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Abstract: Examining the environmental risk sources of regional subway construction is crucial
for ensuring construction safety and providing guidance for future subway line planning. This
study focused on Urumqi’s main urban area and used SBAS-InSAR analysis technology to extract
the settlement rate field within 600 m of Urumqi Metro Line 1 and investigate these risk sources.
Results showed that the environmental risk sources affecting subway construction in the study area
could be classified into four categories: geological conditions, distribution of high-rise buildings,
density of road networks, and density of clustered buildings. The study further analyzed the spatial
distribution of each risk source and developed a comprehensive impact zoning evaluation model
for environmental risk sources in the study area. The model was then used to assess the risk of
the currently planned subway lines (1–7), revealing that the largest area of subway construction
environmental risk sources (1444 partitions) was associated with soil layer, IV high-rise building risk,
IV road network risk, and IV building density risk. Additionally, the study found that environmental
risk sources had the most significant impact on Metro Line 6, emphasizing the importance of closely
monitoring risk factors during future construction.

Keywords: subway construction; risk source; distribution characteristics; comprehensive impact zoning

1. Introduction

The subway plays a crucial role in guiding and coordinating urban development and
construction in China, and it has gradually become a vital component of the country’s
urban traffic development. However, the risk of subway construction is closely related to
urban development due to the characteristics of subway use. The complex and constantly
changing construction environment of the city and certain human activities have resulted
in various types of environmental risk sources for subway construction, which can cause
different levels of settlement during construction [1,2]. This can significantly impact the
safety of people’s lives and property.

The extended duration of subway construction exposes it to various risks, underscor-
ing the need to assess these risks comprehensively. Researchers worldwide have pursued
various analytical approaches to assess subway construction risk. For instance, Zhang
et al. [3] adopted an analytical hierarchy process (AHP) model that incorporated factors
such as rock mass comprehensive degree, lithology characteristics, geological structure
characteristics, weathering degree, seismic intensity, slope, rainfall, and construction factors
to identify and rank tunnel portal slope stability. Yu et al. [4] proposed a probabilistic
risk analysis technique that uses a layered simulation model to analyze risk factors at the
tunnel construction operation level. Similarly, Zhou et al. [5] advocated for analyzing sub-
way construction safety risks by establishing a database of accidents encountered during
the construction process. Liu et al. [6] proposed a novel risk assessment technique that
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combines AHP and an expert classification method (EGM) to evaluate how geological con-
ditions and the surrounding environment affect subway construction. Finally, Fu et al. [7]
used the Apriori algorithm to mine robust association rules between risks in subway deep
foundation pit engineering. Their findings suggest that key risk groups emanate from
factors related to contractors, structures, and the natural environment, whereas the core
sources of risk are attributable to owners, designers, and the social environment. However,
these studies reveal that the construction environment exerts a significant influence on
subway construction risk, but the analytical techniques employed incorporate subjective
factors that do not reflect the environmental impact objectively.

The subway construction environment and risk are interrelated, and several scholars
worldwide have studied the risks that arise from the subway construction environment [8–11].
For example, Xiao [12] conducted numerical simulation analysis to summarize how high-
rise buildings affect subway stations and station ancillary facilities. The study established
that the excavation of tunnels disrupts the original stress balance state, making the new tun-
nel structure vulnerable to the large load of super high-rise buildings. Shen [13] employed
finite element analysis software to study the impact of super high-rise building structures
on adjacent subway tunnels. The research found that during the structural construction
stage, the tunnel mainly experiences vertical settlement, with minimal horizontal displace-
ment. However, during the use stage of super high-rise buildings, the tunnel’s settlement
and horizontal deformation change. XUE et al. [14] investigated how geological and hydro-
logical conditions impact tunnels, and they established that groundwater conditions and
rock integrity are the main factors leading to soft rock tunnel collapse. Xu et al. [15] used
surrounding rock lithology, topography, excavation span, buried depth, groundwater, and
rainfall as rating indicators to evaluate the collapse risk of loess tunnels. Meng et al. [16] pro-
posed a cloud model and fuzzy analytic hierarchy process-based risk assessment method
that established a risk assessment index system comprising four first-level indicators and
seventeen second-level indicators, such as karst geological conditions, hydrogeological
conditions, tunnel design, and shield construction. Adverse geological conditions were
found to have the most significant impact on shield construction risk. Zhou et al. [17]
studied the risk of urban subway tunnels crossing existing bridge pile foundations, and
they identified pile foundation settlement as the primary risk. Li et al. [18] investigated
the response of subway tunnels to dynamic vehicle loads and found that subway shield
tunnel displacement amplitude and soil maximum settlement were significantly affected by
vehicle load. Shi et al. [19] analyzed the displacement changes of underground tunnels and
building foundation pit excavation, and they established that the connection area between
the tunnel and the foundation pit experiences minimal horizontal displacement, while the
tunnel experiences significant vertical displacement, and settlement at the corner of the
building adjacent to the foundation pit is relatively high. Xu et al. [20] analyzed subway
construction settlement when crossing existing railways and identified train live load as
the main factor leading to subway construction settlement. While these studies highlight
risk sources associated with individual subways in different regions of China, the actual
subway construction environment typically faces multiple risk sources, necessitating the
development of a method that considers the comprehensive impact of risk sources in the
study area and accurately evaluates each risk source’s risk level.

