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Abstract: The advancement in digital image analysis methods has led to the development of various
techniques, i.e., quantification of ballast gravel abrasion. In this study, the recognition rate of gravel
aggregates has been significantly increased by improving the image analysis methods. The correlation
between the track quality index (TQI), which is the standard deviation of vertical track irregularity
and represents the condition of a high-speed railway, and the number of maintenance works was
analyzed by performing an image analysis on the samples collected from various locations of a
high-speed railway. The results revealed that roundness has the highest correlation with the TQI,
whereas sphericity has the highest correlation with the number of maintenance works. The ballast
replacement would be performed to improve maintenance efficiency if the abrasion of the ballast
aggregates becomes approximately 10%.
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1. Introduction

Ballasted tracks are commonly used because their initial construction cost is low and ground
settlement can be managed flexibly; however, settlement may occur owing to continuous train load,
which may cause differential settlement. Maintenance work, such as tamping, should be performed
regularly to prevent such phenomena. However, repeated maintenance works can result in the
deterioration of ballast [1]. When maintenance work is performed for a section with differential
settlement, the severity of differential settlement is reduced while increasing the abrasion loss of
the ballast aggregates, thereby ultimately reducing the ballast resistance against settlement [2–4].
Afterwards, differential settlement occurs again when a train load is applied, and performing
maintenance work to reduce the differential settlement will further increase the abrasion loss of
gravels. As this phenomenon is repeated, the abrasion loss of gravels increases, and the period for
maintenance works shortens; hence, ballast cleaning, i.e., ballast renewal will be required.

A kind of ballast aggregates in Korea is rhyolitic tuff. In Korea railroad corporation standards [5],
there are some requirements for ballast properties. Fresh ballast size is between 22.4~63 mm and
abrasion loss is under 25%. The railroad maintenance guidelines of the Korea National Railway [6]
define the following four criteria to perform ballast cleaning: when the soil contents in the ballast for a
normal railroad is 25% or greater; when the ballast layer has 20% or higher of fine materials passing
22.4 mm sieve; when high fouling level and poor drainage; and when ballast layer has poor resistance
against settlement due to abrasion. Among these criteria, the objective criterion for high-speed railways
without considering the subjective opinions of workers is the second one; fine materials passing.
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For railways in operation, regular maintenance works can be performed at night only when trains are
not operating. Owing to such a time constraint and difficulties with sampling ballast gravels, observing
the condition of ballast gravels based on this criterion has limitations. Therefore, studies have been
conducted with regard to measuring the abrasion of gravels based on image analysis methods.

An aggregate imaging system involves the analysis of images using black and white images which
are taken with back-lighting, and gray images which are taken with top-lighting [7,8]. The University
of Illinois Aggregate Image Analyzer used three cameras to capture the front, top, and side views to
reconstruct the 3-D shape of aggregates [9,10]. Kim et al. deduced a correlation between the abrasion
loss of gravels and the shape index by performing 2-D digital image analysis and applied the correlation
at fields to prove the relationship among the abrasion loss, shape index, and maintenance work [11].

Furthermore, image analysis based on a 3-D image has been studied. Kim et al. proposed
wavelet-based 3-D particle descriptors to characterize stone aggregate morphology using a 3-D laser
scanner [12]. Tolppanen analyzed aggregates image with a 3-D laser scanning technique and analysis
method based on the fast Fourier and power spectrum analyses [13]. Garboczi acquired 3-D particle
images through X-ray tomography to characterize concrete aggregate [14]. Ouhbi et al. used point
clouds from 3-D digitization of the particle to characterize the shape of ballast [15].

Relying on only 2-D images to analyze the characteristics of gravels used can be rather inaccurate,
because the characteristics of gravels may vary significantly depending on the axis from which the
images are taken [16]. However, 3-D image analysis appears inappropriate for application to actual
practice as special equipment, such as an X-ray or a 3-D laser scanner, for taking 3-D images and
relatively more time than 2-D image analysis are required.

