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Abstract: Pavement condition prediction plays a vital role in pavement maintenance. Many prediction
models and analyses have been conducted based on long-term pavement condition data. However,
the condition evaluation for road sections can hardly support daily routine maintenance. This paper
uses high-frequency pavement distress data to explore the relationship between distress initiation,
weather, and geometric factors. Firstly, a framework is designed to extract the initial time of pavement
distress. Weather and geometric data are integrated to establish a pavement distress initiation dataset.
Then, the time-lag cross-correlation analysis methods were utilized to explore the relationship
between distress initiation and environmental factors. In addition, the logistic regression model
is used to establish the distress initiation prediction model. Finally, Akaike information criterion
(AIC), Bayesian information criterions (BIC), and areas under receiver operating characteristic curves
(AUC) of logistic regression models with or without time-lag variables are compared as performance
measurements. The results show that pavement distress initiation is susceptible to weather factors
and location relationships. Daily total precipitation, minimum temperature, and daily average
temperature have a time delay effect on the initiation of the pavement distress. Distress initiation
is negatively correlated with the distance from the nearby intersection and positively correlated
with adjacent distresses. The weather factors, considering the time-lag effect, can improve the
model performance of the distress initiation prediction model and provide support for emergency
management after severe weather.

Keywords: pavement distress initiation prediction; time-lag cross-correlation; logistic regression

1. Introduction

Pavement distress initiation is closely related to the service life of the pavement and
is usually accompanied by the deterioration of asphalt material and subgrade structural
damage [1–4]. The presence of pavement distress not only accelerates pavement deteri-
oration and reduces pavement life, but also affects driving safety and comfort to a large
extent [5–8]. Pavement maintenance can effectively reduce pavement distress, and the
common means of maintenance are mainly daily routine maintenance, major annual repair,
and pre-maintenance. Since major annual repair and pre-maintenance require large invest-
ment in road refurbishment in a short period of time, the development of a corresponding
maintenance plan is fully studied. The development of a maintenance plan requires obser-
vation and prediction for the initiation and deterioration of pavement distress. Pavement
distress initiation and deterioration prediction based on long-term inspection records has
proven to be an effective support for the development of major annual maintenance plans
and pre-maintenance plans [9]. In this paper, we distinguish between long term and short
term and high frequency and low frequency, depending on the granularity of time. High
frequency implies that data are collected at the daily or weekly level, and low frequency
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refers to data collected at the yearly level. Due to the lack of relevant datasets, the long term
here is only restricted to refer to yearly data collected for many years. However, unlike
major annual maintenance supported by a long-term pavement condition prediction model
trained on large granularity data, daily maintenance needs the support of a short-time
pavement distress occurrence prediction model. Higher frequency data collection can
reveal more detailed correlations among variables, e.g., weather data in annual data are
involved in modeling as static variables, while weather data at the daily or weekly level can
be valued for their time-series properties in modeling. Therefore, in order to improve the
efficiency of daily pavement maintenance, it is important to develop a short-time pavement
condition generation prediction model.

Previous studies on predicting the occurrence of pavement distress have typically
been based on long-term testing records, such as the Long Term Pavement Performance
(LTPP) program [10] and the AASHO road testing program [11]. Sun [12] concluded that
the long-term deterioration trends of pavement condition index (PCI) and riding quality
index (RQI) can be classified into four types, namely, concave, convex, inverse S, and
pre-fast decay curves, based on the long-term observation data of five Chinese provinces,
and the deterioration processes are represented by functional expressions. Loizos et al. [13]
studied the effects of construction, traffic, and climatic factors on pavement performance
based on long-term pavement performance test data from 15 European countries and
concluded that the log-normal function predicted the generation of pavement cracks most
accurately. Dong et al. [14] evaluated the generation time of road cracks based on data from
the Long Term Pavement Performance (LTPP) project, and found that service life, traffic
volume, and pavement structure are important in the crack occurrence process, while a
survival model containing a Weibull hazard function is most relevant to describe various
crack occurrences. The above studies explored the factors influencing crack occurrence
based on long-term pavement condition data, which led to the construction of prediction
models for pavement distress occurrence and deterioration, and these studies were useful
for annual pavement condition prediction. However, daily routine maintenance requires a
high-frequency prediction model for pavement distress initiation and deterioration, which
means that prediction models must be trained using pavement distress data with small
time intervals.

With the development of image processing technology in pavement surface distress
detection, especially the accuracy of pavement surface distress detection and segmenta-
tion based on convolutional neural networks, detection has been significantly improved,
and the automatic detection technology of pavement surface distress based on images
has been gradually accepted and applied to pavement engineering [15,16]. Automatic
detection of pavement surface distress usually loads a vehicle with a front-view [17,18]
or rear-view [19,20] camera to capture images of the pavement surface. Convolutional
neural network-based distress detection usually requires thousands of images to train the
model [21], and image data can be obtained from open source datasets [22] or self-collected
data [23]. Subsequently, the pixel ranges with pavement distress are extracted from the
original images by well-established image recognition frameworks, such as YOLO [24],
RCNN [25], and transfer learning [26]. YOLO and RCNN frameworks require larger single-
scene datasets for training, and the accuracy for pavement distress detection in a single
scene is higher, and the transfer learning framework requires more multi-scene datasets
for training, so the robustness for pavement distress detection in multiple scenes is better.
Finally, the detection of high-frequency continuous pavement distress occurrence and
deterioration can be achieved due to the automation and low cost of pavement distress de-
tection. Li et al. [27] matched the pavement distress data collected on multiple consecutive
days by constructing a spatio-temporal correlation algorithm to eliminate duplicate pave-
ment diseases, thus achieving high-frequency continuous tracking of individual distress
occurrence and deterioration. However, the abovementioned pavement distress detection
techniques can only provide formatted information such as the classification attributes
and appearance of geometric features of the pavement distress, and there is less research
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on how to analyze the characteristics of pavement distress’ short-period initiation and
deterioration from these formatted data and construct a pavement distress short-period
prediction model.