Based on the preceding analysis and discussion, it is apparent that the distribution
of environmental risk sources in subway construction varies regionally. Therefore, iden-
tifying risk sources based on regional characteristics can enhance the accuracy of results.
Risk identification involves investigating and recognizing potential risks in the subway
construction process and categorizing them based on risk types and impact levels. An
analysis of various types of subway construction accidents reveals that most accidents occur
due to surface subsidence caused by the subway construction process [21,22]. Regional
surface subsidence can be regarded as an indication of the distribution of environmental
risk sources to a certain degree [23–27].
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The research area for this study is Urumqi, which is situated at the center of Eurasia, at
the northern foot of the Tianshan Mountains, and at the southern edge of the Junggar Basin.
As the capital of the Xinjiang Uygur Autonomous Region, Urumqi is the political, economic,
and cultural hub of the region and serves as the western bridgehead of China, playing a
significant role in China’s Belt and Road Initiative. With the development of Urumqi as
the core economic zone, the demand for rail transit has been on the rise. According to the
“Urumqi Rail Transit Network Planning”, the planned length of Urumqi’s rail transit line is
261.8 kilometers, with Line 1~7 being the main city planning line. In 2019, Urumqi Metro
Line 1 was completed and put into operation, while Line 2 began construction in 2015, and
the first phase of Metro Line 3 and Line 4 began construction in 2016.

Conventional methods for monitoring subway settlement do not provide a compre-
hensive overview. Interferometric Synthetic Aperture Radar (InSAR) is a satellite-based
technology that offers several advantages, including high resolution, high precision, wide
range, and all-weather, all-day monitoring [28–31]. It has proven successful in monitoring
surface deformation in various regions. This study employs the SBAS-InSAR [32–34] analy-
sis method to derive the surface deformation rate field during the construction of Urumqi’s
existing subway line 1. Examining surface deformation in the area along subway line 1
during construction can identify the environmental factors responsible for such deforma-
tion and uncover potential risk sources associated with subway construction [35–38]. By
calibrating these environmental risk sources, we analyze the geometric distribution of each
risk source using ArcGIS software. We then overlay the distribution characteristics of each
risk source to assess and partition the environmental risks associated with subway con-
struction. This study offers insight into future Urumqi subway line planning and subway
construction risk assessment.

2. Urumqi Engineering Geological Survey

Urumqi is situated in the heartland of Eurasia, at the northern foot of the Northern
Tianshan Mountains and the southern edge of the Junggar Basin. The city is surrounded by
mountains on its east, south, and west sides. The terrain is high in the southeast and low
in the northwest, located at 86◦37′33′′–88◦58′24′′ E and 42◦45′32′′–44◦08′00′′ N, with an
altitude ranging from 580–920 m and a natural slope of 12‰–15‰. The city comprises seven
districts and one county (Tianshan District, Shayibake District, Xinshi District, Shuimogou
District, Toutunhe District, Dabancheng District, Midong District, and Urumqi County)
and covers a total area of 14,216 km2, of which 2813 km2 is the built-up area.