In this study, we improve the image analysis method developed by Kim et al. [11] to increase the
recognition rate of gravel aggregates. Moreover, the field applicability of the image analysis method
is verified by comparing the results of applying the image analysis method to different fields, and a
guideline for evaluating the status of ballasted tracks is proposed.

2. Image Analysis Method

2.1. Summary of Previous Research

Previous studies hypothesized the following.

(1) All gravels used for high-speed railways are provided by the same supplier.
(2) Mud pumping in the roadbed rarely occurs owing to reinforced roadbeds in the lower part of

high-speed railways.

If the relationships between the abrasion loss and shape index can be deduced for the same gravels
as those used for high-speed railways under the aforementioned assumptions, the abrasion loss of
gravels at actual high-speed railways can be traced back using the shape index based on such relation.

The L.A. abrasion test [17,18] was conducted to measure the abrasion loss of gravels. The L.A.
abrasion loss is defined as follow

Abrasion loss (%) =
m1 −m2

m1
× 100

where m1 is the total mass of the gravels before L.A. abrasion test and m2 is the mass of the gravels
larger than 1.7 mm after L.A. abrasion test.

The abrasion loss was measured according to the number of revolutions in the L.A. abrasion
test, and the shape indices of gravels were calculated using the image analysis method. Roundness,
sphericity, aspect ratio, and angularity were employed for the shape indices of gravels. The same
shape index may be calculated differently depending on the researcher [19,20]. In the present study,
the shape indices were calculated as follows:
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(1) Roundness was the ratio of the area of a circle, with the major axis of the gravel as the diameter,
to the aggregate area, and is calculated using the equation proposed by Ferreira et al. [21].

Roundness =
A

πL2
major/4

where A is the area of a gravel aggregate, and Lmajor is the major axis length of the gravel. A small
roundness indicates that particle is angular, while a large roundness indicates that particle
is circular.

(2) Sphericity was the ratio of the circumference of a circle, with the same area as the gravel aggregate,
to the circumference of the gravel particle, and is calculated using the equation proposed by
Altuhafi et al. [22].

Sphericity =
Le

La

where Le is circumference of a circle that has the same area as the gravel aggregate, and b is the
circumference of the gravel particle. A small sphericity indicates that surface of particle is coarse,
while a large sphericity indicates that surface of particle is smooth.

(3) Aspect ratio was calculated as the ratio of the major axis to the minor axis of the gravel; thus,
its value is always greater than 1.0, unlike other shape indices.

(4) Angularity was calculated as proposed by Wang et al. [23], in which the shape of gravel aggregates
is represented using Fourier coefficients and then calculated as the sum of the squares of the
coefficients of high-frequency bands.

The relationships between abrasion loss according to the number of revolutions in the L.A.
abrasion test and shape indices calculated using an image analysis method were derived as shown in
Figure 1. The correlation among the abrasion loss, shape indices, and maintenance work was proved
by applying these relationships to actual practice.

Figure 1. Relationships between abrasion loss and the shape indices: (a) roundness; (b) sphericity;
(c) aspect ratio; (d) angularity.

As shown in Figure 2, the characteristics of gravel particles can be divided into three categories
according to the scale [24]. Morphology (large scale) is an index that represents the overall shape
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of gravel particles; the roundness and aspect ratios used in this study, which demonstrate the
closeness of gravel particles to a circle, are the shape indices belonging to this type. Roundness texture
(intermediate scale) is an index that represents how angled the particle surface is, and sphericity
belongs to this type. Surface texture (small scale) is an index that represents the detailed shape of
the particle surface, and angularity belongs to this type. Table 1 presents the shape indices in this
research according to scale. The term ‘Roundness’ in this research is different from ‘Roundness texture’
in intermediate scale shape characterization.

Figure 2. Scale-dependent particle shape characterization [24].

Table 1. Shape indices according to scale.

Scale Shape Characterization Shape Index in This Research

Large Morphology Roundness, Aspect ratio

Intermediate Roundness texture Sphericity

Small Surface texture Angularity

2.2. Improvement of Image Analysis Method

The most important step in image analysis method is to separate ballasts and background precisely.
To improve separation ability by previous method, specific algorithm using HSV (Hue, Saturation,
Value) color model with chromatic color background were applied.

