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Featured Application: Quantitative and calibration free determination of the absolute optical
properties of turbid samples in a standard cuvette with milliliter scale volume.

Abstract: Many applications seek to measure a sample’s absorption coefficient spectrum to retrieve
the chemical makeup. Many real-world samples are optically turbid, causing scattering confounds
which many commercial spectrometers cannot address. Using diffusion theory and considering
absorption and reduced scattering coefficients on the order of 0.01 mm−1 and 1 mm−1, respectively,
we develop a method which utilizes frequency-domain to measure absolute optical properties of
turbid samples in a standard cuvette (45 mm× 10 mm× 10 mm). Inspired by the self-calibrating
method, which removes instrumental confounds, the method uses measurements of the diffuse
complex transmittance at two sets of two different source-detector distances. We find: this works
best for highly scattering samples (reduced scattering coefficient above 1 mm−1); higher relative
error in the absorption coefficient compared to the reduced scattering coefficient; accuracy is tied
to knowledge of the sample’s index of refraction. Noise simulations with 0.1 % amplitude and
0.1° = 1.7 mrad phase uncertainty find errors in absorption and reduced scattering coefficients of
4 % and 1 %, respectively. We expect that higher error in the absorption coefficient can be alleviated
with highly scattering samples and that boundary condition confounds may be suppressed by
designing a cuvette with high index of refraction. Further work will investigate implementation
and reproducibility.

Keywords: absolute optical properties; absorption coefficient; reduced scattering coefficient; diffusion
theory; turbid samples; optical spectroscopy; sample measurement; cuvette; frequency-domain
near-infrared spectroscopy; self-calibration

1. Introduction

Samples in which the propagation of light is dominated by random scattering are
considered optically diffuse. Such samples can be characterized by two absolute optical
properties, the absorption coefficient (µa) and the reduced scattering coefficient (µ′s) [1].
The µa represents chemical information, and its spectral measurement allows for determina-
tion of the sample’s chemical constituents and concentrations. Meanwhile, the µ′s describes
the micrometer scale structure of diffuse samples. However, in many applications µ′s is
considered a confounding parameter, since measurement of µa and chemical makeup is
often the end goal. For this reason, even when diffuse sample measurement of only µa is
sought, µ′s must also be determined since it significantly impacts the behavior of light and
thus the recovered µa.

Applications that seek to measure these diffuse optical properties are numerous and
span many fields. For example, applications include those within biomedical research and
clinical applications [1–3], of food science and quality [4–6], concerning pharmaceutical
metrology [7,8], pertaining to art and archaeology [9,10], and within dendrology [11] to
name a few. In all cases, one has two options:
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1. To make a measurement which retrieves the total attenuation coefficient (µt) or the
effective attenuation coefficient (µe f f ).

2. To make a measurement that can separate both µa and µ′s.

However, only option 2 allows for careful quantitative analysis of the sample proper-
ties; since in option 1 one can only measure a coefficient, namely µt or µe f f , that couples
both the µa and µ′s of the sample. There are few methods capable of achieving option 2. One
such technique is Near-InfraRed Spectroscopy (NIRS) implemented in Frequency-Domain
(FD) [12] (or Time-Domain (TD) [13]) which can recover µa and µ′s by using temporally
modulated light. In the case of FD, photon density waves are generated by using a si-
nusoidally modulated source on the order of 100 MHz, and the amplitude and phase of
these photon density waves are measured from the detected modulated light signal. An ex-
ample of a commercially available FD instrument capable of this measurement is the ISS
Imagent V2 [Champaign, IL USA] (Imagent). A second technique capable of option 2 is
the integrating sphere [14,15]. This technique measures total diffuse reflectance and total
diffuse transmittance to separate µa and µ′s. Both techniques have their strengths and
weaknesses. Common implementations of FD NIRS require large sample volumes to create
geometries that are effectively infinite in at least one dimensional extent making simple
diffusion theory expressions valid [16]. Other methods, besides diffusion theory, exist to
tackle non-simple geometries such as Monte Carlo [17] and the radiative transport equation
implemented with higher order spherical harmonics [18–20]. However these methods are
computationally costly compared to diffusion theory and would likely be impractical to im-
plement on a broad range of optical wavelengths (λs). Another weakness of FD regarding
the number of λs, is the typical implementation at only discrete λs such as with the Imagent.
Meanwhile, the integrating sphere requires careful calibration or a reference sample and is
easily susceptible to errors induced by the measurement technique (for example, light loss
causing an incorrect measurement of total reflectance and transmittance).

Due to these difficulties with option 2 (and relative ease implementing option 1),
most commercial spectrometers make a measurement that is based on the retrieving non-
diffuse transmittance. Therefore, for quantitative determination of a sample’s chemical
concentrations (through the µa spectrum), samples must be non-scattering or transparent;
either innately or through some chemical washing. Whenever this is not possible the
measurement will be confounded by scattered light. This implies that the µa will be
overestimated and its spectral dependence distorted leading to errors in the estimation of a
sample’s chemical constituents.

One such instrument that shines when samples are transparent and non-scattering is
the Perkin Elmer LAMBDA 365+ (Waltham, MA, USA), this and instruments like it are the
workhorses of many chemical and biological laboratories. However, when diffuse sample
measurement is necessary (and quantitative measurement of properties sought), one of the
aforementioned techniques capable of option 2 is required. One example is the Gigahertz
Optik SphereSpectro 150H (Tüerkenfeld, Germany) (SphereSpectro), an instrument directly
designed for spectroscopic measurement of both µa and µ′s via integrating sphere. Further-
more, integrating spheres may be purchased as attachments to traditional spectrometers,
thus adding diffuse functionality. One such example of a spectrometer that has this option
is the Perkin Elmer LAMBDA 1050+ (Waltham, MA, USA). However, we are not aware of
any commercially available instrument that utilizes the FD in such applications.

Because of the apparent gap in the market for instruments which complete diffuse
measurement of µa and µ′s, namely implementation with instruments that utilize FD NIRS
like techniques, we will focus closer on FD. Measurements of µa and µ′s with temporally
modulated light, such as FD NIRS, is actually rather common but typically only in the
research setting (using the Imagent for example). However, we know of no FD instru-
ments designed for the sample sizes and form factors of traditional spectrometers which
accept a cuvette. In-fact FD NIRS methods typically require large sample volumes on the
scale of liters to implement simple diffusion theory solutions. Two examples of work that
considered FD measurements in confined regions were that in the slab [21] or block [22]
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(which utilized the same diffusion theory model implemented here [23]), however the
geometries considered in these works were rather large compared to a cuvette. There are
advantages of FD NIRS which would lead one to seek or design and manufacture such
an instrument. For example, FD NIRS can leverage existing techniques which eliminate
the need for instrumental calibration such as the Self-Calibrating (SC) method [24]. Addi-
tionally, despite FD typically being implemented at discrete λ, methods exist to achieve
broadband µa measurement. This may be done by combining measurements at discrete λs
in FD (or TD) with measurements at broadband λs with Continuous-Wave (CW) [25–27],
implemented with SC and a method dubbed Dual-Slope (DS), respectively, [28–30]. This
leverages the fact that SC and DS both rely on a difference type measurement which is
capable of subtracting away instrumental confounds.