Similar to studies in environmental science [28] and geophysics [29] on the influence of
physical systems by environmental factors, road pavements, despite their exposure to the
natural environment, are not affected by the action of environmental factors in a simultane-
ous manner. Pu et al. [30] used a long- and short-term memory (LSTM) neural network to
develop a pavement friction prediction model based on daily pavement performance data
collected over a long period of time, considering the time-series characteristics of pavement
conditions, and found that the prediction accuracy was affected by the time lag and the pre-
diction time interval. Brijs et al. [31] used Dutch traffic data and weather data to construct
count data models with temporal interdependence based on integer autoregressive models
and found that daily changes in weather conditions had a significant effect on the number
of crashes caused by changes in road conditions. However, fewer studies have focused
on quantitatively studying the relationship between pavement distress generation and
environmental factors. In the microstructure of pavement asphalt layers, Kettil et al. [32]
and Dong et al. [33] found that the movement of moisture in the asphalt mixture due to
vehicle loading under the influence of ambient temperature and humidity will reduce the
strength and service life of the asphalt mixture. However, at the macroscopic level, most
prediction models consider environmental factors as independent variables due to the lack
of continuous decay detection data of pavement distress under natural conditions, and less
consider the time series effect of environmental changes under short-period conditions, so
it is meaningful for short-period pavement distress occurrence and deterioration prediction
models to consider environmental factors.

This paper first established a pavement distress extraction framework to obtain the
pavement distress initiation information. Combined with the geometric data and meteoro-
logical data, the pavement distress initiation dataset was set up to explore the daily change
pattern and establish prediction models. Then, the time-lag cross-correlation analysis
(TLCC) method was utilized to explore the time delay phenomenon in pavement distress
initiation. The TLCC method is widely used to evaluate the influence factors in an envi-
ronmental interaction system. Finally, the logistic regression results provide evidence that
the time delay effect is useful to improve the model performance of the distress initiation
prediction model.

The remainder of this paper is organized as follows: Section 2 shows data collection
and preparation. Section 3 describes the methodologies of time-lag cross-correlation,
variables correlation analysis, and logistic regression model. Section 4 presents the results
of correlation analysis and modeling. Section 5 summarizes the findings, conclusions, and
future work.

2. Data Preparation

Longwu Road, a Shanghai urban arterial road, was utilized as the study area. In
China, arterial roads are the road grade second only to expressways in terms of traffic flow.
The study area was set as ten sections in Longwu Road, which is a key road connecting
downtown in Xuhui District, which means that its daily average traffic flow is at the
forefront of the arterial roads. In this context, a section is defined as the road between two
neighboring intersections. Longwu Road is oriented north to south and originates from
West Longhua Road, and its destination is Huaji Road, with a total of 6.7 km in length.

Longwu Road is a typical urban road. As shown in Figure 1, the traffic flow statistics
of a typical urban road intersection in Shanghai, its vehicle structure is usually comprised
of minibuses and large buses. At the same time, there are a small number of small trucks
and large trucks. The average daily traffic flow is relatively stable, except for the weekend
traffic flow being less than that of weekdays. The daily traffic flow will not show large
changes, so it can be assumed that the average daily traffic flow of Longwu Road will not
produce too many sudden-change situations.
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Figure 1. Hourly traffic flow of a typical urban intersection.

The pavement structure of Longwu Road is semi-rigid pavement. Specifically, there
is a 4 cm SMA-13 (SBS modified) layer, 6 cm AC-20C layer, 7 cm AC-25C layer, 0.6 cm
slurry seal layer, 48 cm cement-stabilized macadam layer, and 15 cm gravel sand layer. The
pavement structure mentioned above is the most commonly utilized in Shanghai urban
arterial road construction. Therefore, it can be inferred that the daily variation of pavement
distress on Longwu Road is less affected by the variation of the average daily traffic volume
and the variation of the pavement structure.

The study period was set from 21 January to 30 June 2021, totaling 161 days. During the
study period, Shanghai underwent a transition from winter to summer, which means that
the low-temperature and high-temperature conditions of the road are covered. Moreover,
in the spring, the rainfall in Shanghai is intensive. So, the study period also covers the road
surface conditions for the entire rainy season.

There were three data sources collected for this study: (1) pavement surface pho-
tographs data; (2) roadway geometric data; and (3) meteorological data. The pavement
surface photographs data contain raw pavement surface images and corresponding raw
GPS data. Then, combined with roadway geometric data and meteorological data, the
pavement distress initiation dataset was established, shown in Figure 2.