Subway construction predominantly occurs in urban centers. To gain an understand-
ing of the study area’s city planning and subway line development, we obtained Urumqi’s
2020 land-use data from ESA (Figure 1a) and Urumqi’s rail transit planning data (Figure 1b)
from the Urumqi Metro Group. Figure 1a was generated by Esri, Impact Observatory,
and Microsoft based on Sentinel-2 10 m resolution satellite data. Figure 1b represents
the “Urumqi Rail Transit Construction Plan 2012–2019”, which the China National De-
velopment and Reform Commission approved in 2005. As of 2023, the construction and
utilization of Urumqi Metro Line 1 and the first phase of Urumqi Metro Line 2, 3, and 4
have been completed.

To identify the research area, we drew the contour grid map of the primary urban
region using the cadastral processing function of Arc GIS, combined with Urumqi’s land-
use planning map. We excluded scattered building areas and confined the study area to
Urumqi’s northwest, covering 2813 km2.
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Figure 1. Study area coverage and land use data map. (a) Distribution of land use data in the study 
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high-precision, wide-range, and convenient data acquisition advantages. This technology 
can accurately measure surface deformation at a millimeter level, with high spatial reso-
lution and wide coverage. Given its unique benefits, it has considerable potential in mon-
itoring land subsidence over large areas and long-time periods and has been successfully 
applied in various regions for surface deformation monitoring. 

Compared to traditional geodetic methods, such as leveling and topographic sur-
veys, SBAS-InSAR technology overcomes limitations such as manual distribution, low 
spatial resolution, and high cost. SBAS-InSAR technology can provide a comprehensive 
view of the subsidence process along the subway and subsequently identify changes in 
ground deformation in time and space. The flow chart of SBAS-InSAR is presented in 
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3. Risk Source Analysis of Subway Construction
3.1. Introduction of SBAS-InSAR

Small Base Line Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) is a
satellite-based monitoring technique that offers all-weather, all-day, high-resolution, high-
precision, wide-range, and convenient data acquisition advantages. This technology can
accurately measure surface deformation at a millimeter level, with high spatial resolution
and wide coverage. Given its unique benefits, it has considerable potential in monitoring
land subsidence over large areas and long-time periods and has been successfully applied
in various regions for surface deformation monitoring.

Compared to traditional geodetic methods, such as leveling and topographic surveys,
SBAS-InSAR technology overcomes limitations such as manual distribution, low spatial
resolution, and high cost. SBAS-InSAR technology can provide a comprehensive view of
the subsidence process along the subway and subsequently identify changes in ground
deformation in time and space. The flow chart of SBAS-InSAR is presented in Figure 2.
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Urumqi Metro Line 1 starts at Santunbei Station in Tianshan District and passes
through Tianshan District, Shayibake District, Shuimogou District, and Xinshi District,
with stops at Santunbei, Xinjiang University, International Bazaar, Nanhu Square (People’s
Government of Urumqi City), and the international airport station line in Xinshi District.
The line covers a distance of 27.615 km and commenced operation on 28 June 2019. It is an
underground line with 21 stations and runs roughly in a north–south direction.

The study area focuses on surface deformation during the subway construction. This
study used surface deformation driving factors during the construction of Urumqi Metro
Line 1 to determine and identify environmental risk sources during subway construction.
The study obtained 22 satellite images from Sentinel-1A between 2017 and 2018 to extract
the deformation rate field along the 600 m range of Metro Line 1 using SBAS-InSAR
technology [39]. By studying the regional differences in deformation rate during the
construction of Urumqi Metro Line 1 and combining this data with the characteristic
environmental risk sources of each region, the study compared the surface deformation
performance of different construction areas to determine environmental risk sources of
subway construction in the study area [40].