2.2.1. Change in Background Color

The background color for taking the images of gravels was changed from black to blue.
Considering that the color of gravels is mostly achromatic, such as black or gray, using a chromatic
color background, such as blue, makes it easy to distinguish gravel aggregates from the background.

2.2.2. Change in the Aggregate Segmentation Procedure Algorithm

The algorithm for aggregate segmentation was also improved, in addition to the change in the
background color for capturing the images of gravels. Figure 3 shows the previous algorithm for
distinguishing aggregates from the background in order [11]. First, the image of the aggregates is
captured with a digital camera (Figure 3a). Noise is removed by applying pyramid mean shift filtering
to the original image (Figure 3b). The image is then converted to gray-scale, and the threshold is
applied to obtain a black and white image of gravels (Figure 3c). Lastly, the watershed algorithm [25]
is applied to detect the coordinates of the gravel image (Figure 3d).

The aggregate segmentation procedure of the improved algorithm is shown in Figure 4. The HSV
color model is used in the improved algorithm. The RGB image of the aggregates is converted to an
HSV image. An appropriate threshold value is set for the S-channel (Saturation) in the converted color
model to obtain a binary image of gravel aggregates, and then the boundaries of each gravel aggregate
are obtained.
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Figure 3. Aggregate segmentation procedure used in previous research [11]: (a) original image;
(b) fray-scaled; (c) binary image; (d) boundaries.

Figure 4. Changed aggregate segmentation procedure: (a) original image; (b) HSV image; (c) S-channel
of HSV image; (d) binary image; (e) boundaries.

2.2.3. Result of the Improved Aggregate Segmentation

The improved image analysis method was tested on ballast aggregates collected from Gyeongbu
high-speed railways in South Korea. Table 2 presents the results of aggregate segmentation and Figure 5
shows the segmented aggregates using image analysis when the previous method and the improved
method are applied. As shown in the Table 2, the previous method exhibited varying percentages
of aggregate segmentation depending on the image shooting condition. The maximum percentage
of aggregate segmentation was 100% for a favorable image shooting condition, but the percentage
dropped to 51% for a poor image shooting condition. However, the improved method exhibited 100%
aggregate segmentation for all images regardless of the image shooting condition.

Table 2. Result of aggregate segmentation.

Sampling Point No.
of Total Aggregates

No. of Segmented Aggregates

Previous Method Improved Method

Location 1 118 90 (76%) 118 (100%)

Location 2 17 13 (76%) 17 (100%)

Location 3 70 36 (51%) 70 (100%)

Location 4 35 32 (91%) 35 (100%)

Location 5 40 34 (85%) 40 (100%)

Location 6 49 41 (84%) 49 (100%)

Location 7 42 37 (88%) 42 (100%)

Location 8 57 55 (96%) 57 (100%)

Location 9 46 46 (100%) 46 (100%)

Location 10 87 87 (100%) 87 (100%)
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Figure 5. Segmented aggregates using image analysis: (a) previous method; (b) improved method.

2.2.4. Development of Image Analysis Software

An image analysis software that operates on Windows was developed. The programming language
was Microsoft Visual Studio.Net 2017 and OpenCV 3.4.6 library was used for image analysis. Figure 6
shows the screen windows of an image analysis software and analysis result report. The program can
be executed by importing the image of aggregates, and the aggregates can be distinguished from the
background with the simple click. Images that have either a colored background or a black ground can
be analyzed with this program. Furthermore, each aggregate distinguished from the background is
numbered automatically, and the shape index of each aggregate is calculated to export the results as
a.csv file. The analysis results can be printed on a screen.
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Figure 6. Image analysis software: (a) main window; (b) analysis results summary window.