2.1. Detection of the Pavement Distress Initiation

The pavement surface photographs contain both the pavement distress information
and coordinate information, which can be extracted from raw pavement surface images and
raw GPS data. Raw pavement surface photographs were obtained by front-view cameras.
Digital cameras were installed on vehicles’ roofs, which can obtain original pictures at a
resolution of 1344 × 756 pixels. The input image pixel range is larger than the 512 × 512
pixel range of the commonly used pavement distress image datasets to satisfy the model
training and detection requirements, and a larger image pixel range can improve the
recognition accuracy but lead to longer detection time, so the current pixel range is more
applicable [34]. During image acquisition, vehicles drove through the whole study area
daily. Raw GPS data including date, longitude, latitude, and azimuth were collected by the
same vehicle.

Pavement distress has been extracted from raw pictures by an automatic method.
An automatic pavement distress recognition and segmentation neural network, based
on the YOLO_v3 framework, was established and trained to detect pavement distress
information [24,34]. YOLO_v3 is a very widely used framework and is simple and robust
enough to be used more easily in a variety of datasets, which means that the experimental
procedure in this paper can be better reproduced. The YOLO_v3 framework uses pre-
trained weights, while 45,788 images containing pavement distress collected in the same
scenes are used for model training. The accuracy of cracks, potholes, and alligator cracks is
80.82%, 80.27%, and 91.38%, respectively, and the mAP of our model is 87.51%.
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The detection results included pavement distress types (which contain transverse
crack, longitudinal crack, alligator crack, and pothole) and bounding box (which part of
the picture contains pavement distress), shown in Figure 3.

Figure 2. Overview of the study area, time period, and distress initiation dataset format.

Then, the latest distress pictures are matched and compared with the previous pictures
as in the following steps.

Step 1: Determine the picture’s photographed direction. Calculate the absolute value
of azimuth between the image and road direction. This paper defines road direction as
the azimuth from origin to destination. Then, judge the photographed direction when the
following criteria are satisfied:

direction =

{
upstream, 0◦ <

∣∣azipicture − aziroad
∣∣ < 45◦;

downstream, 135◦ <
∣∣azipicture − aziroad

∣∣ < 180◦.
(1)

where azipicture and aziroad represent azimuth of picture and road direction, respectively.
Step 2: Search the nearest picture obtained in the previous time step. For the pavement

surface images in the same direction, calculate the Euclidean distance between the present
pictures and images obtained last time. The previous images with the minimum Euclidean
distance of the picture were set as the potential images containing initial distresses.

Step 3: Determine the initial time of pavement distress. A recurrent method was
adopted for determining the initiation of distress. In the recurrent method, each picture
labeled as ‘contain distress’ was inspected by civil engineers. To identify the initiation of
pavement distress, the engineers compared the present pictures to the last period pictures
in the same place. The classific rules for distress initiation include: (a) if a present picture
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contains distress and a last period picture is without distress, the distress initiation date
was set as the acquisition date of the present picture; (b) if both the present picture and last
period picture contain the same distress, the distress initiation date of the present picture
was set as the distress initiation date of the last period picture; and (c) if the last period
picture and its earlier period picture contain the same distress, step (b) should be applied
until the distress initiation date is confirmed.

Figure 3. Detection of pavement distress.

2.2. Independent Data Acquisition

Geometric data included road-section-adjacent road grade and the distance from
image acquisition location to the nearest intersection center. Baidu Map API is open-source
and offers integrated access to obtain geometric data in China. When the coordinates
are input to the API, the distance between the coordinate point, the intersection, and the
adjacent road grade will be returned. According to traffic volume, in China, the urban
roads are divided into four levels: expressways, arterial roads, secondary truck roads, and
branch roads. So, the distance to the intersection and road grade of adjacent roads at the
same intersection implies the complexity of vehicles’ load patterns.

Weather data included maximum temperature, minimum temperature, daily average
temperature, daily total precipitation, and relative humidity. The period of weather data is
from 1 January to 30 June 2021, totaling 181 days.

Historical distress data contain the cumulative number of adjacent distresses. The
length of the longitudinal crack is significant in the longitudinal direction of pavement and
might impact the cumulative number of distresses in the adjacent area. According to the
statistics of longitudinal cracks from the Long-Term Pavement Performance dataset [35],
the length of the adjacent area of the current coordinate was set as 50 m.
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3. Methodology

To analyze the relationship between independent variables and disease generation,
firstly, continuity analysis was performed on data with time-series properties, secondly,
significance between categorical and numerical variables was explored, and finally, the
relationship between independent and dependent variables was fitted to obtain the specific
degree of influence. Compared with common temporal signal processing, such as dynamic
time warping or instantaneous phase synchrony, time-lagged cross-correlation (TLCC)
is not only possible to deal with temporal signals with many zero values, but also to
obtain the correlation between peaks of different sizes, which is more applicable to the
general pattern of pavement distress initiation [36]. Traditional logistic regression models
treat the coefficients of independent variables as fixed values. However, the Bayesian
logistic regression model assumes coefficients follow a distribution [37]. The generation
of pavement distress has high uncertainty, and it is difficult to obtain a better fitted value
by point estimate of parameters, while using the generation of pavement distress as a
statistical distribution input can yield better predicted values.