We see an opportunity to develop a method which leverages the tools available in
FD NIRS to measure absolute µa and µ′s in a standard cuvette with milliliter scale volume
in an attempt to compete with the existing integrating sphere type devices. Therefore,
in this work we present a method that utilizes FD NIRS in a small geometry the size of a
standard cuvette (45 mm× 10 mm× 10 mm). Our proposal relies on the SC/DS method
to remove a majority of the instrumental confounds. To our knowledge no work has yet
leveraged SC/DS directly on the cuvette geometry as we propose here. First, we utilize
a seldom implemented but still computationally inexpensive diffusion theory derived
expression for the box geometry [23] to model our proposed measurement and determine
the method’s feasibility in theory. Then we further develop ways to retrieve µa and µ′s from
the proposed measurement. Lastly, we determine the strengths and weaknesses of the
proposed method. Our end goal is to implement the method for broadband λ measurement
of µa [28], thus computation cost and model simplicity are of importance leading to the
choice of a diffusion theory model. In this article we focus only on the FD part since the
extension to broadband λ CW will utilize all the same theory.

2. Methods
2.1. Geometry

In this work, we consider a box geometry with the dimensions of a standard cuvette
(45 mm× 10 mm× 10 mm; Figure 1). A DS/SC arrangement (the word slope in Dual-Slope
(DS) is historical [29,30] as no slopes are actually considered in this work) is achieved by
placing 2 sources (1 & 2; Figure 1a,b) and 2 detectors (A & B; Figure 1b,c) symmetrically on
opposing sides of the cuvette. Using the coordinate system shown in Figure 1, the optodes
were considered at the following position vectors (~rs): ~r1 = −17x̂ mm, ~r2 = 17x̂ mm,
~rA = −6x̂ + 10ẑ mm, and~rB = 6x̂ + 10ẑ mm. This forms two possible source-detector
distances (ρs) of 14.9 mm and 25.1 mm (2 each), for 1A & 2B and 2A & 1B, respectively.

2.2. Types of Measurement

The signal obtained between a single temporally modulated source and a single
detector recovers the Green’s function for the complex Transmittance (T̃) with FD NIRS.
T̃ is a complex number to represent the amplitude and phase of the transmitted photon
density waves modulated on the order of 100 MHz. These signals are named: T̃1A, T̃1B,
T̃2A, and T̃2B; where the first subscript indicates the source and the second the detector.
The short ρ measurements (ρ = 14.9 mm) are T̃1A and T̃2B while the long ρ measurements
(ρ = 25.1 mm) are T̃2A and T̃1B.

From these T̃ measurements, ratios between the short and long ρ measurements may
be obtained. Therefore we introduce the Single-Ratio of the T̃s (SR{T̃}s) for the geometry
in Figure 1 as follows:

SR{T̃}1AB =
T̃1B
T̃1A

(1)

SR{T̃}2BA =
T̃2A
T̃2B

(2)
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and the Dual-Ratio of the T̃ (DR{T̃}) as the geometric mean of the two symmetric SR{T̃}s.

DR{T̃}1AB2 =
√

SR{T̃}1AB × SR{T̃}2BA =

√
T̃1BT̃2A
T̃1AT̃2B

(3)

This forms a similar type of measurement to DS/SC but replacing the concept of
slope with that of ratio (The word slope in Dual-Slope (DS) is historical [29,30] as no
slopes are actually considered in this work). We acknowledge that the notation used
here is verbose since, that even for DR{T̃} we utilize subscripts to show all optodes
used. However, for this work we have opted to use this notation to distinguish explicitly,
the origin of the measurements. This is helpful in observing the differences in SR{T̃}s,
particularly in Section 3.1.2. In other work we opt to utilize a simpler notation with
numbered subscripts [30].

Figure 1. Schematic diagram of cuvette geometry measuring 45 mm× 10 mm× 10 mm. Sources and
detectors are considered at the following~rs: ~r1 = −17x̂ mm,~r2 = 17x̂ mm,~rA = −6x̂ + 10ẑ mm,
and~rB = 6x̂ + 10ẑ mm. (a) y-x plane for z = 0 mm. (b) Transparent projected view. (c) y-x plane for
z = 10 mm. Acronyms and Symbols: Position vector (~r).

We can further expand the expression for SR{T̃} to consider SR{T̃} amplitude (|SR{T̃}|)
and SR{T̃} phase (∠SR{T̃}). For example, with 1AB we have:

|SR{T̃}|1AB =
|T̃1B|
|T̃1A|

(4)

∠SR{T̃}1AB = ∠T̃1B −∠T̃1A (5)

and we introduce the final ratio type, the natural logarithm of |SR{T̃}| (ln |SR{T̃}|):

ln |SR{T̃}|1AB = ln |T̃1B| − ln |T̃1A| (6)

The motivation for utilizing the natural logarithm in this way is that it partly linearizes
typical expressions for diffuse optical measurements (T̃ in this case) as a function of
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ρ [31]. Additionally it shows a symmetry between ln |SR{T̃}| and ∠SR{T̃} as they are both
differences. This work focuses on utilizing these ln |SR{T̃}| and ∠SR{T̃} ratio types in the
development of the proposed method.

Note that similar expressions can also be written for DR{T̃} amplitude (|DR{T̃}|),
DR{T̃} phase (∠DR{T̃}), and natural logarithm of |DR{T̃}| (ln |DR{T̃}|):

|DR{T̃}|1AB2 =
√
|SR{T̃}|1AB × |SR{T̃}|2BA =

√
|T̃1B||T̃2A|
|T̃1A||T̃2B|

(7)

∠DR{T̃}1AB2 =
∠SR{T̃}1AB +∠SR{T̃}2BA

2
=

∠T̃1B +∠T̃2A −∠T̃1A −∠T̃2B
2

(8)

ln |DR{T̃}|1AB2 =
ln |SR{T̃}|1AB + ln |SR{T̃}|2BA

2
=

ln |T̃1B|+ ln |T̃2A| − ln |T̃1A| − ln |T̃2B|
2

(9)

From this it can be seen that |DR{T̃}| is a geometric mean of |SR{T̃}|s and both ∠DR{T̃}
as well as ln |DR{T̃}| are arithmetic means of ∠SR{T̃}s and ln |SR{T̃}|s, respectively.

For theoretical calculations, not considering optode coupling differences and medium
heterogeneity, the different SR{T̃}s and DR{T̃}s have the same value. This is due to the
symmetry shown in Figure 1 considering a homogeneous medium. For this reason, only
the set 1AB, and SR{T̃}1AB, is considered for most of the results. Coupling is considered in
Section 3.1.2, therefore, discrepancies between the difference measurements are investigated
in that section and the distinction between SR{T̃} and DR{T̃} becomes important there.