3.2. Geological Conditions

Surface subsidence associated with subway construction is closely related to regional
geological conditions, affecting the construction methods used for the subway sections.
Different construction methods result in varying degrees of surface subsidence during
subway construction, leading to varying degrees of subway construction risk [41–44].
According to the report from the Urumqi Municipal Bureau of Geology, the stratigraphic
conditions in the study area can be divided into three categories: a soil layer, a soil–rock
composite layer, and a rock layer (Figure 3). The geological structure data come from the
Urumqi Municipal Bureau of Geology. Most of the subway construction settlement occurs
in the first two geological conditions, particularly in the soil area, where the soil is easily
compacted by the upper load during subway construction, resulting in surface settlement.
Therefore, a spatial correlation exists between surface subsidence and geological conditions
in the Urumqi subway construction. As a result, the distribution of stratum conditions is
categorized as the first type of risk source for the subway construction environment.
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3.3. Super High-Rise Building Distribution

The construction of subways can disturb the underground soil and disrupt the original
stress balance of the soil, which can cause surface subsidence. Additionally, when subway
tunnels pass through super high-rise buildings, the impact on the construction of the
subway tunnel cannot be generalized with ordinary buildings due to the higher load of
super high-rise buildings compared to other buildings [45–48]. According to the “Code
for Design of Civil Buildings” GB50352–2005, super high-rise buildings are defined as
buildings with more than 40 stories and a height of more than 100 meters [49].

In Urumqi’s Tianshan District, which is the political, economic, cultural, and financial
center of the city, there are several subway stations that have been opened, including Line
1 North Gate Station, South Gate Station, Erdaoqiao Station, Xinjiang University Station,
and Santunbei Station. According to the “Construction Environment Investigation Report
of Urumqi Metro Line 1”, there are 127 super high-rise building sites in this area, making
it the most densely populated area of super high-rise buildings in the study area. The
dashed boxes b and c in Figure 4a represent the two subsidence areas of Line 1, which
are the International Airport Station-Xuanrendun Station, with a maximum displacement
of less than 5 mm/year (Figure 4b), and from Erdaoqiao to Nanmen Station, where the
maximum displacement exceeds 10 mm/year (Figure 4c). Comparing the settlements
of the two areas shows that the distribution of super high-rise buildings is the main
factor inducing the deformation of subway construction in this section. Therefore, the
distribution of super high-rise buildings is considered the second risk source of the subway
construction environment.
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3.4. Road Network Distribution

The urban road network is a crucial component of urban functionality, and subway
lines often overlap with it. However, during subway construction, when the construction
of the subway section passes under the existing urban road network, the dynamic load
brought by the road network can aggravate the development of land subsidence. According
to the report obtained following the analysis of the Urumqi subway line construction
settlement method, the larger settlement area of the Urumqi subway line construction is
located at the intersection of the urban road network and elevated urban areas. Roads
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with different functions (high-speed, national, and ordinary roads) pose different risks to
subway construction.

To examine the impact of different road network densities on subway construction,
we selected four measurement points with varying road network densities between Balou
Station and Wangjialiang Station of Metro Line 1. We conducted a comparative analy-
sis of deformation rates at these points. Figure 5a shows that Point A has no road net-
work nearby, and the road network density of Points B, C, and D increases in the order
of B < C < D. Figure 5b reveals that the maximum settlement rate is the smallest at Point A,
while the deformation rates at Points B, C, and D increase with the road network density.
This suggests that there is a positive correlation between surface deformation and road net-
work density during subway construction. Hence, road network distribution is considered
a type III risk source for subway construction environments.
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Figure 5. (a) Location of monitoring points under varying road network densities. (b) Shows the
settlement rate duration curve for the measuring points under varying road network densities during
the monitoring period. The black dotted box below the graph indicates the maximum settlement rate
values for Points A, B, C, and D.

3.5. Cluster Building Distribution

Cluster buildings refer to a group of buildings formed by several adjacent buildings in
a city that are closely connected in spatial organization. Cluster buildings primarily refer to
buildings arranged in a group. The impact of cluster buildings on subway construction is
mainly as follows: the additional stress on the base has a deeper influence on depth and a
slower attenuation speed, and it causes larger settlements during the subway construction
process [50–52]. We quantified the distribution of cluster buildings based on building
density and calculated the ratio of the total base area of the building to the occupied area
within a certain range [53].

