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Featured Application: Biomedical sector, sports sector—applications in the detection of drug
concentrations in sweat samples.

Abstract: This work presents a new multilayered microfluidic platform, manufactured using a
rapid and cost-effective xurography technique, for the detection of drug concentrations in sweat.
Textile fabrics made of cotton and polyester were used as a component of the platform, and they
were positioned in the middle of the microfluidic device. In order to obtain a highly conductive
textile, the fabrics were in situ coated with different amounts of polyaniline and titanium dioxide
nanocomposite. This portable microfluidic platform comprises at least three layers of optically
transparent and flexible PVC foils which were stacked one on top of the other. Electrical contacts
were provided from the edge of the textile material when a microfluidic variable resistor was actually
created. The platform was tested in plain artificial sweat and in artificial sweat with a dissolved
cytostatic test drug, cyclophosphamide, of different concentrations. The proposed microfluidic device
decreased in resistance when the sweat was applied. In addition, it could successfully detect different
concentrations of cytostatic medication in the sweat, which could make it a very useful tool for simple,
reliable, and fast diagnostics.

Keywords: cotton; polyester; polyaniline/TiO,; microfluidics; sweat; cyclophosphamide

1. Introduction

The fast-growing interest in sophisticated biomedical devices and wide-spreading Internet of
Things paradigm has enabled the development of the “housepital” instead of “hospital” concept.
That means that biomedical sensors and electronic devices can be used at home for the analysis of
various physiological parameters of our bodies, and the results can be remotely sent to experts or
caregivers for their opinion or decisions. To fully capitalize on the advantages and benefits of this
concept, it is necessary to create chips which should be noninvasive, cost-effective, and simple for
application, i.e., they should not require professional staff. Moreover, such devices should be based on
flexible textiles incorporated into wearable electronic systems.

Appl. Sci. 2020, 10, 4392; d0i:10.3390/app10124392 www.mdpi.com/journal/applsci


http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-2098-189X
https://orcid.org/0000-0002-3271-4492
http://www.mdpi.com/2076-3417/10/12/4392?type=check_update&version=1
http://dx.doi.org/10.3390/app10124392
http://www.mdpi.com/journal/applsci

Appl. Sci. 2020, 10, 4392 20f 14

Among the wide range of textile fibers, cotton (CO) fibers are natural, sustainable, and widely
applied in different spheres of everyday life, from clothes to technical textiles [1]. A highly conductive
composite comprising polystyrene sulfonate/multiwalled carbon nanotubes/CO fibers with deposited
polyaniline (PANI) was used for real-time monitoring of the pH value of the skin [2]. Generally, PANI is
a particularly attractive polymer as it can be easily synthesized by chemical oxidative polymerization
of a relatively cheap monomer with high yield. The modification of CO fabrics with PANI aiming to
provide electrically conductive clothing material with better durability was studied in [3] or to tune the
electrical properties of textile materials by grafting PANI nanofibers in [4]. The electrical characteristics
of CO fabrics coated with PANI and polypyrrole were also examined in [5], where resistance values of
350 and 512 ), respectively, were obtained. In situ polymerization of aniline on textile materials was
utilized for the fabrication of conductive composite fabrics PANI/AgNO3;/CO and PANI/CO which
ensured specific electrical resistivity of 15 x 10° ()/cm and 15 x 10° Q/cm, respectively [6]. Furthermore,
other textile fibers such as polyester (PET) [7,8], polyamide [9], polyacryl [10], and wool [11] were also
coated with PANI in order to obtain better electrical properties. The surface and bulk conductivity
of CO, wool, and PET fabrics coated with PANI were also investigated in [12]. Hoghoghifard et al.
studied the effect of different aniline polymerization conditions on the coating of PET fabric with
conductive PANI and, consequently, on surface resistivity [13].