3. Field Test

3.1. Field Test Overview

To verify the field applicability of the improved image analysis method, the samples were collected
from the Gyeongbu high-speed railway and then the abrasion loss was estimated for each location.
Table 3 shows the summary of the locations from which the samples were collected. Excavation was
performed manually and aggregates at surface, mid depth, and bottom were collected for reviewing
the applicability of the image analysis according to depth.

Table 3. Details of field testing.

Year of
Measurement Section Name Location Structure

Category Sampling Depth No. of
Aggregates

2017

Galhang overpass T2 241k295 Bridge - 46

Wunyong overpass 1 T2 078k465 Earthwork - 54

Wunju
tunnel T1 112k000 Tunnel - 337

Seobong
tunnel 2 T1 053k562 Tunnel - 445
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Table 3. Cont.

Year of
Measurement Section Name Location Structure

Category Sampling Depth No. of
Aggregates

2018

Shinhue overpass T2 085k400 Bridge Surface 118

Godeung tunnel
T2 107k270 Earthwork Surface, Mid, Bottom 52, 17, 18

T2 107k440 Tunnel Surface 70

Pungsae
Bridge

T1 099k700 Earthwork Surface 35

T2 099k700 Earthwork Surface, Mid 40, 43

T2 100k300 Bridge Surface, Mid 49, 61

T2 100k500 Bridge Surface 42

Yongwa
tunnel

T2 089k110 Tunnel Surface 57

T2 089k310 Earthwork Surface, Mid 46, 76

Paengseong overpass 1
T2 075k570 Earthwork Mid 88

T2 075k670 Bridge Surface, Mid 54, 57

Geumgang Bridge
T1 183k220 Earthwork Mid 59

T1 183k430 Earthwork Surface, Mid 78, 87

3.2. Image Analysis Results

3.2.1. Applicability of Shape Indices

The image analysis was performed for the samples collected from each location to calculate the
average value of the four shape indices. Moreover, the abrasion of aggregates was estimated per
location using the relationship between the shape index and abrasion derived in the previous study [11].
The estimated abrasion, the track quality index (TQI) of each sampling location, and the number of
maintenance works were compared. TQI, i.e., standard deviation of track irregularity of a specific
section, is an index representing the overall track condition of a certain length of track. In Korea,
track irregularity is inspected once a month using a track inspection vehicle such as Roger-1000k.
However, because the sampling and inspection dates do not always tally exactly, the track irregularity
data on the date closest to the sampling date was used for calculating the TQI. The number of
maintenance works is counted by the number of machine tamping performed at each location from
April 2004, when the high-speed railway was first opened, to July 2018. If ballast replacement work
was performed at the respective location at a specific period, only the number of machine tamping
performed from that point until July 2018 was counted.

Figures 7 and 8 show relationships abrasion loss based on shape indices versus TQI and
maintenance history, i.e., number of tamping process. The results showed that roundness is highly
correlated with TQI (Figure 7a), while sphericity has a high correlation with the number of maintenance
works (Figure 8b). Moreover, aspect ratio and angularity did not have a significant correlation with any
variables. These phenomena were caused by shape characterization of shape indices and limitation
of datasets.

Roundness, which shows if the overall shape of aggregate is angular or circular, has good
correlation with TQI (Figure 7a). When most particles are angular (small average of roundness),
settlement may occur less because large voids between particles could be formed depending on
the particle arrangement. On the other hand, when most particles are circular (large average of
roundness), settlement may occur more because voids between particles would be small [26]. Therefore,
the correlation between roundness representing the particle shape and TQI was high in the result.

Sphericity, which shows the surface condition of aggregate, has good correlation with number
of tamping (Figure 8b). Tamping results in aggregates abrasion, which means surface of aggregate
become smoother. Hence, the correlation between sphericity and the number of tamping was also
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high in the result. Santamarina et al. [26] also concluded that sphericity and friction angle are inversely
proportional. As sphericity increases, which mean surface of particle become smoother, the friction
angle is decreased.

Aspect ratio belongs to the large scale, but it is a ratio of the major axis to the minor axis of gravel
particles, which may be inadequate to represent the overall shape. Thus, its correlation with TQI or
maintenance work also is relatively low.