3.1. Cross-Correlation Assessment

Cross-correlation is a common method for estimating the correlation between temporal
information. That is, the correlation between two time-varying events may be consistent or
inconsistent within the time interval. Two sequential time-series signals contain the same
number of lead-follow relationships, and then the Pearson product-moment correlation is
computed for the two signals. However, correlation analysis techniques do not provide
information about synchronization between two signals, such as which signal leads and
follows. TLCC has been used to identify relationships between two signals. TLCC is
measured by gradually shifting the first signal and frequently calculating correlation with
the second signal [38–40]. The formula is as follows [36]:

r(X, Y, τ) =
1

N − τ

n

∑
i=1

(xi − X)(yi+τ −Y)√
n
∑

i=0
(xi − X)

2
√

n
∑

i=0
(yi −Y)2

(2)

where N is the sample size, τ is the offset of signal, xi and yi are the values in two samples,
and X and Y are the mean of variables.

Windowed time-lag cross-correlation (WTLCC) is used to evaluate the cross-correlation
during the whole time epoch. In various time series analysis methods, the assumption
of the time-series variable is stationarity, which implies that statistical characteristics of
time series are held across the entire time period. However, in some cases, the time-series
statistical characteristics might be influenced by some factors. Therefore, window time-lag
cross-correlation (WTLCC) is applied to assess whether the statistical features are stable
by continuously adjusting the interval of the time windows [36]. The measurement of
windowed time-lagged cross-correlation between two signals is calculated in multiple time
windows, and each window provides a score comparing the difference between the leader
and follower signals.

3.2. Correlation Analysis

Time series analysis can provide time information between a pair of time series
variables, but it lacks correlation analysis of all independent variables of the dependent
variable. Understanding the degree of correlation between all independent variables helps
to eliminate highly correlated independent variables in subsequent modeling and reduce
the overfitting problem of the model.

Pearson correlation analysis is a common method to measure the similarity of a linear
correlation between two numerical variables when a change in one variable is associated
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with a synchronization change in the other variable. If one dataset X contains n values and
the other dataset Y contains n values, the Pearson correlation coefficient r is given as [41]:

r =

n
∑

i=0
(xi − x)(yi − y)√

n
∑

i=0
(xi − x)2

√
n
∑

i=0
(yi − y)2

(3)

where n is the sample size; xi and yi are the values in two samples each indexed with i; x
and y are the variable values mean. r = 1 means a significant positive correlation, r = −1
means a significant negative correlation, and r = 0 means no correlation.

The Spearman correlation analysis is an appropriate method to assess the correlation
between categorical variables (discrete ordinal variables) and numerical variables. The
variable requirement is monotonic relationships (whether linear or not). The Spearman
correlation coefficient is defined as the Pearson correlation coefficient between the rank
variables, which can be computed as [42]:

rs = 1−
6

n
∑

i=0
d2

i

n(n2 − 1)
(4)

where di = rg(Xi)− rg(Yi) is the difference between two ranks of each variable, rg(Xi)
and rg(Yi) represent the rank number in variable set X and Y, respectively, and n is the
number of sample sizes. Similar to the Pearson correlation coefficient, in the Spearman
correlation coefficient, r = 1 means a significant positive correlation, r = −1 means a
significant negative correlation, and r = 0 means no correlation.

3.3. Binary Logistic Regression Model

The aim of analyzing all influence factors is to find an ordinary way to describe the
relationship between independent variables and dependent variables. In recent years,
despite the rapid development of machine learning and deep learning, which have shown
promising results in many fields, generalized linear models still have obvious advantages
in terms of model interpretability in multi-factor modeling problems.

There are various regression models to establish the relation between the dependent
variable and other independent variables. One of the methods is the linear regression
model, but it is not efficient in modeling the binary dependent variable. The binary
logistic regression model is a generalized linear model which can solve the modeling
problem of the binary dependent variable. Binary logistic regression uses a logistic or logit
transformation to link dependent variables to independent variables. The binary Bayesian
logistic regression function is [43]:

logit[P(y)] = ln[
P(y)

1− P(y)
] = b0 + b1x1 + . . . + bnxn (5)

where P(y) is the probability of y = 1 determined by the value of x, and 1− P(y) is the prob-
ability of y = 0, n is the number of independent variables, y is the binary dependent variable,
and P is the probability of the dependent variable, bi(i = 1, 2, 3 . . . , n) represent the coeffi-
cients of each independent variable xi to be estimated, and the coefficients bi can explain the
degree of the possible impact of independent variables on the dependent variable.

Each data category will be independently entered into the variables in the formula,
and all categorical and numerical variables will be calculated with their respective statistical
indicators, and then jointly calculated in the formula to obtain the corresponding coefficient
values for the fitted minimum deviation. The coefficients of the independent variables
of logistic regression can be calculated by maximum likelihood estimation. Similarly, the
maximum likelihood estimation method can also calculate the probability of y in the logit
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function. After the parameter estimation process, the significance of each parameter in the
model can be calculated by the Wald test. The Wald test formula is [44]:

Wj =
b̂j

std(b̂j)
(6)

where std(b̂j) is the standard error of coefficient estimation value of b. A Python program
was used to fit the formula and calculate the error.