In the healthcare system, blood, urine, saliva, tears, and sweat are body fluids commonly used for
the analysis of electrophysiological parameters. Among these samples, sweat is the most comfortable
for subjects to be taken and the procedure is completely noninvasive. In addition, it can provide plenty
of useful biochemical information in health diagnostics and sports performance. Colorimetric analysis
of lactate, Na*, and K* ion concentrations from sweat was reported in [14]. A skin-mounted device
for monitoring the glucose level in sweat was presented in [15], and the device was fabricated via
costly technological processes of lithography and screen-printing. Na* and K* ion concentrations in
sweat were analyzed in [16] using ion-selective electrodes and also enabling the wireless transfer of
measured data. The lactate level in sweat can be monitored using a biochemical analytical device
developed in [17]. It was intended to be used for the monitoring of athletes” performance during
physical activity. A polydimethylsiloxane (PDMS)-based thin and soft epidermal system for collecting
sweat from the pores on the skin and for measuring total sweat loss and pH was reported in [18]. It was
experimentally tested on humans in indoor and outdoor environments. In [19], the authors presented
a silicon-based chip, creating a “lab-on-a-skin” platform that enables the measurement of the K* ion
concentration in the sweat in real time (interval of 20 min demonstrated in the article). An elastomeric
styrenic block copolymer was used in the paper [20] to create a stretchable microfluidic and electronic
system which can be applied on the skin and can collect and measure sweat chloride levels in humans
in an aquatic medium. A patch-like sensor was proposed in [21] for measuring the sweat secretion
rate and total ionic charge concentration using an interdigitated electrode structure embedded in a
microfluidic channel. In reference [22], the authors presented platforms composed of a triple-electrode
array patterned on a PET substrate and connected with an electronic circuit on the printed circuit
board for sensing caffeine from sweat. In paper [23], a CO thread was used to guide the sweat sample
to the paper-based sensor, and with the assistance of a smartphone, the glucose concentration was
monitored by observation of colorimetric changes. Nowadays, many people worldwide suffer from
some type of cancer. One of the symptoms is night sweats [24]. Treatment with cytostatic drugs is still
a part of standard protocol in the vast majority of hospitals. Keeping this in mind, it is important to
investigate the concentration of cytostatics in sweat as a noninvasive procedure for subjects. This is
significant not only for the estimation of drug treatment efficacy, but also for the explanation of some
skin-related side effects, such as Grover’s disease, which appears as a consequence of the concentration
of chemotherapy drug metabolites in sweat [25,26]. However, the above-mentioned solutions demand
complex and costly technological processes for manufacturing of the whole device, and the systems
are not based on textile materials.
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In this study, a textile-based microfluidic platform fabricated using a xurogaphic technique for
fast determination of the cytostatic drug concentration in artificial sweat is discussed. The core of
the multilayered microfluidic structure is CO or PET fabric coated with PANI/TiO, nanocomposites.
In situ polymerization of PANI/TiO, nanocomposites imparted different conductivity/resistivity values
to the textile substrates. The microfluidic platform provides a fast tool for sweat manipulation, and the
conductivity of the textile composite is changed with various sweat samples soaking the textile
material. The performance of the platform was tested through monitoring different concentrations of
the cytostatic drug cyclophosphamide in artificial sweat. The examination was realized by measuring
the variation of electrical resistance at two terminals of the created microfluidic device in order to
provide a proof of concept.

2. Materials and Methods

2.1. Preparation of the Fabrics

Desized and bleached cotton fabric (CO, 117.5 g/m?) and polyester fabric (PET, 115 g/m?) were
washed in a bath (liquor-to-fabric ratio of 50:1) containing 0.05% nonionic washing agent Felosan RG-N
(Bezema, Montlingen, Switzerland) for 15 min at 50 °C. After a single rinse with warm water (50 °C)
for 3 min, thorough rinsing in tap water, and final rinsing with distilled water, the samples were dried
at room temperature.

2.2. Synthesis of Colloidal TiO, Nanoparticles

A 0.2 M colloid of TiO, nanoparticles (NPs) (d ~ 5 nm) was synthesized by acidic hydrolysis of
TiCly. A volume of 6 mL of TiCly solution cooled down to —20 °C was added dropwise to 200 mL of
cooled water (at 4 °C) under vigorous stirring and then kept at this temperature for 30 min. The pH of
the solution was between 0 and 1, depending on the TiCly concentration. Slow growth of the particles
was achieved by applying dialysis against water at 4 °C. The water was changed daily and the dialysis
stopped when pH 3 was reached. A Spectra/Por dialysis membrane (molecular weight cutoff (MWCO)
3500; Spectrum Laboratories, Inc., Rancho Dominguez, CA, USA) was used for the dialysis of the
colloidal dispersion. The concentration of the TiO, colloid was determined spectrophotometrically
from the peroxide complex (A = 410 nm, e419 = 710 M~'em™!) based on the concentration of Ti** ions.
The peroxide complex was formed after adding 2 mL of 30 wt.% H,O, into a solution containing
20.9 mL of water, 2 mL of 96 wt.% H,SOy, and 0.1 mL of TiO, colloid [27].