Angularity is an index representing the detailed features of the particle surface, and thus, it is
significantly affected by the precision and resolution of the experiment. However, the image analysis
method employed in this study was not conducted with the high precision and resolution; therefore,
the accuracy of angularity was measured to be lower than that for the other shape indices. This can be
verified through the coefficient of variation of each shape index. In Figure 9, the coefficient of variation
shows the relative distribution in which the standard deviation is divided by average. The coefficient
of variation of angularity is 35–50%, which is larger than that of the other shape indices. This implies
that estimating the exact abrasion loss of the respective section using angularity is difficult, which is
resulted in a low correlation with the TQI or maintenance work.

Figure 7. Abrasion loss based on shape index vs. TQI: (a) roundness; (b) sphericity; (c) aspect ratio;
(d) angularity.
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The limitation of datasets means that some shape indices have relatively large error range. The 95%
confidence interval for the population mean is expressed as follow

95% Confidence Intervals = µ± 1.96×
σ
√n

where, µ is a sample mean, σ is a standard deviation of samples, and n is the number of aggregates.
If coefficient of variation of aggregates is small or the number of aggregates is big, error range could be
minimized. As can be seen in Figure 9, the coefficient of variation is approximately 5% for sphericity,
15–20% for roundness and aspect ratio and 35–50% for angularity. In case of sphericity, error range
for the population mean are ±2% when the number of aggregates is 20. However, when the number
of aggregates for roundness, aspect ratio and angularity is 140, 140 and 990 respectively, error range
for the population mean are ±2%. In this research, the number of aggregates were 50–100 except two
sampling points. This made large error range for population mean for aspect ratio and angularity and
there would not be very clear trend. For roundness, sample mean is relatively small in comparison
with aspect ratio so error range is also relatively small.

Figure 8. Abrasion loss based on shape index vs. maintenance history: (a) roundness; (b) sphericity;
(c) aspect ratio; (d) angularity.
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Figure 9. Coefficient of variation of shape indices.

3.2.2. Image Analysis Results According to the Sampling Depth

Abrasion according to sampling depth was investigated comparing with the TQI and the number of
maintenance works at each sampling location. As described in Section 3.2.1, roundness exhibited a high
correlation with TQI and sphericity did so with the number of maintenance works; thus, roundness was
compared with the TQI and sphericity was compared with the number of maintenance works.

As shown in Figures 10 and 11, both roundness and sphericity had a relatively low correlation
with TQI and the number of maintenance works in the case of using only the aggregates from surface or
middle layer. The aggregates collected from the middle layer may be insufficient to reflect the severity
of settlement.

Figure 10. Abrasion loss based on roundness vs. TQI: (a) surface; (b) mid; (c) total.

Figure 11. Abrasion loss based on sphericity vs. number of tamping: (a) surface; (b) mid; (c) total.
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When sphericity was calculated for the samples collected from the surface, it was distributed
within 2% in most sections, regardless of the number of tamping works performed. It can be implied
that aggregates on the surface are mainly abraded by factors other than tamping, such as weathering
or train load.

3.2.3. Sieve Analysis Results According to the Sampling Depth

Figure 12 shows the results of the sieve analysis performed for the samples collected at different
sampling depths. As shown in the figure, the samples collected from the surface are larger than those
collected from the middle layer, which indicates that the abrasion occurred less in the gravels on
the surface. Furthermore, the samples collected from the surface had a similar particle distribution
regardless of the sampling location, which corresponds to the fact that the sphericity distribution of the
samples was also similar. Specifically, surface gravels are mostly abraded by external factors, such as
weathering or train load, rather than the tamping work; thus, they have a uniform abrasion loss and
particle distribution across all locations.

Figure 12. Sieve analysis results.

4. Track Condition Evaluation Based on the Image Analysis Method

The criteria for ballast replacement on high-speed railways based on the image analysis method
without performing the sieve analysis of ballast layer is suggested.

