated acids are needed. The treatment of lignocellulosic biomass with diluted
acid solutions (lower than 5%) under a moderate temperature and pressure causes the
degradation of hemicellulose to monomers. It is a possible way to separate hemicellulose
from other components [53]. Sulfuric and hydrochloric acids are the most frequently
used agents for cellulose dissolution. Concentrated sulfuric acid (approximately 70%)
can break hydrogen bonds in cellulose. Additionally, it has to be taken into account that
the esterification of hydroxyl groups in cellulose can occur, which results in replacing
hydroxyl groups with sulfate. These processes lead to cellulose depolymerization [54].
Since Klason’s lignin is insoluble in sulfuric acid, this method can be used in its separation
from plant biomass [55]. Acidic biomass treatment also causes the further transformation of
sugars into furfural and 5-hydroxymethylfurfural. Additionally, in the presence of strong
acids, polymeric, insoluble polymers called humins are produced, which can significantly
decrease the yield of valuable products produced in biomass transformations (e.g., glucose,
fructose, levulinic acid, etc.) [56,57].

Organic acids, e.g., trifluoroacetic acid, dichloroacetic acid, and formic acid, can also be
applied in biomass processing. This leads to the dissolution of cellulose via tderivatization
of hydroxyl groups to acyl groups [58].
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3.3. Inorganic Molten Salt Hydrates

Inorganic molten salt hydrates such as Ca(SCN)2·3H2O can dissolve cellulose at 120–140 ◦C
within 40 min, without any additional pretreatment. Other salts or their mixtures can
act differently: From dissolving this polysaccharide (e.g., ZnCl2·3-4H2O, LiClO4·3H2O,
Mg(ClO4)2/H2O; or FeCl3·6H2O, LiClO4·3H2O,MgCl2·6H2O) or swelling it (e.g., LiCl·2-
5H2O, LiClO4·3H2O, Mg(ClO4)2/H2O; or LiNO3·3H2O, LiClO4·3H2O, NaClO4/H2O), and
even decomposing it (Mg(ClO4)2·6H2O, ZnCl2/MgCl2/H2O; or MgCl2·6H2O) [48,59]. The
ability to dissolve this polymer depends on the level of hydration, e.g., by increasing water
content in lithium perchlorate to LiClO4·4H2O, cellulose solubility decreases [60]. Iron
salts can also be effectively applied in biomass pretreatment, especially upon dissolving
hemicelluloses. FeCl3 and FeSO4 can dissolve this fraction at a level above 90%. In this
process, cellulose is intact, so it could be used as a method for the separation of these frac-
tions [61,62]. Biomass pretreatment with inorganic salts can also prepare the material for
enhanced enzymatic transformations, without delignification. Zhang et al. used AlCl3 with
intense mechanical milling of sugarcane bagasse. It resulted in a significant reduction of
biomass crystallinity and more efficient further biological hydrolysis of cellulose [63]. Nev-
ertheless, applying inorganic salts has many disadvantages—they are expensive, unstable,
toxic, and difficult to regenerate after processing [64].

3.4. Metal Complexes

Metal complexes containing a transition metal and an amine or ammonium compo-
nent are good solvents of cellulose. One of the important examples is Schweizer’s reagent
([Cu(NH3)4(H2O)2](OH)2), which was originally used in the production of artificial silk. Today,
manyalternativesexhibitinggoodsolutionpropertiesareknown, e.g., [Cu(NH2(CH2)2NH2)2](OH)2
(Cuoxen), [Ni(NH2CH2CH2)3N](OH)2 (Nitren), [Pd(NH2(CH2)2NH2)](OH)2 (Pden), and
[Cd(NH2(CH2)2NH2)3](OH)2 (Cadoxen). The last one was very efficient in dissolving
cellulose with high DP. The mechanism involves deprotonation and coordinative binding
of hydroxyl groups in the C2 and C3 positions of the anhydroglucose units [59,65,66].