4. Results and Discussion
4.1. Descriptive Analysis

The study time period was set from 21 January to 30 June in 2021. Hence, the first day
of the study time period (21 January 2021) was set as the initial date of Longwu Road’s
pavement condition. On the initial date, each observed distress was considered as the
cumulative number of distresses before the study time period. During the rest of the study
time period, each observed distress was processed via the image-processing approach and
the distress-matching approach, and the pavement distress initiation variable could be
calculated. There were 318 distresses observed on the initial date, and 809 distress initiations
during the rest of the period. In this study, the non-initial distress value was chosen from
the regular date, and the pavement surface image contains non-initial distress (including
no distress and distress not occurring on that day). There were 810 non-initial distresses
selected for further analysis. Therefore, a total of 1619 pavement distress initiation values
were selected as the dependent variable in this study. The rest of the variables were utilized
as independent variables, which could be divided into numerical and categorical variables.
Table 1 shows the summary statistics of all variables in the pavement distress initiation
analysis dataset.

Table 1. Summary Statistics of the Dependent and Independent Variables.

Variables Description Summary Statistics

PD_INI Pavement distress initiation. 1 (with distress initiation): 809
0 (without distress initiation): 810

UP_RD_GRADE
Neighboring road grade of

road section upstream
direction.

1 (branch road): 341
2 (secondary truck road): 546

3 (arterial road): 338
4 (expressway): 394

DOWN_RD_GRADE
Neighboring road grade of
road section downstream

direction.

1 (branch road): 503
2 (secondary truck road): 546

3 (arterial road): 228
4 (expressway): 342

MAX_TEMP Maximum temperature. (◦C) Min: −1.6; Max: 33.8;
Mean: 19.19; Std: 7.76.

MIN_TEMP Minimum temperature. (◦C) Min: −7.0; Max: 25.8;
Mean: 12.30; Std: 7.32.

AVG_TEMP Daily average of temperature.
(◦C)

Min: −4.2; Max: 25.8;
Mean: 15.36; Std: 7.32.

PRCP Daily total precipitation. (mm) Min: 0.0; Max: 34.1;
Mean: 2.97; Std: 6.28.

RH Relative humidity. (%) Min: 29.0; Max: 99.0;
Mean: 73.03; Std: 17.47.

DIS_NEAR_INI Distance from the nearest
intersection. (m)

Min: 0.0; Max: 823.44;
Mean: 221.35; Std: 176.87.

No_ADJ_DIS The cumulative number of
distresses in the adjacent area.

Min: 0.0; Max: 32.0;
Mean: 2.94; Std: 4.53.
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4.2. Temporal Cross-Correlation Analysis

The time lag is the time between two closely related events, such as cause and effect.
The phenomenon of time delay in geography and environment was found as a common
explanatory variable because interaction effects between various parts of the environment
required an extended period. Moreover, some time delay effects were found in the previous
research in pavement engineering and transportation. Road frost and anti-skid performance
degradation caused by low temperature and high precipitation will not occur on the first
day of the arrival of low-temperature weather but will occur after a short time delay [30,31].
To understand the effects of the environment including temperature, precipitation, and
humidity, a time-lag analysis method with both time-lag cross-correlation (TLCC) and
windowed time-lag cross-correlation (WTLCC) was utilized. The time-lag analysis results
are presented in the following Figure 4.

Figure 4. Cont.
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Figure 4. Daily cumulative number of distress initiations (No_DIS_INI) and meteorological variables
(left column) and TLCC charts between the cumulative daily number of distress initiations and mete-
orological variables (right column). (a) Comparison of No_DIS_INI and daily maximum temperature;
(b) TLCC between No_DIS_INI and daily maximum temperature; (c) Comparison of No_DIS_INI and
daily minimum temperature; (d) TLCC between No_DIS_INI and daily minimum temperature; (e)
Comparison of No_DIS_INI and daily average temperature; (f) TLCC between No_DIS_INI and daily
average temperature; (g) Comparison of No_DIS_INI and daily total precipitation; (h) TLCC between
No_DIS_INI and daily total precipitation; (i) Comparison of No_DIS_INI and relative humidity; (j)
TLCC between No_DIS_INI and relative humidity.

The daily cumulative number of distress initiations is presented in the left column of
Figure 4; the maximum value was observed on 26 February, and the maximum value is
57. The second-highest and third-highest daily cumulative number of distress initiations
were 52 and 43, observed on 27 February and 13 May following 26 February, respectively.
Moreover, two ridge types of the cumulative number of distress initiation variables in the
broken line graph illustrate the concentrated outbreak of pavement distress occurrence.
The first ridge started on 15 February and ended on 17 March. The time period of the
second distress occurrence ridge was from 7 May to 1 June.

The broken lines from the meteorological variables in the left column of Figure 4a,c,e
are the daily change of maximum temperature, minimum temperature, and the daily
average temperature, respectively. They all show high correlations and a significant increase
during the study period, which offers an increasing temperature trend from winter to
summer. In the left column of Figure 4g,i, daily total precipitation and relative humidity
were also observed with a slight increase during the study period. Significantly, the daily
total precipitation variable has been observed in two ridges in March and May, respectively.
It is illustrated that there were two concentrated rainfall periods in March and May during
the study period.
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The TLCC charts of each selected variable pair during the whole study period are
shown in the right column. The horizontal axis of the TLCC chart is represented as the offset
between two relevant signals, and the vertical axis is represented as the cross-correlation
value, which measures the similarity of two relevant signals. In this study, the cumulative
daily number of distress initiations was set as the S1 signal, and the meteorological variables
were set as the S2 signal. The time-lag cross-correlation coefficient can be obtained by
calculating the correlation between the S1 signal after shifting and the S2 signal. Therefore,
the positive offset value means the S2 signal leads the S1 signal. The offset value represents
the time interval in the above lead-follow relationship.