2.3. Analytical Box Model

To generate data for the cuvette geometry (Figure 1) we utilized the following dif-
fusion theory derived analytical expression for the T̃ [23] (The expression used for the
Green’s function for the complex Transmittance (T̃) represents the measured transmittance
normalized by the source power giving it units of mm−2):

T̃(xDet., yDet., zDet. = Lz) =
1

4π

∞

∑
l=−∞

∞

∑
m=−∞

∞

∑
n=−∞

[
(Lz − z1n)

(
µ̃e f f + 1/r1

)
r2

1
e−µ̃e f f r1 −

(Lz − z2n)
(

µ̃e f f + 1/r2

)
r2

2
e−µ̃e f f r2

−
(Lz − z1n)

(
µ̃e f f + 1/r3

)
r2

3
e−µ̃e f f r3 +

(Lz − z2n)
(

µ̃e f f + 1/r4

)
r2

4
e−µ̃e f f r4

−
(Lz − z1n)

(
µ̃e f f + 1/r5

)
r2

5
e−µ̃e f f r5 +

(Lz − z2n)
(

µ̃e f f + 1/r6

)
r2

6
e−µ̃e f f r6

+
(Lz − z1n)

(
µ̃e f f + 1/r7

)
r2

7
e−µ̃e f f r7 −

(Lz − z2n)
(

µ̃e f f + 1/r8

)
r2

8
e−µ̃e f f r8

]

(10)

where the optical properties, the µa and the µ′s, are contained within the complex effective
attenuation coefficient (µ̃e f f ):

µ̃e f f =

√
3µ′s

(
µa −

ωni
c

i
)

(11)

and the remaining non-spatial variables are the angular modulation frequency (ω), the in-
dex of refraction (n) inside the medium (ni), and the speed of light in vacuum (c).
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For spatial variables we first have the cuvette dimensions: Lx = 45 mm, Ly = 10 mm,
and Lz = 10 mm (Figure 1). Next, we have the source coordinates: xSrc. and ySrc. (given
that a pencil beam impinges on the z = 0 mm face so that an isotropic source is placed at
zIso.−Src. = 1/µ′s); as well as the detector coordinates: xDet. and yDet. (given that the detector
is placed on the z = Lz face, thus zDet. = Lz). Using these variables and remembering
the sum indexes from Equation (10) we can now write the various point source positions
(infinite of both positive and negative as per the indexing variables l, m, and n) [23]:

x1l = 2lLx + 4lh + xSrc. (12)

x2l = (2l − 1)Lx + (4l − 2)h− xSrc. (13)

y1m = 2mLy + 4mh + ySrc. (14)

y2m = (2m− 1)Ly + (4m− 2)h− ySrc. (15)

z1n = 2nLz + 4nh + 1/µ′s (16)

z2n = 2nLz + (4n− 2)h− 1/µ′s (17)

where h is the distance between the extrapolated boundary and the actual box boundary:

h =
2a(nr)

3µ′s
(18)

a is the n mismatch parameter [16,32] which is a function of the relative n mismatch
(nr = ni/no, where no is the n outside). Finally, using these positions, we can define the
distances to the point sources:

r1 =

√
(xDet. − x1l)

2 + (yDet. − y1m)
2 + (zDet. − z1n)

2 (19)

r2 =

√
(xDet. − x1l)

2 + (yDet. − y1m)
2 + (zDet. − z2n)

2 (20)

r3 =

√
(xDet. − x1l)

2 + (yDet. − y2m)
2 + (zDet. − z1n)

2 (21)

r4 =

√
(xDet. − x1l)

2 + (yDet. − y2m)
2 + (zDet. − z2n)

2 (22)

r5 =

√
(xDet. − x2l)

2 + (yDet. − y1m)
2 + (zDet. − z1n)

2 (23)

r6 =

√
(xDet. − x2l)

2 + (yDet. − y1m)
2 + (zDet. − z2n)

2 (24)

r7 =

√
(xDet. − x2l)

2 + (yDet. − y2m)
2 + (zDet. − z1n)

2 (25)

r8 =

√
(xDet. − x2l)

2 + (yDet. − y2m)
2 + (zDet. − z2n)

2 (26)

This diffusion theory derived expression (Equation (10)) was previously presented and
validated against Monte Carlo in [23]. The validity of such an expression is dependent on
the distance from the source, the value of µ′s, and the ratio between µa and µ′s. Only locations
far enough from the source for scattering to be considered isotropic may be considered,
µ′s must be large enough for isotropic scattering to dominate within the medium, and µa
must be much less than µ′s. Given that we consider measurements on the opposite side of
a 10 mm thick cuvette the first and second conditions are met for µ′s values on the order
of 1 mm−1 (cuvette thickness of 10 isotropic scattering mean free paths). Finally, the last
condition may be met by considering values of µa on the order of 100 times smaller than µ′s.
For this work, we choose values which encompass the edge of validity of diffusion theory
with µa from 0 mm−1 to 0.05 mm−1 and µ′s from 0.5 mm−1 to 5 mm−1 for demonstration
purposes. Most focus is on the values of 0.01 mm−1 for µa and 1 mm−1 for µ′s, for which
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our independent (aside from what is presented in [23]) validation against Monte Carlo [17]
found <5 % discrepancy for |T̃| and 0.005 rad for ∠T̃ over the face of the cuvette opposing
the source. For the purposes of this work, a feasibility study of the proposed method, we
believe this diffusion theory model is appropriate.

To provide some physical intuition regarding the FD portion of this model, we can
discuss the wavelength of the photon density waves (λPDW), which can be approximated
as [1]:

λPDW =
2π√√√√ 3

2 µaµ′s

(√
1 +

(
ωn
cµa

)2
− 1

) (27)

This leads to a λPDW of about 160 mm using values of 0.01 mm−1 for µa, 1 mm−1 for
µ′s, 2π× 100× 106 rad s−1 for ω, 1 for n, and 2.997 924 58× 1011 mm s−1 for c. This is larger
then the cuvette, but not so large that it dwarfs the cuvette scale completely. This indicates
that phase measurements are reasonable for this volume, given that the phase will not wrap
(λPDW not too short) but will still change considerably throughout the size of the cuvette
(λPDW not too long).

To demonstrate the implementation of this expression for T̃ (Equation (10)) we show
a map of the amplitude (|T̃|) and phase (∠T̃) on the z = Lz = 10 mm face (opposing the
source; Figure 1) for µa = 0.01 mm−1 and µ′s = 1 mm−1 in Figure 2 (considering source 1).
This shows the spatial continuum of T̃ which can be simulated with diffusion theory.
The positions of the source (1) and detectors (A & B) are also indicated in Figure 2 to show
the positions which will be considered throughout this work. For computation based on
Equation (10), l, m, and n were each summed from −3 to 3, and inclusion of more terms
was found to not significantly impact the results.