3.5. Inorganic Salts in Organic Solvents

Cellulose can be effectively dissolved in an N,N-dimethylacetamide solution of lithium
chloride (LiCl/DMAc) [67–69]. It is possible to dissolve up to 16% of the polymer present
in various biomass sources, e.g., wheat straw, wood waste, and sugar cane bagasse, at
85 ◦C [70]. There are two proposed mechanisms of this process, both based on hydrogen
bonding occurring between glucose monomers and chlorine anions, which results in the
formation of the Li+(DMAc)x cation complex. The first mechanism (Morgenstern) suggests
direct linkages between lithium cation and hydroxy group oxygen atoms. The second one
(McCormick) states that this type of hydrogen bond does not occur. Instead, the cellulose
structure is charged negatively because of interactions with the chlorine ion. It results in
cellulose fibers spreading apart and polymer solvation. Figure 8 presents both of these
simplified mechanisms [67,70,71].
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The combination of LiCl with DMAc is unique because only this certain mixture is able
to dissolve cellulose effectively. By changing lithium to another metal or replacing DMAc
(e.g., with DMF), the efficiency of the solvation effect decreases. Despite many advantages
of LiCl/DMAc (the limitation of side effects, no need for applying additional chemicals),
it was not introduced into the industrial scale due to the long processing time, high price,
toxicity, corrosivity, and vapor pressure of solvent [70].

Another mixture that could be applied to dissolve cellulose is DMSO with tetrabuty-
lammonium fluoride (TBAF). Similar to the previous example, changing fluoride to other
anions causes a decrease in the effectiveness of such a mixture [72]. Fluoride is a very strong
hydrogen bond acceptor. It has the ability to efficiently reduce the interaction between
cellulose chains by competing with the hydroxyl and acetal oxygen atoms of cellulose.
The other anions (Cl−, Br−) are not strong enough [73,74]. Additionally, TBA+ cations
prevent cellulose aggregation, which additionally enhances the process [75]. The main
problem with TBAF application is its high hygroscopicity. The presence of a small amount
of water causes an increase in viscosity and gelation [73]. Additionally, water is able to
remove the fluoride anions from the cellulose chains, which results in the reformation of
hydrogen bonds between cellulose chains. Anhydrous TBAF is unstable and expensive.
The commercially available trihydrate TBAF·3H2O is an alternative to be used in cellulose
treatment [48,76].

3.6. Ionic Liquids

There are many problems and limitations related to the application of the above-
mentioned organic and inorganic solvents in biomass treatment, such as toxicity, corrosivity,
high vapor pressure, and negative impact on the environment. It leads to intense activity
in academic and industrial investigations to find more ecological alternatives. Ionic liquids
are one such alternative, composed of organic cations and organic or inorganic anions.
Because of the wide range of components, which can be used in ionic liquids, it is possible
to alter their properties to the specific process. Many advantages of ionic liquids, such as a
melting point below 100 ◦C, miscibility with many chemicals, low vapor pressure, chemical
and thermal stability, non-flammability, and low toxicity, make them an ecological, green
alternative to classic solvents [77]. Ionic liquids can be applied to many various chemical
processes, and one of them is biomass transformations. In Figure 9, the most frequently
applied ionic liquids are presented [78].

3.6.1. Ionic Liquids in Biomass Dissolution

Ionic liquids (ILs) can be applied in biomass pretreatment before further transforma-
tions into valuable products, as well as in transformation processes [79]. Plant biomass is a
difficult material to dissolve due to its complex structure and differences in material com-
position and hardness. Soft biomass, e.g., grass, is easier to process than wood biomass [80].
Moreover, the level of biomass fragmentation is crucial—smaller particles have a larger con-
tact surface with the solvent, which increases the efficiency of dissolution [81]. In addition
to biomass properties and type, the viscosity of solvent has a major impact on process effec-
tiveness. Lower viscosity facilitates mass transfer, which enhances the dissolution process.
Rahim et al. (2021) examined ILs with ether-functionalized methylimidazolium cations
(e.g., [MOE-mim]Cl 1-(2-methoxyethyl)-3-methylimidazolium chloride), with significantly
lower viscosity, than the widely used [bmim]Cl. In [MOE-mim]Cl, the bamboo dissolution
level was 96.45%, and in [bmim]Cl, it was 78.35%. Additionally, due to the extra oxygen
atom present in the methoxy group, functionalized IL can create more hydrogen bonds
with biomass fractions, which additionally enhances its dissolution [82]. Furthermore,
the type of anions in IL matters in biomass processing. Solvents with higher basicity of
hydrogen bonds, such as [emim][CH3COO], are more effective for biomass dissolving [83].
Examples of biomass solubility in different ionic liquids are presented in Table 2.
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Table 2. Biomass solubility in ionic liquids.