The TLCC chart of Figure 4b shows the highest cross-correlation with zero time offset,
and the correlation value is −0.10. It indicates that the maximum temperature might affect
the distress initiation without time lag in daily time scales during the study time period.
In Figure 4d,f, the highest cross-correlation coefficients were observed in the positive
offset equaling nine. The positive offset of 9 days had correlation values for the minimum
temperature and daily average temperature of −0.14 and −0.12, respectively. It indicated
that both weather variables above might affect the probability of distress occurrence after
a 9-day interval. All three temperature-dependent variables have negative correlations
between distress occurrence, with the time lag or without. The time lag of precipitation
and relative humidity are two and zero, as shown in Figure 4h,j. The highest correlation
values of precipitation and relative humidity are 0.24 and 0.23. It can be inferred that the
precipitation value might be highly relevant to the possibility of distress initiation two
days later. Furthermore, the time lag between relative humidity and distress occurrence
is a zero time interval. This indicates that distress initiation is more likely influenced by
present relative humidity. At the same time, the correlation values of both precipitation and
relative humidity are positive, which means a higher value would increase the probability
of distress occurrence.

The WTLCC of relevant data was calculated to extract the change of temporal cor-
relations between No_DIS_INI and each meteorological variable, as shown in Figure 5.
Each row value of the WTLCC charts represents the signals’ time series being divided
equally into different parts of time epochs, and the cross-correlations were calculated in
each window. The time-lag (offset) values of WTLCC were related to the results of TLCC
values between the accumulation of distress initiations and meteorological variables shown
in Figure 5. The WTLCC of maximum temperature (Figure 5a) showed that the correlation
values with zero time offset are negative for most of the epochs from the beginning to the
end time epochs. Moreover, the minimum temperature and the daily average of tempera-
ture in WTLCC charts (Figure 5b,c) showed that the correlation values with the time offset
of nine days were dominantly negative in all time epochs. Furthermore, the correlation
value of relative humidity (Figure 5e) showed positive values with no time lag from epoch
zero to the end, which was similar to the result of TLCC (Figure 4j). Finally, the correlation
coefficient of the daily average of precipitation with a two-day time lag showed slightly
negative values for most of the time epochs, despite two highly correlated values being
observed. One reason for the result is that the precipitation signal contains too many zero
values, and too many zero values might be dominant in the WTLCC value if time windows
are in small intervals.

4.3. Correlation Analysis

The time-lag phenomenon has been extracted from the relationship between pavement
distress initiation and meteorological data in the above analysis, but the effect of the time
delay in predicting distress initiation should be further discussed. Therefore, the binary
Bayesian logistic regression model should be established to assess the contribution of the
time delay effect by considering time lag in weather variables’ value.
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Figure 5. WTLCC charts between the cumulative number of distress initiations (No_DIS_INI) and
meteorological variables. (a) WTLCC between No_DIS_INI and daily maximum temperature; (b)
WTLCC between No_DIS_INI and daily minimum temperature; (c) WTLCC between No_DIS_INI
and daily average temperature; (d) WTLCC between No_DIS_INI and daily total precipitation; (e)
WTLCC between No_DIS_INI and relative humidity.

Based on the preliminary temporal correlation analysis results, the weather vari-
ables considered the time delay effect by setting a time lag in variables’ value calcula-
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tion. The time lags of maximum temperature (MAX_TEMP_LAG), minimum temperature
(MIN_TEMP_LAG), the daily average temperature (AVG_TEMP_LAG), daily total precip-
itation (RH_LAG), and relative humidity (PRCP_LAG) were set as zero, 9 days, 9 days,
2 days, and zero, respectively. Specifically, the value of the weather variables with time-lag
t means the meteorological variable’s value t days ago. For example, the precipitation
variable on 16 May was 29.8 mm, and the precipitation variable with a 2-day time lag
was 10.7 mm on 14 May. Therefore, the rest of the weather variables with time lag can be
obtained with the same approach.

Figure 6 presents the correlation coefficients of seven numerical variables with the
pavement distress initiation. The red and blue boxes in the correlation coefficients matrix
indicate that the counterpart variables have positive and negative correlations, respectively.
The color depth indicates the level of positive and negative correlations. Three light blue
boxes in the cumulative number of distress initiations column illustrate that maximum
temperature, minimum temperature, and the daily average temperature during the study
period have negative correlations with pavement distress initiation, which means the
probability of distress occurrence would decrease if the temperature-dependent numerical
variables go up. Significantly, the three deep red boxes illustrate that maximum tempera-
ture, minimum temperature, and the daily average temperature have remarkable positive
correlations, which is easy to understand provided that daily average temperature was
calculated with maximum and minimum temperature. So, to reduce the effect of highly
relevant variables in regression modeling, the daily average temperature was considered in
the modeling, and the maximum and minimum temperatures were excluded. Moreover,
two light red boxes in the cumulative number of distresses column under the temperature
boxes illustrate that daily total precipitation and relative humidity negatively correlate with
distress initiation. It can be described as higher precipitation values, and relative humidity
leads to a higher possibility of distress initiation, which means more moisture content in
the atmosphere might cause pavement surface conditions to deteriorate. Furthermore, the
distance between the current coordinate and the nearest intersection negatively correlates
with distress initiation via a light blue box. Significantly, the box between the distance from
the current coordinate to the nearest intersection center (DIS_NEAR_INT) column and
the cumulative number of distresses within 50 m of the current coordinate (No_ADJ_DIS)
column is light blue, illustrating that distance increases between the current coordinate
and the nearest intersection would reduce the cumulative number of pavement distresses.
Moreover, the light blue box between the ‘DIS_NEAR_INT’ column and PD_INI column
indicates that distance increases between the current coordinate and the nearest intersec-
tion would lead to a lower probability of distress initiation. In addition, the light red box
between the ‘NO_ADJ_DIS’ column and ‘PD_INI’ column shows the current coordinate
has more distresses and would be more likely to generate new distresses in the future.