2.3. Synthesis of PANI/TiO, on CO and PET Fabrics

PANI-coated CO and PET fabrics were fabricated by in situ polymerization of aniline (ANI) in the
presence of colloidal TiO, NPs with ammonium persulfate (APS) in acidic medium at room temperature.
A volume of 3.7 mL of 0.2 M TiO, colloid was added to a 1.2 M solution of HCl in a 50 mL volumetric
flask. A quantity of 0.50 g of CO or PET fabric was immersed in this solution, and it was stirred for
10 min. Afterwards, both APS and ANI were added to the reaction mixture. The dispersion of ANI was
prepared by adding 0.73 mL of ANI to 25 mL of 1.2 M solution of HCI. The APS solution was made
by dissolving 2.282 g of APS in 25 mL of 1.2 M solution of HCI. The polymerization process lasted
60 min. Subsequently, the samples were rinsed in HCl solution (pH 3). In order to prepare CO and
PET samples with larger amounts of PANI/TiO, nanocomposites, the complete in situ polymerization
of ANI in the presence of colloidal TiO; NPs with APS in acidic medium was repeated one more time.

2.4. Preparation of the Sweat Samples

The developed microfluidic platform was tested in the following fluids: (a) a standard solution
of artificial sweat, and (b) corresponding solutions of the cytostatic drug cyclophosphamide—CPA
(Endoxan, BAXTER ONCOLOGY GMBH, Halle, Germany, 500 mg). Each 100 mL of artificial sweat
contained 1.08 g of NaCl, 0.12 g of lactic acid, 0.13 g of urea, and aqua purificata sterilis. The pH
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value was adjusted to 6.5 with 1 M NaOH. CPA solutions were prepared by dissolving commercial
CPA in the above-mentioned artificial sweat in order to obtain 2 w/v%, 4 w/v%, and 6 w/v% solutions.
The concentrations of CPA were chosen according to data on the maximum CPA solubility in water
(10-50 mg/mL (1-5%)) [28]. Fluids were stored at 4 °C in darkness up to the testing phase.

2.5. Design of the Microfluidic Platform

The microfluidic platform was manufactured using a rapid and cost-effective xurography method,
which is based on the lamination of mechanically flexible polyvinyl chloride (PVC) foils and the
creation of a multilayered structure. PVC foils can be cut (using a cutter plotter machine) in the desired
shape or pattern and other materials can be incorporated between them, like a piece of textile material
in our case. The design of separate layers of the microfluidic platform is shown in Figure 1a. The visual
appearance of the complete microfluidic platform after the lamination process is presented in Figure 1b.

TOP LAYER - PVC FOIL

> - hole for including fluids

——==— holes for
electrical contacts

TEXTILE (CO or PE Twith PANI/TIO:)

MIDDLE LAYER - MICROFLUIDIC CHANNEL

v s microfluidic channel

BOTTOM LAYER - PVC FOIL

N

ASSEMBLED STRUCTURE
fluid injection

(a) (b)

Figure 1. (a) Design of the separate layers; (b) the manufactured textile-based microfluidic platform.

wires

As can be seen in Figure 1a, the bottom layer of the structure is PVC foil. The middle layer is PVC
foil with a carved microfluidic channel. Foils 80 um thick were used. A piece of fabric with dimensions
of 4 cm X 1 cm was positioned in the microfluidic channel. The number of PVC foils in the middle
layer can be adjusted to the thickness of the textile substrate. Usually, we laminated two middle layers.
Four combinations of textile materials were used to create different microfluidic chips, labelled as (a)
CO-PANI/TiO,-1 (CO fabric impregnated with PANI/TiO; nanocomposite once), (b) CO-PANI/TiO,-2
(CO fabric impregnated with PANI/TiO, nanocomposite twice), (c) PET-PANI/TiO;-1 (PET fabric
impregnated with PANI/TiO, nanocomposite once), and (d) PET-PANI/TiO;-2 (PET fabric impregnated
with PANI/TiO; nanocomposite twice). The top layer is again PVC foil with three holes: (i) two square
holes, with dimensions of 3 mm X 3 mm, for electrical terminals from the component (the distance
between these two holes was around 3 cm) and (ii) one circular hole in the center of the structure, with
a diameter of 4 mm (which corresponds to the diameter of the standard syringe, without needle), as an
inlet for test fluids. The above-mentioned separate layers were laminated together at 130 °C in order to
obtain a compact microfluidic platform, which is depicted in Figure 1b. The total dimensions of the
microfluidic platform were 8 cm X 4 cm.
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2.6. Characterization Methods