Biomass Type Ionic Liquid Temperature [◦C] Solubility [wt.%] References

Hybrid poplar

[emim][CH3COO]

80

5.3

[84]
[emim][HCOO] 5.3
[amim][CH3COO] 7.0
[amim][HCOO] 7.4

Miscanthus
[emim][CH3COO]

100
1.7

[85][emim][CH3SO3] 4.0
[emim][HSO4] 9.6

Peanut shells
[bmim]Cl

120
2.3

[86]
[emim][CH3COO] 5.8

Chestnut shells
[bmim]Cl

120
4.7

[emim][CH3COO] 7.0

Miscanthus
[bmim][CH3COO]

130
4.0

[87][bmim]Cl 3.0
[emim]Cl 4.0

The mechanism of biomass dissolution is based on the breakage of hydrogen bonds
between lignocellulosic components. At the same time, the solvent’s anion creates new
hydrogen bonds with hydroxyl groups, especially cellulose. The possible role of the cation
in polymer dissolution is connected to its size and hydrophobic character [88,89]. The
biomass component, which is primarily dissolving ILs, is cellulose. Because of that, the
effectiveness of biomass dissolution is dependent on the level of cellulose dissolution [80].
Uto et al. (2018) proposed a three-step mechanism of cellulose dissolution—first, IL’s anion
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penetrates through cellulose chains, which promotes hydrogen bond cleavage. At the
same time, the cation increases the distance between these chains due to its size. Finally,
cellulose chains are scattered [90]. The general idea of the cellulose dissolution mechanism
is presented in Figure 10.
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The ability of ionic liquids to dissolve whole biomass results from the fact that some
of the solvents can dissolve lignin, rather than only cellulose, e.g., imidazolium and am-
monium ionic liquids with Cl−, Tf2N−, and CH3COO− anions [24]. In Eichhronia crassipes
(water hyacinth) dissolution using ionic liquids, the most effective solvent was the mix-
ture of [bmim][CH3COO] and water (water content of 40% v/v, and the level of biomass
dissolution was approximately 85% of dry biomass). During this process, lignin was also
dissolved [91]. Another popular ionic liquid [emim][CH3COO] was applied in the pro-
duction of composite fibers from hybrid poplar, where 6.5 wt. % of biomass could be
dissolved [92]. The acetate anion has moderate basicity of hydrogen bonds (β), which
enhances binding with lignin [85,91]. The addition of water to IL can increase lignin’s
dissolution level due to the formation of a higher number of hydrogen bonds [93,94]. The
interactions between IL and hemicelluloses are also based on hydrogen bonds. Xylose, as a
representative component of the hemicellulose monomer, can create fewer linkages with
the solvent compared to glucose, due to the lower number of hydroxyl groups. Because of
that, the hemicellulose solubility in IL is not as effective and might be a limiting factor in
whole biomass dissolution [84].

3.6.2. Cellulose Dissolution in Ionic Liquids

The first patents on cellulose dissolution in melted ammonium and pyridinium salts
were published in 1933–1934, but the application of 1-butyl-3-methylimidazolium chloride
([bmim]Cl) in 2002 began the intensive development in the field of ionic liquid applications.

The ability of ionic liquids to dissolve cellulose depends not only on the polymer
characteristics, e.g., the degree of polymerization, crystallinity, type of plant, and process
conditions (temperature, time, and presence of additional solvents), but also on ionic liquids
properties [95–98]. Table 3 presents examples of cellulose solubility in ionic liquids.
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Table 3. Cellulose solubility in ionic liquids.