The correlation coefficients of two categorical variables with the pavement distress
initiation are listed in Table 2. The correlation matrix shows that correlation coefficients of
pavement distress initiation with the road grade of neighboring upstream and downstream
roadway sites are 0.046 and −0.039, respectively. This implies that pavement distress
initiation might have a different probability even under the same meteorological condition
and similar pavement surface condition due to the difference between the neighboring
road grade of road sections in the upstream and downstream direction. Considering the
definition of road grade related to the traffic volume, it can be inferred that slight variation
in traffic volume caused by neighboring roads has weak correlations with pavement distress
initiation, based on the low correlation coefficients with distress initiation. On the one hand,
it might cover the reality of traffic volume by estimating traffic volume with classes of road
grades because of the strong correlation between traffic volume and pavement condition
deterioration [4]. On the other hand, it might have a small traffic volume change caused by
neighboring roads because 7 in 10 neighboring roads are secondary truck roads and branch
roads that operate in a low-service traffic volume. Hence, it might be important to record
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the numerical value of the real traffic volume for pavement distress initiation prediction in
daily routine road maintenance.

Figure 6. Correlation Coefficient Matrix of Dependent variables and Numerical Variables. (a)
Correlation coefficients of distress initiation and geometric data, meteorological data without time
lag. (b) Correlation coefficients of distress initiation and geometric data, meteorological data with
time lag.

Table 2. Correlation Coefficients Matrix of Dependent Variable and Categorical Variables.

PD_INI UP_RD_GRADE DOWN_RD_GRADE

PD_INI 1.000 0.046 −0.039
UP_RD_GRADE 0.046 1.000 −0.787

DOWN_RD_GRADE −0.039 −0.787 1.000

4.4. Logistic Regression Analysis Results

We assessed the time delay effect in predicting pavement distress initiation by com-
paring Bayesian logistic regression models with or without time-lag variables. The first
Bayesian logistic regression model considered variables including geometric data
(UP_RD_GRADE and DOWN_RD_GRADE, DIS_NEAR_INT), historical distress data
(NO_ADJ_DIS), and meteorological data, which considers the time delay effect. On the
contrary, the second Bayesian logistic regression model considered variables including
geometric data, historical distress data, and meteorological data without time lag.

The pavement initiation dataset was randomly split into train and test datasets with a
ratio of 70:30. Then, the Akaike information criterion (AIC), Bayesian information criterion
(BIC), and the area under the receiver operating characteristic (AUC) curve were selected
to assess the model performance. A lower AIC indicates a better model performance with
simple parameters. The AUC range is from 0.5 to 1.0. A higher AUC represents a better
potential precision ability. When the AUC range is from 0.7 to 0.8, it indicates the model
performance is acceptable, and if the range is from 0.8 to 0.9, this means the model is a
good fit of the dataset, and if AUC is higher than 0.9, this indicates perfect prediction.

The results of the logistic regression model are shown in Table 3. The values of AIC
and BIC for the model with weather parameters with time lags (model 1) are 1335.703
and 1375.964, both of which are smaller than 1371.775 and 1412.036 for the model without
considering weather parameters with time lags (model 2). The values of AIC and BIC are
determined by considering both the complexity of the model and the likelihood function,
and taking the model likelihood function is considered as a penalty term, which means
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that the model complexity and prediction accuracy are most balanced when the AIC and
BIC are smallest [45]. Therefore, the introduction of the time-lag relationship makes the
model performance of the prediction model better. Similarly, from the AUC values of 0.759
and 0.761 for the training and test sets of model 1, which are both better than 0.748 and
0.749 for model 2, it can be found that introducing the time-lag relationship can improve
the prediction accuracy of the prediction model.

Table 3. Results of Bayesian Logistic Regression Models.

Variables
The Model Contains Weather Variables with

Time Lag (Model 1)
The Model Contains Weather Variables without

Time Lag (Model 2)

Estimate Std. 95% BCI Estimate Std. 95% BCI

Intercept −1.219 0.545 [−2.287, −0.151] −0.717 0.544 [−1.783, 0.348]
UP_RD_GRADE 0.093 0.096 [−0.096, 0.282] −0.022 0.092 [−0.203, 0.159]

DOWN_RD_GRADE −0.050 0.095 [−0.236, 0.137] −0.0638 0.092 [−0.244, 0.116]
AVG_TEMP_LAG −0.090 *** 0.010 [−0.110, −0.069] - - -

PRCP_LAG 0.046 *** 0.010 [0.025, 0.064] - - -
RH_LAG 0.027 *** 0.004 [0.019, 0.035] - - -

AVG_TEMP - - - −0.093 *** 0.011 [−0.114, −0.072]
PRCP - - - 0.023 * 0.011 [0.001, 0.046]