2.4. Optical Properties Fit

The end goal of this work is to develop a method capable of measuring the absolute
µa and µ′s in the geometry of Figure 1 using FD. With this in mind, we define a cost
(χ2) function which can be minimized by varying µa and µ′s, thus creating a fit for µa
and µ′s (We acknowledge that the cost (χ2) function is dependent on parameters beyond
absorption coefficient (µa) and reduced scattering coefficient (µ′s) such as index of refraction
(n), and investigate this in further sections of this work):

χ2(µa, µ′s) = κ


[
ln |DR{T̃}|

]
meas
−
[
ln |DR{T̃}|

]
theo

(µa, µ′s)

σln |DR{T̃}|

2

+


[
∠DR{T̃}

]
meas
−
[
∠DR{T̃}

]
theo

(µa, µ′s)

σ∠DR{T̃}

2
(28)

where the meas subscript represents the measured difference (In this work, the measurement
is simulated using Equation (10), and noise may be added depending on the purpose) and
the theo subscript represents the value retrieved from Equation (10) considering a particular
µa and µ′s (Again we note that the Dual-Ratio of the T̃ (DR{T̃}) and a Single-Ratio of the T̃
(SR{T̃}) are the same when not considering optode coupling (shown in Section 3.1.2)).
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Figure 2. Example of the implementation of the diffusion theory derived expression for T̃ in
Equation (10) showing T̃ (The expression used for the Green’s function for the complex Transmittance
(T̃) represents the measured transmittance normalized by the source power giving it units of mm−2)
on the cuvette face opposing the source (z = Lz = 10 mm) considering the geometry in Figure 1
and source 1. For this simulation the µa was 0.01 mm−1, the µ′s 1 mm−1, n inside 1.3, n outside 1, ω

2π100× 106 rad s−1, and the cuvette measured 45 mm× 10 mm× 10 mm. The source (x-y position is
shown as cross; x position as black dotted line) was placed at~rSrc.1 = −17x̂ mm. Detector positions
which are considered in the following work are shown as circles (for x-y position) or dotted lines (for
x position) (a) T̃ amplitude (|T̃|) on the x-y plane at z = Lz = 10 mm. (b) T̃ phase (∠T̃) on the x-y
plane at z = Lz = 10 mm. (c) |T̃| and ∠T̃ along the x direction for z = Lz = 10 mm and y = 0 mm.
Acronyms and Symbols: Green’s function for the complex Transmittance (T̃), absorption coefficient
(µa), reduced scattering coefficient (µ′s), index of refraction (n), angular modulation frequency (ω),
and position vector (~r).

Three further variables are introduced in Equation (28), which we define below. First
is the ln |DR{T̃}| scaling coefficient (κ) which is discussed further in Section 3.2.1. Second
and third are the uncertainties of ln |DR{T̃}| (σln |DR{T̃}|) and ∠DR{T̃} (σ∠DR{T̃}) which are
expressed based on 1st order error propagation as:

σln |SR{T̃}| =

√√√√( σ|T̃|long

|T̃|long

)2

+

(
σ|T̃|short

|T̃|short

)2

(29)

σ∠SR{T̃} =

√(
σ∠T̃long

)2
+
(

σ∠T̃short

)2
(30)

and

σln |DR{T̃}| =
σln |SR{T̃}|√

2
(31)
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σ∠DR{T̃} =
σ∠SR{T̃}√

2
(32)

where, σ|T̃| is the uncertainty in |T̃| and σ∠T̃ is the uncertainty in ∠T̃, and assuming that the

uncertainties in the two ln |SR{T̃}|s (σln |SR{T̃}|) and the two ∠SR{T̃}s (σ∠SR{T̃}) are each

the same. For this work we set σ|T̃|/|T̃| = 0.001 and σ∠T̃ = 1.7 mrad = 0.1° which would
be typical for a FD NIRS instrument such as the Imagent.

3. Results
3.1. Investigation of Difference Measurements
3.1.1. Variation over Optical Properties

The chief measurements which we consider are ln |SR{T̃}| and ∠SR{T̃} (or ln |DR{T̃}|
and ∠DR{T̃} considering coupling; (Again we note that the Dual-Ratio of the T̃ (DR{T̃})
and a Single-Ratio of the T̃ (SR{T̃}) are the same when not considering optode coupling
(shown in Section 3.1.2))). Figure 3 shows these measurements (Equations (5) and (6))
over a large range of optical properties, specifically µa and µ′s (Figure 3a,c) or ni and no
(Figure 3b,d).

Since the intention is to convert these measurements of ln |SR{T̃}| and ∠SR{T̃} to
µa and µ′s, the desire is for the measurements to vary significantly more as µa and µ′s are
varied as compared to varying ni and no. The iso-lines (white lines) in Figure 3a,b consider
the same values (the same is true for Figure 3c,d). From this we see that varying µa and µ′s
varies ln |SR{T̃}| across 4 more iso-lines than varying ni and no (and about 2 times more
for ∠SR{T̃}). This suggests promise in the goal of retrieving µa and µ′s.

To recover µa and µ′s from ln |SR{T̃}| and ∠SR{T̃} we must also have significantly
different information in ln |SR{T̃}| and ∠SR{T̃} so that the recovered variables (µa and µ′s)
have a unique solution and little cross-talk. There is also promise along these lines as the
iso-lines in Figure 3a versus Figure 3c are qualitatively orthogonal. This suggests a fit to
µa and µ′s from ln |SR{T̃}| and ∠SR{T̃} should be possible. This is further investigated in
Section 3.2.

One final insight that can be drawn from Figure 3 is the effect of nr which is constant
along diagonal lines with positive slopes in Figure 3b,d. From this we see that ln |SR{T̃}| is
little effected by nr. Further, in the upper left portion of the plots where nr < 1 ∠SR{T̃} is
only significantly effected by ni. Therefore we may be able to optimize the design of the
cuvette boundary to reduce cross-talk with the ns which is discussed further in Section 4.