The morphology of the control fibers and fibers impregnated with PANI/TiO, nanocomposite
was assessed by field emission scanning electron microscopy (FESEM, Tescan Mira3 FEG, Brno,
The Czech Republic). The samples were coated with a thin layer of Au prior to analysis. The Fourier
transform infrared (FTIR) spectra of samples were recorded in the ATR mode using a Nicolet 6700
FTIR Spectrometer (Thermo Scientific, Waltham, MA, USA) at 2 cm~! resolution, in the wavenumber
range 500-4000 cm~!. The impedance spectroscopy method was applied for determination of the
electrical parameters of the manufactured microfluidic platform. An HP4194A impedance analyzer
instrument was used for measuring the electrical resistance on the electrical terminals utilizing two
wires, shown in Figure 1a, in the frequency range from 100 Hz up to 40 MHz. The instrument was
located in a Faraday cage and it was governed by a personal computer. The Labview software tool was
used to set up measuring parameters and for the storage of measured data.

3. Results and Discussion

3.1. SEM and FTIR Analysis

The morphological changes to CO and PET fibers induced by impregnation with the PANI/TiO,
nanocomposite were assessed by FESEM analysis. SEM images of control CO and PET fibers and of the
fibers impregnated with nanocomposite once or twice are presented in Figure 2. SEM images of each
sample were intentionally taken under three different magnifications (x10,000, x20,000, x100,000) with
an aim not only to confirm the presence of nanocomposite, but to estimate how much it covers the fiber
surface and to gain insight into its morphological structure. Fibers are an integral part of the fabrics,
and the coating efficiency of fibers either on the fabric surface or inside the yarns in inner parts of the
fabrics should be uniform. In other words, the coating efficiency of fabrics is determined by the coating
efficiency of the fibers. Imaging of fabrics under lower magnification cannot provide any information
on the coating efficiency as it is impossible to distinguish since a very thin nanocomposite layer was
formed. By proceeding with imaging under lower magnification it is possible only to get information on
the construction of the fabrics. The SEM image of CO fiber reveals characteristic folds running parallel
to the elongation direction of the pristine fiber. Single impregnation of CO fabric with PANI/TiO,
nanocomposite (CO-PANI/TiO,-1) resulted in the formation of a relatively uneven and thinner layer of
nanocomposite. In other words, some segments were not fully covered with nanocomposite. It was
noticed that the uniformity of CO-PANI/TiO,-1 fiber impregnation significantly varied from fiber
to fiber, and it was the least uniform when compared to other samples. There was also an obvious
difference between the fibers on the thread surface and those positioned inside the threads. Double
impregnation (CO-PANI/TiO,-2) induced the formation of a much thicker layer of nanocomposite which
actually covered the whole surface of the fibers. Rod-like nanostructures of PANI/TiO, established a
network on the PET fiber surface. The average diameter of the nanorods was approximately 50 nm.
Such networked structures have been reported in literature, and they are a characteristic feature of
PANI [29]. Eventually, the larger the amounts of generated nanocomposite, the larger the fiber diameter.
As expected, the SEM images demonstrated the smooth surface of PET fibers. Our previous study
implied that the morphology of the PET fiber surface impregnated with pure PANI significantly differs
from that of PET fibers coated with PANI/TiO, nanocomposite [30]. No signs of a PANI layer could be
observed on the PET-PANI fibers, with only small patches of polymer randomly deposited over the
fiber surface instead. The SEM images presented in Figure 2 clearly show that the presence of TiO,
NPs (mostly single crystalline, irregularly shaped NPs with average dimensions of 4.5 nm and anatase
crystal structure [24]) strongly affected the polymerization of ANI, providing a completely different
fiber surface morphology. The SEM image of PET-PANI/TiO,-1 fibers indicated that the amount
of synthesized nanocomposite was considerably larger when compared to CO-PANI/TiO,-1 fibers
modified under the same conditions. However, the thickness of nanocomposite varied even on a single
fiber. The images taken under the highest magnification also revealed the appearance of a nanorod
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network on the PET fiber surface which highly resembles the morphology of the CO-PANI/TiO;-2
sample. Itis clear that the PET-PANI/TiO,-2 fibers were entirely covered with huge amounts of polymer
but the shape of the fibers was preserved. Like in the case of CO fibers, double impregnation led to
the formation of larger amounts of nanocomposite when compared to single impregnation. However,
instead of a nanorod networked structure, a very porous structure with differently shaped nanoplates
appeared. In order to confirm the successful deposition of PANI/TiO, nanocomposites on the surface
of CO and PET fabrics, FTIR analysis was performed in ATR mode on both control and impregnated
samples. The results of the FTIR analysis are shown in Figure 3. In comparison with the FTIR spectrum
of control CO fabric, a survey FTIR spectrum of the CO-PANI/TiO,-1 sample (Figure 3a) revealed
a significant decrease in intensity of a broad band at 3300 cm™!
the cellulose OH group [31]. At the same time, the absorption band at 1645 cm™! originating from
HOH banding vibrations of adsorbed water disappeared [32-35]. In addition, a decrease in intensity
of the band at 2880 cm™! related to stretching vibration of the C-H group in the cellulose structure
was observed. The detected changes in the FTIR spectrum of the CO-PANI/TiO;-1 sample associated
with characteristic vibrations of CO could be an indicator of efficient deposition of the PANI/TiO,
nanocomposite layer. On the other hand, a new band appeared at 1580 cm™~! in the FTIR spectrum of