RH - - - 0.026 *** 0.005 [0.017, 0.035]
DIS_NEAR_INT −0.001 *** 0.000 [−0.002, 0.000] −0.0009 * 0.000 [−0.002, 0.000]

No_ADJ_DIS 0.1591 *** 0.023 [0.115, 0.203] 0.1994 *** 0.023 [0.155, 0.244]

Model Performance

AIC 1335.703 1371.775
BIC 1375.964 1412.036

Train AUC 0.759 0.748
Test AUC 0.761 0.749

***: p-value < 0.001. *: p-value < 0.05. BCI: Bayesian Confidence Interval (95%).

In addition, the variables of weather factors (average daily temperature, total daily
precipitation, and relative humidity) showed significance in the logistic regression model
with or without time-lag characteristics, and the conclusions of the correlation analysis can
be analyzed together to know that weather factors still play a non-negligible role in the
prediction of short-term distress initiation, despite their relatively small influence. Similarly,
the distance to the nearest intersection and the pavement distress accumulation in the
adjacent area also showed significance in the logistic regression model, which corroborates
with the high correlation between the two variables and distress initiation in the previous
correlation study. On the contrary, in the logistic regression model, the significance of the
grades of the upstream and downstream adjacent road sections was not significant, possibly
because this variable is an indirect response to the traffic volume of the road section, which
does not correspond to the actual traffic volume and, therefore, does not show significance
in this study.

The logistic regression model reflects the degree of influence of the variable parameters
on the predicted values by means of probability ratios. For example, the cumulative number
of distresses within 50 m of the current coordinate (No_ADJ_DIS) parameter shows a highly
significant coefficient equal to 0.1591, which indicates that the probability ratio of pavement
distresses’ occurrence will increase by 1.172 (equals to e to the 0.1591) times when the
number of historical distresses increases by one. All significant variables in both models
showed the same trend and differed only in their values, showing the correctness of the
prediction models. Among the weather factors, the coefficients of daily average temperature
and relative humidity are similar in both models, while the coefficient of daily precipitation
in model 1 is 0.046 greater than that of model 2, which indicates that the consideration of
time lag on daily precipitation will have a greater impact on the prediction accuracy of
distress generation.
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5. Conclusions

Previous research has focused on establishing relevant prediction models and explor-
ing the impact of multiple factors on the initiation and deterioration of pavement distresses
through long-term data. This paper used road image data with a short collection period
to predict the initiation of pavement distresses and explore the relationship between the
changes in various weather factors and the initiation of distresses. The conclusions obtained
are as follows:

(1) The time-lag cross-correlation analysis was processed between initiation of pave-
ment distresses and maximum temperature, minimum temperature, daily average temper-
ature, daily total precipitation, and relative humidity. It can be found that the correlation
of the number of distress initiations between the maximum temperature of the day and
relative humidity at the same time is −0.10 and 0.23, respectively. Moreover, the corre-
lation of distress initiation between minimum temperature nine days ago, daily average
temperature nine days ago, and daily total precipitation two days ago is 0.14, −0.12, and
0.24, respectively. This indicates that the impact of temperature and precipitation on road
distress initiation has a time-lag effect;

(2) Through the analysis of the correlation between the number of pavement distress
initiations and the related factors of road alignment, it can be known that the coefficient of
initiation of road distress and the distance from the pavement to the intersection center is
−0.17, which means there is a negative correlation. Moreover, the coefficient is 0.26, which
means there is a positive correlation with the number of historically accumulated distresses
on the pavement. However, since the coefficients are both below 0.01, the initiation of
pavement distress has a weak correlation with the road grade of the neighboring road;

(3) Binary logistic regression models with or without time-lag variables were utilized
to establish a distress initiation prediction model and explore the degree of influence of
each variable on distress initiation. The weather factor variables of one model consider the
influence of the time-lag effect, while the weather factor variable of the other model does
not consider the impact of the time-lag effect. The AIC and BIC of the model containing
time-lag variables are 1335.703 and 1375.964, both lower than the other, revealing that the
first model is more precise than the second model. The modeling results show that the
AUC of the training and testing sets in the model considering time lag is 0.759 and 0.761,
respectively, indicating that the weather factor variables considering the time-lag effect
could help improve the prediction of pavement distress initiation accuracy.

Based on the research of this paper, the following research can be carried out in the
future. Firstly, in the temporal aspect, the time range of image acquisition for pavement dis-
tress can be extended to improve the robustness of the results. By extending the acquisition
time range of the dataset to more than one year, the differences in predicted data under
the same monthly and quarterly data from different years can be explored by experiencing
weather changes in a complete year, and the estimation bias of model parameters can be
reduced. Secondly, in the spatial aspect, the regional span of pavement distress image
acquisition can be expanded to improve the adaptability of the conclusions. Studying the
pavement distress initiation under different traffic volumes under the same type of area
can help explore the anomalies of distress generation due to traffic characteristics (e.g.,
road sections with more heavy vehicles) or explore the differences of various road classes
on distress generation. Due to the generality of the method in this paper, the trending
conclusions on weather and geometric factors on distress generation can be applied to
more areas. However, the weather values vary from region to region and the coupling
relationships between weather factors are complex, so a larger number of collections from
different regions may lead to a more numerically general model.
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