3.1.2. Optode Coupling and Auto-Calibration

As has been stated above including in (Again we note that the Dual-Ratio of the
T̃ (DR{T̃}) and a Single-Ratio of the T̃ (SR{T̃}) are the same when not considering op-
tode coupling (shown in Section 3.1.2)), SR{T̃} & DR{T̃} (as well as |SR{T̃}| & |DR{T̃}|,
∠SR{T̃} & ∠DR{T̃}, and ln |SR{T̃}| & ln |DR{T̃}|) are equivalent when optode coupling
is not considered. For this reason, other sections of this manuscript are not careful to
distinguish between them as theoretical calculations are being carried out and coupling is
not a consideration. However, in this section we show the effect of optode coupling and
the auto-calibration of the DR{T̃} which is inherited/inspired by the SC method [24].
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Figure 3. How the measurements of the ln |SR{T̃}| and ∠SR{T̃} (Equations (6) and (5)) are effected by
optical parameters, namely the µa, the µ′s, the n inside (ni) and the n outside (no). Simulation geometry
and parameters not explicitly shown here are stated in detail in Figures 1 and 2. (a) ln |SR{T̃}| versus
µa and µ′s. (b) ln |SR{T̃}| versus ni and no. (c) ∠SR{T̃} versus µa and µ′s. (d) ∠SR{T̃} versus ni

and no. Note: (a,b) have the same iso-line and color-map values/scales; as do (c,d). Acronyms and
Symbols: Green’s function for the complex Transmittance (T̃), Single-Ratio of the T̃ (SR{T̃}), SR{T̃}
amplitude (|SR{T̃}|), natural logarithm of |SR{T̃}| (ln |SR{T̃}|), SR{T̃} phase (∠SR{T̃}), absorption
coefficient (µa), reduced scattering coefficient (µ′s), and index of refraction (n).

To do this, first we define a complex optical Coupling, power, and/or efficiency factor
(C̃) for each optode: C̃1, C̃2, C̃A, and C̃B. Physically, |C̃| represents a multiplicative factor
(attenuation or amplification) on the amplitude of T̃ and ∠C̃ represents a phase shift on
the phase of T̃. C̃s applied to sources (number subscripts) have units of mW since their
amplitude also includes source power; while C̃s for detectors (letter subscripts) are unit-
less. Therefore, adding coup subscripts to our measurements when they are confounded
by coupling (opposed to the theoretical value without the coup subscript) we have the
following signals considering coupling:

T̃1A,coup = C̃1C̃AT̃1A (33)

T̃1B,coup = C̃1C̃BT̃1B (34)

T̃2A,coup = C̃2C̃AT̃2A (35)

T̃2B,coup = C̃2C̃BT̃2B (36)
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Now, let us revisit Equations (1)–(3) but with optode coupling considered:

SR{T̃}1AB,coup =
C̃1C̃BT̃1B
C̃1C̃AT̃1A

=
C̃BT̃1B
C̃AT̃1A

=
C̃B

C̃A
SR{T̃}1AB (37)

SR{T̃}2BA,coup =
C̃2C̃AT̃2A
C̃2C̃BT̃2B

=
C̃AT̃2A
C̃BT̃2B

=
C̃A

C̃B
SR{T̃}2BA (38)

DR{T̃}1AB2,coup =

√
C̃BT̃1BC̃AT̃2A
C̃AT̃1AC̃BT̃2B

=

√
T̃1BT̃2A
T̃1AT̃2B

= DR{T̃}1AB2 (39)

showing that the measured DR{T̃} is the same as the theoretical values regardless of
the various optode couplings C̃. Notice that the same follows for |DR{T̃}|, ∠DR{T̃},
and ln |DR{T̃}|.

This property of auto-calibration (coming from the SC method [24]) is demonstrated in
Figure 4. However, in this case, unlike SC, the symmetry requirements are not as strict since
ratios instead of slopes are used as the measurement. In this case a random C̃ was applied
for each optode and the difference measurements both averaged and not were simulated.
From Figure 4 one can see that the ln |DR{T̃}| and ∠DR{T̃} measurements are the same as
the theoretical values. This is significant since it shows that the proposed measurement
method would be insensitive to optode coupling, and further, optode coupling would not
effect the recovered µa and µ′s. Therefore, the instrument would not need to be calibrated
in terms of coupling, reducing possible systematic errors and making the method simpler
to implement.

Figure 4. Demonstration of the cancellation of coupling factors when considering the ln |DR{T̃}|
and ∠DR{T̃}measurements. For this simulation, random C̃s were generated for each optode and
Equations (33)–(36) implemented. All other simulation parameters are the same as Figures 1 and 2.
The expected theoretical value for the measured differences is shown as a dashed line. (a) The
two symmetric ln |SR{T̃}|measurements and the ln |DR{T̃}|measurement. (b) The two symmetric
∠SR{T̃}measurements and the ∠DR{T̃}measurement. Acronyms and Symbols: Green’s function
for the complex Transmittance (T̃), Single-Ratio of the T̃ (SR{T̃}), SR{T̃} amplitude (|SR{T̃}|),
natural logarithm of |SR{T̃}| (ln |SR{T̃}|), SR{T̃} phase (∠SR{T̃}), Dual-Ratio of the T̃ (DR{T̃}),
DR{T̃} amplitude (|DR{T̃}|), natural logarithm of |DR{T̃}| (ln |DR{T̃}|), DR{T̃} phase (∠DR{T̃}),
and complex optical Coupling, power, and/or efficiency factor (C̃).

3.2. Development of Fit for Absolute Optical Properties
3.2.1. Optimization of Cost Space Shape

In order to fit for the absolute optical properties µa and µ′s we consider the χ2 function
in Equation (28). This function contains the scaling parameter κ which balances the scale
of ln |SR{T̃}| versus ∠SR{T̃}. The intention of such a parameter is to modify the χ2 space
to be as circular as possible. This circularity can be quantitatively defined by considering
iso-lines in cost space and their perimeter (P) as well as area (A). A circle has the minimum
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ratio of P to A of all 2-Dimensional (2D) shapes. Therefore, the dimensionless metric P2/A
was minimized by varying κ (note that P2/A has a minimum theoretical value of 4π, for a
circle) [33].

The effect of the κ value on χ2 space shape is shown in Figure 5 using the same param-
eters as Figures 1 and 2 (where the optical properties are the true values). Figure 5b shows
the optimal κ of 1.2× 10−3, which is the case where P2/A was minimized. The resulting
P2/A, for this optimal κ was 36 about 3 times worse than the value of 4π ≈ 12.6 for a ideal
circular cost space. This can be seen by how oblique the χ2 iso-lines are in the µa direction
suggesting a higher relative uncertainty in µa. We investigate this further in Section 3.3.
Figure 5a,c show the effect of favoring either the ∠SR{T̃} or ln |SR{T̃}| term in the χ2

expression (Equation (28)). In either case µa and µ′s are correlated and the space is spread
more in µa. However, when ln |SR{T̃}| is favored (Figure 5c) µa and µ′s have a negative
correlation while the correlation is positive when ∠SR{T̃} is favored (Figure 5a).

Note that the optimal κ = 1.2× 10−3 was found for the µa of 0.01 mm and µ′s of 1 mm
and a different optimal κs may be found elsewhere for different true µa and µ′s. Despite this
we have opted to utilize this one κ value for the rest of this work to reduce computation
time, in the future a map of optimal κ could be found as a function of µa and µ′s.