assigned to stretching vibration of

the CO-PANI/TiO;-1 sample, which is assigned to stretching vibration of the quinonoid (Q) ring in the
PANI emeraldine salt form. Stretching vibration of the Benzenoid (B) ring in the PANI emeraldine salt
form and in-plane bending vibration of the C-H group of cellulose [31,36] contributed to the formation
of a broad peak in the range between 1490 and 1420 cm™!. A peak positioned at 810 cm™! corresponds
to the out-of-plane deformation vibration of the aromatic C-H group in the 1,4-disubstituted benzene
ring, Y(C-H), in linear N-C4 coupled PANI chains [37-41]

The results of FTIR analysis of the control PET and PET-PANI/TiO;-1 samples are presented in
Figure 3b. The observed changes in the FTIR spectrum of the PET-PANI/TiO, sample compared to the
spectrum of the PET sample also indicated the successful deposition of PANI/TiO, nanocomposite
on the PET fiber surface. In particular, a new band appearing at ~1169 cm™! in the FTIR spectrum
of PET-PANI/TiO,-1 sample could be assigned to shifted stretching vibration of the -NH" = group
in the B-NH*=Q segment in the bipolaron form of PANI emeraldine salt, while a low-intensity
band positioned at 1039 cm™! corresponds to vibrations of the hydrogen sulfate counter-ion [36,40].
Broadening of the strong peak at 1234 cm™~! associated with stretching vibration of the ester C=0 group
of PET in the FTIR spectrum of PET, i.e., the appearance of a shoulder in the long wavelength region
(~1281 cm™}), is due to the contribution of stretching vibration of the C-N** group in the polaron form
of PANI emeraldine salt.

3.2. Electrical Parameter Testing and Drug Detection

Three microfluidic chips were fabricated using each of the four conductive textile samples, and they
were tested in order to demonstrate a proof of the proposed concept. The instrumental errors were
eliminated by a calibration procedure, as well as by setting a medium integration time and averaging
four consecutive measurements. After the fabrication of the microfluidic chip, as shown in Figure 1b,
measurements of electrical resistance between the two terminals when the dry fabrics were placed into
the microfluidic channel were conducted. The measurements were repeated when the artificial sweat
was injected by syringe into the channel, as illustrated in Figure 1a. Afterwards, the sweat solution
with CPA medication was injected into the channel on all investigated textile materials. A magnified
view through the central hole of the microfluidic structure on these four fabrics is presented in Figure 4,
including the case when the sweat was injected into the fabric (Figure 4g).
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Figure 2. SEM images of control and impregnated CO and PET fibers.
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Figure 3. FTIR spectra of (a) CO and CO-PANI/TiO;-1 samples and (b) PET and

PET-PANI/TiO,-1 samples.