Building Density = Total Base Area/Land Area (1)

To avoid deviations in the results of environmental risk source analysis caused by
the combined influence of geological conditions, super high-rise building distribution,
and road network distribution, this study used the control variable method and selected
four continuous subsidence areas (a, b, c, d in Figure 6e). These four subsidence areas are
located in the overlapping area of Beijing Road Main Road and Metro Line 1 in Urumqi.
Except for different building densities, there is no significant difference in the subway
construction environment and construction methods in the four areas (Table 1). As shown
in the green part of Table 1, with the increase in regional building density, the maximum
surface displacement during subway construction in the region also increases, and the
increasing trend is positively correlated with the building density. Therefore, building
density is considered the fourth risk source of subway construction environments.
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4. Distribution Characteristics of Environmental Risk Sources of Subway
Construction in Study Area

Based on the analysis of the environmental risk sources of subway construction in
Chapter 2, we obtained the distribution data of the geological conditions in the study area,
the POI data of the super high-rise buildings, the distribution data of the road network,
and the vector data of the building contours. Using the ArcGIS spatial 3D analysis function,
we analyzed the spatial distribution characteristics of the environmental risk sources of
subway construction in the study area and classified the risk levels of various risk sources
according to the analysis results.

4.1. Spatial Distribution of Geological Conditions

The data on geological conditions in Urumqi were collected from the Urumqi Mu-
nicipal Bureau of Geology. The distribution of the geological conditions is shown in
Figure 3. The geological conditions are divided into three grades based on the distribution
of geological conditions in the study area (Table 2).
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Table 2. Risk grade and distribution statistics of geological conditions in the study area.

Geological Conditions Risk Level Geological Condition Area (km2) Proportion (%)

Level I Soil horizon 1771.3 63
Level II Earth-rock composite layer 429.1 15.3
Level III Lithosphere 612.6 21.7

Statistical analysis reveals that the study area is primarily composed of soil layers,
which are primarily distributed in the northern part of the study area. A small area is
present in the north and south. The rest consists of the soil–rock composite layer. A
staggered distribution of the layer of rock is present in the southwest and southeast region
of the study area.

4.2. High-Rise Building Distribution

The POI data of super high-rise buildings in the study area were obtained from the
Gaode POI spatial data in the first quarter of 2021. Combined with the environmental
survey report of Urumqi, the data were preprocessed, and finally, we obtained 350 POI
data of super high-rise buildings.

In this study, we utilized the ArcGIS kernel density analysis method to analyze the
Point of Interest (POI) data for super high-rise buildings in the study area. The search
radius for the kernel density analysis was employed to replace the influence range of the
super high-rise buildings on the region. The kernel density analysis value indicates the
impact of the super high-rise buildings on the region, with a higher value indicating a
greater impact. A distance threshold of 500 meters was set, and the pixel size was set to
200. Based on the kernel density analysis value, we classified the influence range of the
super high-rise buildings into four grades (Table 3) and obtained the spatial distribution
characteristics of the high-rise buildings in the study area (Figure 7).

Table 3. Statistical table of risk level and influence range of super high-rise buildings in the study area.

High-Rise Building Risk Level The Influence Range of Nuclear Density Influence Area (km2)

Level I 0.00–13.43 2779.28
Level II 13.43–26.87 24.92
Level III 26.87–40.31 6.96
Level IV 40.31–53.75 1.84
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As shown in Figure 7, the super high-rise buildings in the study area are mainly
distributed in the intersection of Tianshan District, Shayibake District, Xinshi District, and
Shuimogou District, and they are clustered and distributed, with a trend developing toward
the new urban area, which is consistent with the development of Urumqi city center. Finally,
the clustering distribution of the super high-rise buildings will significantly impact the risk
of subway construction in this area.

4.3. Road Network Distribution

The road network data used in this study were obtained from the “China Natural
Disaster Municipal Risk Census Data”. A 500 m ∗ 500 m grid was created within the
study area using the ArcGis function to create fishing nets, and the grid was used as a
statistical unit to calculate the road length in each grid area to obtain the road network
density (Equation (2)).

Road Network Density = Regional Road Network Length/Grid Area (2)

The road network density is used as a parameter of the road network risk distribution,
and the risk level of the road network in the study area was divided into four categories
(I, II, III, IV) by using the Jenks natural breakpoint method. The risk level distribution map
of road network density in the study area was obtained (Figure 8). The road network in
the study area is concentrated in the middle, and the high-density area (dark blue area)
is mainly located at the intersection of urban interchanges and main roads. These areas
are subjected to large pavement dynamic loads for prolonged periods, which increases the
risks associated with subway construction. Table 4 shows the parameters used to evaluate
the road network risk level and the proportion of different road network risk levels in the
study area.
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Table 4. Risk grade and statistical table for the road network in the study area.