Figure 5. Three examples of the χ2 (Equation (28)) space shape for different κs. The shape of cost
space is determined by the shape of an iso-line and its ratio of P squared divided by A (P2/A) which
has a minimum possible value of 4π (in the case of a circle). Iso-lines are the 5th quantile of all χ2

values in each image and are meant to represent the overall shape of χ2 space. For all axes, χ2, the µa,
and the µ′s are normalized. (a) κ = 3× 10−5 and P2/A = 106. (b) Optimal value of κ for the true
optical properties used here found by minimizing P2/A, resulting in κ = 1.2× 10−3 and P2/A = 36.
(c) κ = 3× 10−2 and P2/A = 110. Acronyms and Symbols: Cost (χ2), scaling factor (κ), Perimeter
(P), Area (A), absorption coefficient (µa), and reduced scattering coefficient (µ′s).

3.2.2. Cost Space Shape for Various Optical Properties

Now that the entire cost (χ2; Equation (28)) function including κ = 1.2× 10−3 has
been determined, we can plot some example cost spaces for various true µas and µ′ss.
This is shown for 9 cases in Figure 6. For the 9 cases all combinations of the following
optical properties were used: µa =0.005 mm−1, 0.010 mm−1 and 0.020 mm−1 combined
with µ′s =0.5 mm−1, 1.0 mm−1 and 2.0 mm−1.

Examining Figure 6 we notice that in general µa will likely have more error or has a
less unique solution compared to µ′s. This is evident by the spreading of the low values of
χ2 along the µa direction near the local minimum and true value. This result is an extension
of what was seen for one set of optical properties in Figure 5b. We also notice that this
oblique χ2 space shape is worse for small µ′s (0.5 mm−1), which is somewhat expected
since diffusion theory is not meant to be used in the low scattering regime. For this reason,
finding optimal κ as a function of µa and µ′s may help alleviate this problem. Regardless,
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from this result we should expect the fit to work less well when attempting to retrieve µa
when µ′s is low.

Figure 6. 9 examples of χ2 (Equation (28); κ = 1.2× 10−3) space for different sets of the true µa and µ′s.
(a) µa ,true = 0.005 mm−1 and µ′s ,true = 0.5 mm−1. (b) µa ,true = 0.005 mm−1 and µ′s ,true = 1.0 mm−1.
(c) µa ,true = 0.005 mm−1 and µ′s ,true = 2.0 mm−1. (d) µa ,true = 0.010 mm−1 and µ′s ,true = 0.5 mm−1.
(e) µa ,true = 0.010 mm−1 and µ′s ,true = 1.0 mm−1. (f) µa ,true = 0.010 mm−1 and µ′s ,true = 2.0 mm−1.
(g) µa ,true = 0.020 mm−1 and µ′s ,true = 0.5 mm−1. (h) µa ,true = 0.020 mm−1 and µ′s ,true = 1.0 mm−1.
(i) µa ,true = 0.020 mm−1 and µ′s ,true = 2.0 mm−1. Acronyms and Symbols: Cost (χ2), scaling factor
(κ), absorption coefficient (µa), and reduced scattering coefficient (µ′s).

3.2.3. Fit Initial Guess

We finish our development of the fit for µa and µ′s with a demonstration of ex-
act retrieval when the same inverse and forward models are used for T̃ without noise
(Equation (10)). In doing so we also investigate the effect of different initial guesses on µa
and µ′s to show that convergence is not dependent on this initial guess (The result is not
dependent of initial guess given that the initial guess is of reasonable optical properties).
For this, the fit was implemented by using the MathWorks MATrix LABoratory [Natick, MA
USA] (MATLAB) function fmincon to minimize χ2 (Equation (28); κ = 1.2× 10−3) function.
For fmincon, the algorithm interior-point was used and the minimum constraints on µa
and µ′s set to [0,0], respectively, with all other bound types unconstrained.

Using this optimization setup, the fit was run with the µa ,true = 0.010 mm−1 and the
µ′s ,true = 1.0 mm−1 using 4 different initial guesses:
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• µa ,guess = 0.005 mm−1 & µ′s ,guess = 0.5 mm−1.
• µa ,guess = 0.005 mm−1 & µ′s ,guess = 2.0 mm−1.
• µa ,guess = 0.020 mm−1 & µ′s ,guess = 0.5 mm−1.
• µa ,guess = 0.020 mm−1 & µ′s ,guess = 2.0 mm−1.

The results from these fits and the fit trajectory (shown as dotted lines with circles) are
shown in Figure 7. In all cases the fit converged to the true optical properties regardless
of start point. A second observation that can be made from Figure 7 is what trajectory
the fit follows during convergence. Acknowledging that this is highly dependent on
algorithm choice, we still note that the fit spent most of its time traversing in the µa
direction, converging close to the correct µ′s comparatively fast. This is a consequence of
the shape of cost space, having a longer trough in the µa direction than the µ′s.

Figure 7. Example trajectories of fmincon minimization of χ2 (Equation (28); κ = 1.2× 10−3) to fit
for the µa and the µ′s. Results from 4 different initial guesses shown: (Red) µa ,guess = 0.005 mm−1 &

µ′s ,guess = 0.5 mm−1. (Green) µa ,guess = 0.005 mm−1 & µ′s ,guess = 2.0 mm−1. (Cyan) µa ,guess =

0.020 mm−1 & µ′s ,guess = 0.5 mm−1. (Purple) µa ,guess = 0.020 mm−1 & µ′s ,guess = 2.0 mm−1.
Acronyms and Symbols: Cost (χ2), scaling factor (κ), absorption coefficient (µa), and reduced scatter-
ing coefficient (µ′s).

3.3. Confounds to Fit Retrieved Absolute Optical Properties
3.3.1. Propagation of Noise to Optical Property Uncertainty

To test how noise propagates through the recovery of µa and µ′s, when using the fit
developed in Section 3.2, we simulated σ|T̃|/|T̃| = 0.01 and σ∠T̃ = 1.7 mrad = 0.1° as

mentioned in Section 2.4. This was done by simulating measured ln |DR{T̃}| and ∠DR{T̃}
101 times and each time adding Gaussian noise with the σs stated above. For each of the
101, the fit was run to recover some µa and µ′s. This was done for all 9 of the sets of true µa
and µ′s shown in Figure 6.

The results from this exercise are shown in Figure 8 and Table 1, from these three main
observations can be drawn:

A The fractional error in µa is always larger compared to µ′s suggesting the system can
more precisely recover µ′s.

B Errors in µa are much larger for small µ′s and slightly larger for small µa (with small
µa and µ′s together being the worst case).

C That µa and µ′s are highly negatively correlated (as suggested by Figure 5b,c).

Observation A again expounds upon what has been expected from the shape of χ2

space presented in previous sections. Furthermore, observations B and C are typical for
such diffusion theory based problems.
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Figure 8. Result from 101 simulations of noise (σ|T̃|/|T̃| = 0.01 and σ∠T̃ = 1.7 mrad = 0.1°) for the
9 different true sets of the µa and the µ′s shown in Figure 6. (a) Marginal histograms for recovered
µ′s values of the 9 sets of optical properties and 101 noise simulations. (b) Scatter plot of recovered
µa and µ′s for the 9× 101 noise simulations. (c) Marginal histograms for recovered µa values of the
9 sets of optical properties and 101 noise simulations. Acronyms and Symbols: Green’s function for
the complex Transmittance (T̃), uncertainty (σ), absorption coefficient (µa), and reduced scattering
coefficient (µ′s).