These four different substrates in the middle of the microfluidic platform were exploited as a
medium for delivering a small volume of artificial sweat and sweat with dissolved CPA (2 w/v%,
4 w/v%, and 6 w/v%). Thanks to the optical transparency of the PVC foils, it was possible to visually
observe (from both sides) the process of fluid penetration into the internal structure of the studied
fabrics. The fabrics in the middle of the microfluidic platform were very quickly completely soaked by
the applied fluid, and the measurement of electrical characteristics was ready to begin. The electrical
resistance as a function of frequency was measured for all studied fabrics and CPA concentrations. In all
studied cases, the resistance of the dry structures was around 12 times higher than that of chips soaked
with artificial sweat placed inside the microfluidic channel. Such behavior was expected because the
ions in the artificial sweat solution enabled easier conduction between the two terminals and lower
electrical resistance. Figure 5a shows the measurement results for the structure with PET-PANI/TiO,-1
fabric, which was already presented in Figure 4g. The shape of the curves in Figure 5a is completely
consistent with the results for the real part of impedance from [42]. Three regions can be distinguished:
(1) in the low frequency range, the polarization region; (2) in the middle frequency range, a region almost
independent from frequency variation; and (3) at high frequencies, the dispersive region. This high
frequency drop is related to the charging/discharging mechanism of the double-layer capacitance,
which represents one of the elements in the equivalent circuit modelling. The measured resistances were
relatively constant in the mid-frequency region (from 10* to 10’ Hz). This could be due to the relaxation
mechanism of the polymer chains [43] in the low frequency range (between 10 and 10* Hz) as well
as the rearrangement of polaron and bipolaron structures of the PANI/TiO; nanocomposite at higher
frequencies (above 107 Hz). Bearing this in mind, we selected one frequency point (100 kHz) from these
regions to present the obtained results for differently impregnated substrates. These results are depicted
in Figure 5b, and they were used as calibration curves in the in-house-developed electronic system.
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Figure 4. (a) SEM image of CO fabric, (b) SEM image of PET fabric, and magnified views of
the microfluidic platforms with (¢) CO-PANI/TiO,-1; (d) CO-PANI/TiO,-2; (e) PET-PANI/TiO,-1;
(f) PET-PANI/TiO,-2; and (g) PET-PANI/TiO,-1 with injected artificial sweat.
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Figure 5. (a) Resistance as a function of frequency for PET-PANI/TiO,-1 and for different fluids soaking
the fabric; (b) Resistance as a function of cyclophosphamide (CPA) concentration for different fabrics.

Structures with CO demonstrated higher values of electrical resistance in comparison with the
analogous PET-based microfluidic chips. This is a result of larger amounts of deposited PANI/TiO,
nanocomposite on the PET fabrics, as could be seen in Figure 2. However, the influence of the fabric
structure should not be neglected. CO fabric has denser structure when compared to PET fabric, which
can be noticed in Figure 4a,b. In spite of the hydrophobicity of PANI, the more open construction
of impregnated PET fabrics enabled better fluid adsorption into the textile, which was proved by
a simple drop test. A drop of distilled water immediately wetted the surface of impregnated PET
fabrics, while impregnated CO fabrics took some time to get wetted. Taking into account that most
of the microfluidic applications of textiles are based on the wicking phenomenon, which is strongly
affected by pore geometry, number of fibers in the yarn, yarn linear density, and weaving pattern [44],
combined with the fact that wickability and wettability are tightly related, it is very likely that the
less-dense structure of PET fabrics positively influenced the transport of fluid through the impregnated
PET fabrics and hence contributed to better conductivity mechanisms. Coating of both CO and PET
fabrics with smaller amounts of conductive PANI/TiO, nanocomposite resulted in higher electrical
resistance, whereas larger amounts of PANI/TiO; as a coating contributed to increased conductivity and,
consequently, lower electrical resistance. This is due to the increased number of polarons and bipolarons
in the structure and, consequently, improved conductivity. PANI/TiO, nanocomposite coating creates
an efficient network for charge transport in the PANI matrix and, accordingly, a better conduction
mechanism can be achieved. The decrease in resistance with an increase in the concentration of CPA
was more prominent in the samples impregnated with smaller amounts of PANI/TiO, nanocomposite
(CO-PANI/TiO;-1 and PET-PANI/TiO,-1). The same trend was reported in reference [22]. The artificial
sweat solution consisted of several ions: Na*, K*, CI7, and lactate ions. It is very likely that an
increase of CPA concentration in artificial sweat solutions led to an increase of the concentration of C1~
ions originating from CPA [45], contributing to better conductivity and consequently resulting in a
decrease of electrical resistance on the terminals of the proposed component. However, their influence
seems to be weaker in the case of samples that were impregnated with larger amounts of PANI/TiO,
nanocomposite. In order to quantitatively determine the sensing performance of the studied samples,
two metrics were taken into account—sensitivity and linearity, which are both important for the
applicability of the proposed platform. In our case, the sensitivity is defined as |S| = A R/A C, where A
R is variation of resistance and A C is change in CPA concentration from 0 to 6 w/v%. As a measure of
goodness of linear fit, R? (coefficient of determination) was used. These two parameters are presented
in Table 1 for the four analyzed textile-based structures.
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Table 1. Sensitivity and linearity of the analyzed structures.