Road Network Density Risk Level Density Range (%) Proportion (%)

Level I 0.00–2.98 3.0
Level II 2.98–10.9 7.9
Level III 10.9–21.2 34.6
Level IV 21.2–31.0 54.5

4.4. Cluster Building Division

The building profile data used in this study were obtained from the “China Natural
Disaster Housing Risk Census Data.” The formula used for calculating building density
(Section 2) was used to establish the fishing net layer and the building contour vector layer
(Section 4.3). The building density of each grid was determined by calculating the ratio of
the building contour area to the grid area. Based on the building density value of each grid,
the risk level was divided into four levels (I, II, III, IV) using the Jenks natural breakpoint
method (Table 5). Figure 9 shows the building density distribution map of the study area,
where the height of each block represents the building density in that area.

Table 5. Risk level and distribution of cluster buildings.

Building Density Risk Level Density Range (%) Proportion (%)

Level I 68.5–100 2.5
Level II 35.4–68.5 14.8
Level III 12.6–35.4 27.6
Level IV 0.00–12.6 55.1
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Figure 9. Building density distribution map of the study area.

From the results of the building density analysis shown in Figure 9, we can conclude
that the high-density building areas in the study area are primarily located in the northwest
of Tianshan District, the northeast of Shayibake District, the central and western part of
Toutunhe District, the southeast of Xinshi District, the southeast of Midong District, and
the west of Shuimogou District. The risk level and distribution of building density in each
region are shown in Table 5.

5. Comprehensive Analysis of the Environmental Risk Faced during the Construction
of the Subway in the Study Area
5.1. Introduction of Geometric Partition Theory

Multi-layer raster data overlay analysis (pixel statistics) is often used for mathematical
function calculation and the reclassification of raster. It refers to the reclassification of
multiple raster data with a unified hierarchy. The available statistical data are mode, maxi-
mum, mean, median, minimum, minority, range, standard deviation, sum, and variability.
The data analysis principle is shown in Figure 10. The partition operation is based on the
classification area of a data set, performs numerical statistical analysis on one or more data
sets, and calculates a single output value for each region in the input region data set. The
output results can be raster data or tables.
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5.2. Geometric Partition of the Subway Construction Environmental Risk Sources

In the fourth chapter, we used the partitioning principle in Section 5.1 and the method
described in Table 6 to calculate the spatial distribution grid layer for each risk source,
a process referred to as geometric partitioning [54]. After partitioning, the study area
was divided into 102 zones, and a map of the environmental risk sources for subway
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construction was created (Figure 11). The map reveals that the largest partitioned area
in the study area is 1444, indicating that the environmental risks associated with subway
construction in this area include soil layer risk, the risk from grade IV super high-rise
buildings, the risk from grade IV road networks, and the risk from grade IV building
density. Figure 12 shows the areas of statistical significance greater than 2500 km2 and the
percentage of the study area.

Table 6. Geometric divisions made on the basis of environmental risk sources associated with the
subway construction process in the study area.

Type Geological Condition High-Rise Building Risk Building Density Risk Road Network
Density Risk

Level 1 Soil horizon I I I
Level 2 Rock layer II II II
Level 3 Earth-rock composite layer III III III
Level 4 IV IV IV

Partition number Kilobit hundred’s place ten’s place units
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5.3. Environmental Risk Source Zoning Evaluation and Control of Subway Construction

We redefined the risk level of each partition area to accurately depict the comprehen-
sive influence of each risk source on the environmental risk zoning of subway construction
in Urumqi. We first obtained the risk assessment value by calculating the weighted average
of the risk scores in each partition area. We then defined areas with risk assessment values
in the range of [3.75, 2.5), [2.5, 1.75), and [1.75, 1.25) as low-risk, medium-risk, and high-risk
areas, respectively. High-risk areas with three or more class I risk sources were defined as
level I high-risk areas, medium-risk areas with two or more level I risk sources were defined
as level I medium-risk areas, and low-risk areas with one or more level I risk sources were
defined as level I low-risk areas. Based on their risk assessment values, the remaining
partition areas were defined as II high-risk areas, II medium-risk areas, and II low-risk
areas (Figure 13).
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Figure 13. Risk index and classification table for the subway construction risk source zones. The
higher the index, the lower the comprehensive risk level of the partition. In other words, the
comprehensive impact of the risk source in the region on subway construction is small.