To draw some quantitative values for this exercise, we can closely examine Table 1. It
is helpful to extract the worst case (for the type of simulations we have done), and typical
(considering typical being the case when µa ,true = 0.010 mm−1 and µ′s ,true = 1.0 mm−1)
fractional errors in µa and µ′s. These are as follows:
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• For µa:

– Typical error of 4 %.
– Worst case error of 20 % (for low µa and µ′s).

• For µ′s:

– Typical error of 1 %.
– Worst case error of 3 % (for high µa and low µ′s).

Of course these values are dependent on the simulated measurement errors of
σ|T̃|/|T̃| = 0.01 and σ∠T̃ = 1.7 mrad = 0.1° which may be different for different instruments.

Table 1. Errors for 9 sets of true optical properties and 101 noise simulations using σ|T̃|/|T̃| = 0.01
and σ∠T̃ = 1.7 mrad = 0.1°.

µa ,true µ′
s ,true σµa σµa /µ̄a σµ′

s
σµ′

s
/µ̄′

s rµa ,µ′
s

(mm−1) (mm−1) (mm−1) (mm−1)

0.005 0.5 0.0008 0.2 0.01 0.02 −0.9986
0.005 1.0 0.0003 0.06 0.01 0.01 −0.9970
0.005 2.0 0.0001 0.02 0.02 0.008 −0.9931
0.010 0.5 0.001 0.1 0.01 0.03 −0.9986
0.010 1.0 0.0004 0.04 0.01 0.01 −0.9983
0.010 2.0 0.0002 0.02 0.02 0.009 −0.9971
0.020 0.5 0.001 0.07 0.02 0.03 −0.9990
0.020 1.0 0.0007 0.04 0.02 0.02 −0.9988
0.020 2.0 0.0003 0.01 0.02 0.009 −0.9981

Symbols: Absorption coefficient (µa), reduced scattering coefficient (µ′s), Green’s function for the complex
Transmittance (T̃), uncertainty (σ), and correlation coefficient (r).

3.3.2. Assumption of Index of Refraction

Finally, we examine how the assumption of n (and by extension the model boundary
conditions) affects the recovered µa and µ′s. We have done this by running the fit assuming
sets of ni and no, but generating forward data with different true ns in the range 1 to 2 (we
do not co-vary ni and no for simplicity). 2 sets of ns assumed in the fit were invested:

• ni,assumed = 1.3 & no,assumed = 1.0 (Figure 9 solid lines).
• ni,assumed = 1.3 & no,assumed = 2.0 (Figure 9 dashed lines).

This exercise was done for all 9 sets of µa and µ′s shown in Figure 6.
Figure 9 shows these recovered µa and µ′s for the 2 assumed cases while varying ni,true

and no,true. First, we note that ni has a larger effect on the recovered µa and µ′s compared
to no, with µa having a negative, and µ′s a positive, correlation with ni,true (Figure 9a,c).
Furthermore, µa is much more strongly affected by ni,true than µ′s, with recovered values
being up to about 7 times greater than the true value when there is a low ni,true value.
For high ni,true the recovered µa often approaches 0 mm−1 (hitting the fmincon constraint).
All of this suggests that the method’s ability to accurately recover µ′s and particularly µa is
dependent on knowledge of ni.
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Figure 9. Effect of recovered µa and µ′s on the true n inside (ni) and outside (no) when fixed values
of ns are assumed. Shown for the 9 sets of optical properties used in Figure 6. (Solid Lines) ni = 1.3
and no = 1.0 assumed in fit. (Dashed Lines) ni = 1.3 and no = 2.0 assumed in fit. (a) Recovered µa

while varying ni,true and fixing no,true to the assumed value. (b) Recovered µa while varying no,true

and fixing ni,true to the assumed value. (c) Recovered µ′s while varying ni,true and fixing no,true to
the assumed value. (d) Recovered µ′s while varying no,true and fixing ni,true to the assumed value.
Acronyms and Symbols: Absorption coefficient (µa), reduced scattering coefficient (µ′s), and index of
refraction (n).

Now, focusing on Figure 9b,d, we see the effect of no. In this case µ′s is almost not
affected at all by no,true and µa is much more significantly affected when no,true < ni,true or
nr,true > 1. In this case the correlation between µa and no is positive (opposite to that for
ni), suggesting a connection to the dependence on nr. These results further re-enforce the
idea that recovered µa would be highly effected by the true ns, thus control or knowledge
of the ns for this method is critical.

Lastly, by comparing the two ni,assumed and no,assumed sets (solid versus dashed lines)
we notice that the recovered µa and µ′s vary less for the dashed lines (Figure 9). The dashed
line is the case where ni,assumed = 1.3 and no,assumed = 2.0 (In Figure 9 the assumed index of
refraction (n), is equal to the true when the other n is varied, for example in Figure 9a the
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true n outside (no,true) is 1 for the solid line and 2 for the dashed line). This tells us that the
incorrect recovery of µa and µ′s can be partially alleviated when no is large, even if ni in
unknown. Since when this method is implemented it would be more practical to control no
than ni, it would be advantageous to design a cuvette with high n to take advantage of this
reduction of the effect of the assumption of ni seen by comparing dashed to solid lines in
Figure 9a.

4. Discussion

The method presented appears to be feasible in measuring absolute µa and µ′s in a stan-
dard cuvette (45 mm× 10 mm× 10 mm). This is significant given that typical/traditional
measurements of µa and µ′s with diffuse optical methods require large sample volumes (on
the order of liters) and careful instrumental calibration. In this case, small samples volumes
may be used (on the order of 1 mL to 10 mL) without the need for calibration of optode
coupling (as described in Section 3.1.2).

To summarize, we started the development of this measurement method by choos-
ing which data we intended to collect from the cuvette, namely ln |DR{T̃}| and ∠DR{T̃},
and determining how these data vary in respect to the desired recovered properties, namely
µa and µ′s (Figure 3). This leads to the development of a fit for µa and µ′s and a careful exam-
ination of χ2 space (Section 3.2). From this examination, one major result was discovered,
this being that µa is less determined (has a broad local minimum area in χ2 space) compared
to µ′s. This is the first potential limitation of this method since often µa is in-fact the targeted
property of interest while µ′s may be considered a confound. Despite this it appears that this
weakness mainly occurs when µ′s is small (<1 mm−1; Figure 6) telling us that the method
has its main strength when the sample is highly scattering. Given that most commercial
spectrometers designed for cuvette measurement require a non-scattering sample.