Cellulose Type Ionic liquid Temperature [◦C] Solubility [wt. %] References

MCC

[bmim][HCOO]

70

12.5

[99]
[bmim][CH3COO] 15.5

[bmim][CH3CH2COO] 17.5
[bmim][CH3(CH2)2COO] 14.0

MCC
[emim][CH3COO]

90
27.0

[100][emim]DEP 15.0

MCC
[DBUH][HCOO]

90
18.9

[101][DBUH][CH3COO] 14.8
[DBUH][CH3CH2COO] 12.6

MCC [N2226][CH3COO]
80 15.0

[102]90 22.0

Commercial Cellulose

[emim][CH3COO]

80

35.2

[103]

[emim][DEP] 23.0
[DBUH][CH3COO] 22.5

[DBUH]][Prop] 4.3
[DBNH][CH3COO] 22.0

[DBNH][Hex] 16.1

MCC
[amim][CH3CH2COO]

30
19.0

[104][amim][C6H5COO] <5.0

MCC
[DBUH][Lev]

100
15.0

[105][DBNH][Lev] 20.0

MCC
[emtr124][CH3COO]

80
30.0

[106][emtr123]Br 4.0
[emim][CH3COO] 21.1

MCC [amim][MP] 80 22.0 [107]

Commercial cellulose [hmim][CH3CH(OH)COO] 80 5.0 [108]

MCC [ammorp][CH3COO] 80 17.0 [109]

MCC—microcrystalline cellulose, DEP—diethylphosphate anion, DBUH—1,8-diazabicyclo [5.4.0]-undec-7-enium
cation, DBNH—1,5-diazabicyclo [4.3.0]-undec-5-enium cation, N2226—triethylhexylammonium cation, Prop—
propanoate anion, Hex—hexanoate anion, emtr124—1-ethyl-3-methyl-1,2,4-triazolium cation, emtr123—1-ethyl-3-
methyl-1,2,4-triazolium cation, MP—methyl phosphonate anion, hmim—2-methylimidazolium cation, ammorp—
N-allyl-N-methylmorpholinium cation.

3.6.3. The Impact of Anion in Ionic Liquid on Cellulose Dissolution Effectiveness

The anion in ionic liquid has a major impact on cellulose dissolution. Generally, anions
that are strong hydrogen bond acceptors, e.g., chloride, acetate, formate, and sulphate, are
considered the most effective [100,110]. In order to estimate the anion effect on cellulose
dissolution, Kamlet–Taft parameters describing the three independent polarity parameters
(the hydrogen-bond-donating ability (α), the hydrogen-bond-accepting ability (β), and
the polarizability/dipolarity (π*)) of a solvent are used. The most important seems to
be the β parameter, related to the hydrogen bond basicity of the anion. The higher the
β value of the anion, the better the dissolution properties of ionic liquid [111,112]. For
example, 1-allyl-3-methylimidazolium formate [amim][HCOO]− is more effective than 1-
allyl-3-methylimidazolium chloride ([amim]Cl) because of the higher basicity of hydrogen
bonding of the [HCOO]− anion [96]. It has been also shown that replacing a hydrogen
atom in the [CH3COO]− anion with an electron-withdrawing group (e.g., [HOCH2COO]−,
[H2NCH2COO]−) decreases the solubility of cellulose [104].

3.6.4. The Impact of Ionic Liquid Cation on Cellulose Dissolution Effectiveness

The general order of cations in ionic liquids, which are most effective for cellulose dissolu-
tion, is imidazolium ILs > pyridinium ILs > ammonium ILs, which makes imidazolium-based
solvents the most frequently studied in biomass dissolution processes [113]. In the imida-
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zolium cation structure, alkyl substituents are common, e.g., 1-ethyl-3-methylimidazolium
[emim]+, 1-butyl-3-methylimidazolium [bmim]+, 1-hexyl-3-methylimidazolium [hmim]+, 1-
octyl-3-methylimidazolium [omim]+, and 1-allyl-3-methylimidazolium [amim]+. With the
increase in the alkyl chain length, the effectiveness of cellulose dissolution decreases. For
instance, the solubility of cellulose at 100 ◦C in ionic liquids [alkylmim]Cl decreased from
14 wt.% for [emim]Cl and 10 wt.% for [bmim]Cl to 5 wt.% for [hmim]Cl and nearly 0% for
[omim]Cl [114,115]. It was also revealed that smaller cations in ILs enhance the solubility of
cellulose. For example, 14.5 wt.% cellulose can be dissolved in 1-allyl-3-methylimidazolium
chloride [amim]Cl at 80 ◦C [116]. This process is additionally supported by the entropic
effect, which is a result of possible hydrogen bonds, due to the presence of a double bond
in the cation structure [97]. The double bond is also responsible for the lower viscosity of
the solvent, which has a beneficial impact on the process efficiency [117]. It could be con-
cluded that cellulose-dissolving effectiveness increases if the imidazolium cation contains
electron-donating substituents.