In a study by Kim et al. [11], the L.A. abrasion test was performed on the ballast gravels used for
high-speed railways, followed by the sieve analysis (See Table 4). According to the railroad maintenance
guidelines of the Korea National Railway [6], the ballast replacement is required when the ballast
layer has 20% or higher of fine materials which passing 22.4 mm sieve. The table shows that 20% fine
materials passing occur when the number of revolutions in the L.A. abrasion test is between 500 and
1000. When linear interpolation is applied to estimate the number of revolutions, the passing rate is
exactly 20% when the number of revolutions is 703. When this number of revolutions is applied to
the relationship among the number of revolution-abrasion loss-shape index defined in the study by
Kim et al. [11], ballast replacement should be performed when the abrasion of ballast on high-speed
railways is approximately 10% (See Table 5).
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Table 4. Result of sieve analysis.

No. of Cycle
Residual Weight (kg)

% of Passing (22.4 mm)
50 mm 40 mm 31.5 mm 22.4 mm Etc. Total

0 2.02 3.38 2.80 1.81 0.00 10.00 0.0

200 1.08 3.11 2.54 2.23 0.95 9.92 9.6

300 1.11 3.05 2.41 2.05 1.29 9.91 13.0

500 0.77 2.43 2.44 2.51 1.73 9.87 17.6

1000 0.38 2.30 2.35 2.41 2.28 9.72 23.5

2000 0.27 2.30 2.10 2.31 2.62 9.60 27.3

Table 5. No. of cycle, abrasion loss and shape index relationship.

No. of Cycle Abrasion Loss (%)
Shape Index

Roundness Sphericity Aspect Ratio Angularity

0 0.00 0.595 0.836 1.260 0.00209

200 3.05 0.618 0.854 1.253 0.00176

300 3.99 0.626 0.862 1.242 0.00176

500 8.41 0.638 0.868 1.235 0.00166

703 10.57 0.646 0.871 1.231 0.00160

1000 13.73 0.651 0.874 1.224 0.00159

2000 21.03 0.665 0.881 1.214 0.00139

5. Conclusions

In this study, the method for evaluating the status of ballasted tracks of a high-speed railway
using a 2-D image analysis was improved, and the following conclusions were drawn.

1. When the background color for taking images of gravel aggregates was changed and the image
analysis algorithm was improved, the aggregate segmentation rate was significantly increased.
The segmentation rate of a previous method ranged from 51 to 100%, as it was considerably
affected by the image shooting environment, whereas that of the improved method was 100%
regardless of the image shooting environment.

2. When the image analysis was performed on the samples collected from various location of a
high-speed railway, the results revealed that roundness has the highest correlation with TQI,
whereas sphericity has the highest correlation with the number of maintenance works. However,
aspect ratio and angularity exhibited a low correlation with other shape indices owing to over
simplification of a gravel shape and the limitation of the analysis method.

3. It was discovered that the correlation can be detected when the gravel samples are collected from
the surface, as well as from the middle layer of a high-speed railway for the image analysis.

4. If the abrasion of the ballast aggregates approaches to about 10%, the ballast layer would be
replaced in order to enhance maintenance efficiency.

Applying a 3-D image analysis method is more suitable for high-speed rail ballast than a 2-D
image analysis method as explained previously; however, a 2-D image analysis method was proposed
in this study for track status evaluation of the ballasted tracks of a high-speed railway, considering
time, cost, and field applicability at high-speed railways. To increase the reliability of the developed
method, the correlation should be examined and supplemented by comparing with the result of a 2-D
image analysis method with that of a 3-D image analysis method.
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When the images of the field gravels were analyzed, the abrasion loss of gravels was less than 4%.
However, the relationship between the abrasion loss and shape index used in this study considered the
abrasion loss of up to 21%, which indicates that an accurate analysis is required for sections with a
smaller abrasion loss. Thus, an additional image analysis on the low number of revolutions in the L.A.
abrasion test must be conducted.

Also, it is required to conduct more field tests to find out clear trend between ballast abrasion loss
and TQI or maintenance.
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