We also simulated two types of confounds that may lead to incorrect recovered µa
and µ′s. First, we investigated how instrumental noise would propagate through the
measurement to the recovered µa and µ′s (Section 3.3.1). Here we confirmed what was
expected when the χ2 space was examined, specifically that µa has a higher relative error
compared to µ′s (Figure 8 and Table 1). However, this error becomes comparable when µ′s is
high. For example, with σ|T̃|/|T̃| = 0.01 and σ∠T̃ = 1.7 mrad = 0.1°:

• If µa = 0.005 mm−1 & µ′s = 0.5 mm−1 then µa has an error of 20 % and µ′s of 2 %.
• If µa = 0.020 mm−1 & µ′s = 2.0 mm−1 then µa has an error of 1 % and µ′s of 0.9 %.

Therefore, we see that this method really shines when the sample is very diffuse,
which is another way of saying highly scattering.

Investigation of the effect of incorrectly assumed boundary conditions on the fit results
was also done (Section 3.3.2). Many different boundary conditions have been extensively
studied and modeled in the past [34–38], however just because conditions can be modeled
does not mean that there is knowledge of them in practice which can be corrected for.
Given that a diffusion theory model was used, we varied boundary conditions in terms
of ni and no. Again, we found that µa is more likely to be incorrectly recovered compared
to µ′s. However, further we found that ni had the largest effect on the recovered µa and µ′s
(Figure 9). This in principle is a short-coming of the method since one could argue that if
the method were implemented, no could be controlled through instrument design but ni
would be unknown. However, Figure 9 shows that the effect of ni is suppressed when no is
large, suggesting a relationship to nr. Therefore, we expect that an instrumental design for
this method would include a cuvette designed for high no. Additionally, the current model
considers a cuvette closed on all sides so that no is the same on all six faces. This is unrealistic
for a typical cuvette which would have one side open to the air. When this method is
implemented in practice, either a lid with the same material as the cuvette would need to be
incorporated or the air boundary on one side considered. If a top air boundary is considered
the SR{T̃}s would not be the same in theory, but the SC/DS coupling cancellation would
still apply. The model would need to be more complex since DR{T̃} would no longer equal
the theoretical SR{T̃} but instead the average of the two since theoretical SR{T̃}s would



Appl. Sci. 2022, 12, 10903 19 of 22

not be equal, but given the correct model an inversion is still expected to work. Further,
we also note that examining the expression for µ̃e f f (Equation (11)) ones sees that µa and
µ′s are coupled to ni. This means that any diffuse measurement using such theory would
actually measure µ′sni and µa/ni. Therefore, cross-talk with ni is a necessary consequence
of the theory and can only really be suppressed, not removed. This is seen by examining
the data-sheet for the SphereSpectro which utilizes the integrating sphere measurement
method [14,15]. The SphereSpectro states that with a n uncertainty of 0.06 one should
expect a µa uncertainty of 12 % and a µ′s of 7 % [39]. Therefore, the method presented here
is, at least in theory, comparable to existing instruments.

Finally, we revisit the idea of calibration. In Section 3.1.2, we showed that this method
takes the advantages of SC [24]/DS [29,30] meaning that the measurements of ln |DR{T̃}|
and ∠DR{T̃} are insensitive to instrumental coupling. However, due to the fact that
this method utilizes a small geometry and is highly affected by boundary conditions,
other instrumental calibration may be required. First, since this diffusion theory solution
(Equation (10)) is for such a small geometry, calibration of the inverse model maybe
necessary if factors exist which are not modeled by C̃ (Section 3.1.2). Three options are
available for creating an inverse model:

I Diffusion theory based cost minimization (shown here).
II Look-up table with Monte-Carlo generated data.
III Look-up table with instrumental measurements of known samples.

Option I is the most elegant which is why it was chosen here, but option III (being the
most brute-force and likely infeasible in practice due to the extensive calibration phantom
preparation and measurement needed for each unique instrument) would almost definitely
work, and allows for correction of systematic confounds, provided that the measurements
are repeatable. The auto-calibration in Section 3.1.2 is expected to significantly help with
this repeatability, but the biggest secondary factor is repeatable boundary conditions.
The investigation here showed promise to alleviate the boundary conditions issue by using
high no, but future work will investigate the repeatability of measurements of cuvettes
with various boundary conditions experimentally. Of course, this future work would
involve experimental implementation of the measurement. For this we plan to utilize the
Imagent which utilizes fiber bundles that will be coupled to the sides of a standard cuvette.
Regardless of the coupling method, we expect the SC/DS method to compensate for optode
and coupling losses. However, these optodes will not act as true pencil beams or point
detectors as is modeled here. This is another condition which could cause errors in the
measurement and would need to be modeled or calibrated for. Area detectors may be
modeled with diffusion theory by integrating over the area of the detector while various
types of sources could be modeled using Monte-Carlo. If such realistic forward models
are still not enough to account for the practicals of the optodes themselves then option III
may be needed. However, we emphasize that we expect that these considerations will be
partially alleviated by the SC/DS method and its measurement symmetry.

5. Conclusions

The purpose of this article is to present and determine the feasibility as well as
strengths and weaknesses of a method to measure diffuse absolute optical properties in
a standard cuvette. The strengths of this method lie in the way it is posited, a way to
measure absolute diffuse optical properties in small samples for which no commercial
instruments which utilize frequency-domain type measurements exist to our knowledge.
Our intention is to expand this method to spectral measurements of absorption to recover
chemical concentrations of a diffuse sample [28]. Two main limitations were found in
this method: first, higher error in absorption properties compared to scattering; second,
high dependence on the knowledge of the index of refraction of the sample. However,
the investigation lead to possible methods to address or alleviate these limitations. That
being, the measurement of strongly scattering samples to address the first limitation,
and the use of a cuvette with high index of refraction to address the second. Future work
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will move beyond theoretical development of the method to experimental implementation,
and an investigation of boundary conditions and repeatability which can really only be
done in experimental practice.
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Symbols
The following symbols are used in this manuscript:

∠DR{T̃} Dual-Ratio of the Green’s function for the complex Transmittance (T̃) (DR{T̃}) phase
∠SR{T̃} Single-Ratio of the T̃ (SR{T̃}) phase
λ optical wavelength
ln |DR{T̃}| natural logarithm of DR{T̃} amplitude (|DR{T̃}|)
ln |SR{T̃}| natural logarithm of SR{T̃} amplitude (|SR{T̃}|)
µeff effective attenuation coefficient
ω angular modulation frequency
ρ source-detector distance
DR{T̃} Dual-Ratio of the T̃
SR{T̃} Single-Ratio of the T̃
→
r position vector
C̃ complex optical Coupling, power, and/or efficiency factor
T̃ Green’s function for the complex Transmittance
µ̃eff complex effective attenuation coefficient
c speed of light in vacuum
fmod modulation frequency
n index of refraction
µa absorption coefficient
µ′s reduced scattering coefficient
µt total attenuation coefficient
|DR{T̃}| DR{T̃} amplitude
|SR{T̃}| SR{T̃} amplitude
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