3.6.5. The Impact of the Addition of Other Chemicals and Process Conditions on Cellulose
Dissolution Effectiveness in Ionic Liquids

Ionic liquids, despite the many advantages mentioned in this paper, have some draw-
backs as solvents. Many ILs are viscous liquids, and their production costs are also quite
high. In order to solve the viscosity problem, many researchers have added other solvents
to the process. Organic polar aprotic solvents, e.g., DMSO or DMF, can significantly reduce
the viscosity of ionic liquids, which results in better mass transport and increased polymer
dissolution efficiency, without cellulose modifications [95,118,119]. Other solvents, such
as acetonitrile or ethylene glycol, have a similar effect—they can reduce the viscosity of
IL, e.g., [emim][CH3COO] and [bmim][CH3COO], by up to 50% [120]. In order to increase
the efficiency of cellulose dissolution, inorganic additives can also be used. By adding 1%
lithium salts (chloride, bromide, perchlorate, and nitrate) to ionic liquid [bmim][CH3COO],
the solubility increases from 15.5 wt.% (in IL) to 18–20 wt.% (IL+salt), at 70 ◦C [121]. It
was also shown that the addition of water as a co-solvent decreases cellulose solubility in
IL. It leads to the aggregation of cellulose. Water can be applied as an antisolvent in the
precipitation and regeneration of dissolved polymers [122–125].

One of the most crucial factors in cellulose dissolution in ILs is temperature. An
increase in temperature causes more efficient hydrogen bond breakage in cellulose, which
relates to the better dissolution of this polymer. The solubility can additionally be enhanced
by using a microwave-assisted process [114]. However, it must be noted that high tem-
peratures cause the intensification of side reactions, such as polymer degradation or the
formation of humins [126].

3.7. Deep Eutectic Solvents (DESs) in Biomass Processing

According to the latest publications, a new type of ionic liquid, namely, deep eutectic
solvents (DESs), is being widely explored. They consist of hydrogen bond acceptors (HBA)
and hydrogen bond donors (HBD), which are often natural compounds (Figure 11). Some
properties of DESs are even better than classic ionic liquids, e.g., lower toxicity, lower
production costs, biodegradability, and stability [127,128].
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3.7.1. Delignification of Biomass with DESs

The big advantage of DESs in biomass treatment is their higher activity in lignin
dissolution compared to ionic liquids or alkaline solutions [132,133]. The main goal of
biomass delignification is to increase the access of catalysts/enzymes to cellulose in further
transformations into valuable chemicals. It was shown that efficient delignification can
occur at elevated temperatures (above 100 ◦C). Lower temperatures are not sufficient for
the breakage of the ether bonds in lignin. Poor mass transfer at lower temperatures is also a
problem [45,134]. However, it must be noted that higher temperatures (above 160 ◦C) may,
in turn, decrease the delignification level, because of phenolic side-product formations and
their polymerization [135]. The effective delignification depends mostly on the properties
of DESs. Generally, DESs based on acids are more effective (e.g., oxalic acid, lactic acid) than
those based on polyols. It can be explained by the mechanism of lignin dissolution—ether
bonds tend to break easier under acidic conditions [136,137]. Despite the large number of
recent reports on biomass processing in DESs, the selection of the most effective solvent
and process parameters still needs to be examined due to biomass variety and differences
in its structure and chemical composition. Several examples of biomass processing with
DESs are presented in Table 4.
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Table 4. Delignification of plant biomass with DESs.

Biomass Type
DES

(HBA:HBD
Molar Ratio)

Temperature [◦C] Dissolution
Technique Time [h] Delignification

Level [%] References

Rice straw
ChCl:Lac (1:5)

60
Stirring and

heating 12
60.0

[138]Bet:Lac (1:5) 53.0

Miscanthus ChCl:Fa (1:2)
60

Microwave 1
4.8

[135]
130 82.0

Birchwood ChCl:Ox (1:1)
60

Microwave 1
43.0

130 85.0

Bamboo stem
ChCl:U (1:2)

120
Stirring and

heating 10
19.4

[139]ChCl:Ox (1:2) 25.4

Wheat straw
ChCl:Lac (1:5) 100

Stirring and
heating 16

8.5
[140]Corn stalk 9.5

Rapeseed stem 11.8

Sorghum straw ChCl:Lac 150 Stirring and
heating 0.5 49.0 [141]