We intersected the planned spatial location of Urumqi Metro Line 1–7 with the geo-
metric partition layer of the subway construction risk source and combined the risk index
table to statistically analyze the situation of railway lines crossing the risk area (Table 7).
According to Table 8, the comprehensive risk degree of the main crossing risk areas of
Metro Line 1–7 is small. However, all lines cross the high-risk zones, the most significant of
which is Metro Line 6. There are six high-risk areas.

Table 7. Statistical analysis of the Urumqi Metro Line 1–7 across the subway construction risk
source zones.

Metro Lines Main Crossing Partition Risk Index The Highest Level of
Risk Zoning Regional Number Risk Index

Line 1 1432 2.25 1113 1 1.5
Line 2 3433 3.25 1312 2 1.75
Line 3 2433 3 1122 2 1.5
Line 4 3424 3.25 1312 1 1.75
Line 5 1444 3.25 1232 1 2
Line 6 1433 2.75 1212 5 1.5
Line 7 3444 3.75 1222 3 1.75
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Table 8. Risk prevention measures taken for each risk zone.

Zoning Risk Level Risk Index Interval Explanation

I category high-risk region
[1.25, 1.75)

Preventive measures must be implemented for various risk sources.
The settlement performance of the area must be strictly monitored

during construction.

II category high-risk region Preventive measures must be implemented for each level I risk source.

I category middle-risk region
[1.75, 2.50)

Preventive measures should be identified and implemented for each
level I risk source to reduce risk levelsII category middle-risk region

I category low-risk region
[2.50, 3.75)

The risk is on the edge of tolerance, and it is necessary to pay attention
to the possible impact of each level of risk source

II category low-risk region The risk can be tolerated without taking preventive measures

6. Conclusions

We employed SBAS-InSAR technology to analyze the surface subsidence performance
of different areas during the construction of the Urumqi Metro Line 1 and identified the
main risk sources of the subway construction environment in Urumqi. We used ArcGIS
software to visualize the spatial distribution of each risk source and classify their risk levels.
We then carried out a geometric superposition of the spatial distribution layers of each
risk source to enable the geometric division of the environmental risk sources of subway
construction in the study area. Finally, we redefined the risk index of each partition to draw
the following conclusions:

(1) Four main types of risk sources affect the process of Urumqi subway construction,
and these can be classified into natural conditions and human engineering activities.
Each risk source control level can be divided into geological conditions (I–III) based
on their spatial distribution and spatial density distribution. Additionally, the distri-
bution of super high-rise buildings can be classified into levels I–IV, the road network
distribution can be classified into levels I–IV, and the cluster building distribution can
be classified into levels I–IV.

(2) The environmental risk source area of subway construction in the study area is divided
into 103 regions, with 12 areas having an area greater than 250,000 km2. The largest
partition number is 1444, and the partition number with the greatest risk is 1112. The
environmental risk source and risk level of subway construction in this area are soil
layer, grade I super high-rise building risk, grade I road network risk, and grade II
building density risk.

(3) We graded the comprehensive impact of risk sources on subway construction ac-
cording to the distribution of risk sources in each sub-region. We also conducted
a statistical analysis of Urumqi Metro Line 1–7 crossing the risk source zones and
identified the risk control measures needed when the subway line crosses different
risk levels.

(4) In the future planning and construction of the Urumqi subway line, identifying the
environmental risk sources of subway construction will assist the planning depart-
ment in understanding the environmental risk situation surrounding the subway
planning line. This information will provide a foundation for the rational planning
and adjustment of regional subway lines. The subway construction company will be
able to determine the environmental risk level of the subway’s construction and take
necessary risk control measures in advance based on the intersection of the actual
subway line location and the environmental risk source zoning layer. This will help to
mitigate the risk of inconsistency between the judgment results of engineering design
drawings and engineering practice due to insufficient consideration of risk factors
during the planning and design stage.
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