Bamboo
residues

ChCl:Lac (1:4)
110

Stirring and
heating 1.5

42.3

[142]
130 83.6

ChCl:Lac (1:8)
110 41.2
130 84.1

Masson pine ChCl:Lac (1:10)
110 Stirring and

heating 6
58.1

[143]140 87.5

Bagasse ChCl:Ox (1:1)
100

Stirring and
heating 4

47.9
[144]ChCl:Et (1:2) 8.6

(HBA—hydrogen bond acceptor, HBD—hydrogen bond donor, ChCl—choline chloride, Bet—betaine, Lac—lactic
acid, Fa—formic acid, Ox—oxalic acid, U—urea, Et—ethylene glycol).

3.7.2. Hemicelluloses Dissolution in DESs

Some deep eutectic solvents can also be useful in the dissolution of hemicelluloses.
Because of bonds connecting lignin and hemicelluloses, lignin removal is often followed
by hemicelluloses extraction. By applying a solvent with a basic hydrogen bond acceptor
and cholinium lysine with urea as the hydrogen bond donor, it was possible to extract
approximately 62% of hemicelluloses from poplar wood [145]. Similar results (the removal
of 63.3% hemicelluloses) were achieved in the process with DES consisting of choline
chloride and monoethanolamine [146].

3.7.3. Cellulose Dissolution in DESs

Cellulose is the most difficult biomass fraction to dissolve in DESs. Recent reports
show that it is still problematic to dissolve cellulose in DESs [147]. The amount of dissolved
polymer depends on the source—microcrystalline cellulose is more soluble in DESs com-
pared with that isolated from plant waste. For instance, the solubility of microcrystalline
cellulose in ChCl:Lys 1:2 (n/n) (choline chloride:lysine) was approximately 8% of the initial
amount, while in the case of cellulose isolated from wheat straw, it was only 6% (24 h,
90 ◦C). It is worth mentioning that these yields were obtained by applying ultrasound
assistance in order to increase the solubility [148,149]. The poor solubility of cellulose and
significantly better solubility of lignin in DESs allows one to separate biomass fractions,
which is one of the main goals of plant waste pretreatment before further transformation
into valuable chemicals.

4. Conclusions

The effective dissolution of biomass or its fractions is still a challenge in lignocellulosic
waste processing. The wide variety of plant materials and differences in chemical compo-
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sition makes the selection of an appropriate solvent even more difficult. The key step in
making the process more efficient is to understand the mechanisms of biomass dissolution,
which is generally based on the breakage of hydrogen bonds existing in lignocellulose
and the creation of new ones between solvent and biomass components. Nowadays, the
rules of the sustainable development strategy and green chemistry should be followed
in the selection of appropriate solvents. Classic acidic and alkaline solutions, known for
their ability to dissolve biomass fractions, should be replaced by more ecological solvents.
Ionic liquids and deep eutectic solvents are promising groups of solvents. Ionic liquids are
especially effective in cellulose dissolving. This ability mostly depends on the solvent’s
anion—the higher the hydrogen bond basicity of the anion, the better the biomass dissolu-
tion properties. Moreover, in many works, a substituted imidazolium cation is presented
as the best one. However, the length of alkyl chains in cation substituents has a significant
impact on the effectiveness of the process. Shorter chains are more suitable for dissolving
cellulose (e.g., [emim]+). If the process is devoted to lignin dissolution, it is recommended to
use deep eutectic solvents, especially those with an acidic hydrogen bond donor. They are
more effective than alkaline solutions. Because of the different abilities of ILs and DESs to
dissolve lignocellulosic components, it is possible to use them in the separation of biomass
polymers. Additionally, these solvents are considered green chemicals, which makes them
a promising alternative to acidic and alkaline solutions. Except for the tunability of DESs
and ILs, the primary advantage is their low toxicity and vapor pressure, high chemical
and thermal stability, and miscibility with many chemicals. However, the novel systems
also have some disadvantages. One of them is the high viscosity of many DESs, which
significantly influences mass transfer. This problem can be overcome by using co-solvents
or increasing the temperature (usually over 100 ◦C). Furthermore, the costs of some ILs and
DESs might be considered a drawback.
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