Sensitivity [S]

Microfluidic Platform Type (Q/w/v% of CPA) R?
CO-PANI/TiO,-1 888.33 0.8515
CO-PANJ/TiO;-2 55.00 0.9199
PET-PANI/TiO,-1 141.66 0.9539
PET-PANI/TiO,-2 17.00 0.9383

It can be concluded from Table 1 that sample CO-PANI/TiO,-1 demonstrated the highest sensitivity
but the lowest linearity. From a practical applications point of view, some kind of compromise should
be achieved between these two performance indicators by tuning of the PANI/TiO, nanocomposite
amount on the fiber surface. For example, the sample PET-PANI/TiO;,-1 demonstrated the highest
linearity and acceptable sensitivity. By placing textile materials of different conductivity, we actually
manufactured a variable resistor in the microfluidic world, and numerous fluids inside the component
could additionally contribute to the alteration of the total electrical resistance on the two terminals.
It is important to note that the fabricated microfluidic platform can be easily mounted onto wearables
or applied directly to the skin. The complete electronic device was developed for processing and
displaying measured data from the proposed microfluidic platform. A block diagram of the main steps
is depicted in Figure 6a. The electronic read-out system was incorporated into a hand-held plastic
package (Figure 6b) where it was possible to select the type of the fabric (as well as the frequency
point) on the display, and the real-time measured concentration of CPA was presented on the display.
The electronic device functions on the principle of an auto-range ohmmeter, meaning that the device
constantly performs monitoring under the microfluidic sensing platform. The Arduino Nano system
with an ATmega328P microcontroller represents the main part of the device. The system is capable
of calculating the concentration of applied drug in real time on the basis of the measured resistance.
The refreshment of the presented values on the Organic Light Emitting Diode (OLED) display is
performed each 500 ms. The display has resolution of 128 X 64 pixels and the possibility to present data
in a combination of blue and yellow colors. The electronic system is supplied with a voltage of 5 V.

READ FROM ADC [
'1

Yes
\/
CALCULATE CPA
FIND SUBSTANCE

WRITE ON
OLEDLCD

(a)

(b)

Figure 6. (a) A block diagram of the electronic circuit for data acquisition from the microfluidic platform,
processing and displaying measured data (ADC - analog-to-digital converter); (b) The electronic device
for displaying the measured concentration of CPA.



Appl. Sci. 2020, 10, 4392 12 of 14

It is also possible to collect sweat in vivo using the described microfluidic platform, and with the
assistance of our portable electronic system or with a mobile phone, different parameters or biomarker
concentration changes in sweat can be monitored.

4. Conclusions

In this paper, we proposed a novel microfluidic platform where the individual PVC layers were
stacked under pressure between laminator rollers and at elevated temperature in order to produce a
compact microfluidic variable resistor. The core of this microfluidic component is conductive flexible
textile material, placed in the microfluidic channel, in the center of the structure. The proposed textile
materials were CO or PET fabrics coated with PANI/TiO, nanocomposite. The fabrics could soak
up sweat as an easily accessible biofluid. The size of the piece of textile material and the whole
microfluidic chip can be adjusted to the surface on the body where sweat will be collected. The amounts
of in situ synthesized PANI/TiO, nanocomposite strongly affected the electrical resistance of the chip.
Larger amounts and higher uniformity of the nanocomposite layer led to an increase in electrical
conductivity. The electrical resistance also changed depending on the fluids that were injected into
the channel (incorporated into the internal structure of the studied textile materials). The higher the
concentration of the cytostatic drug CPA, the lower the values of electrical resistance.

By tuning the amounts of synthesized PANI/TiO; nanocomposite on the fiber surface, the sensing
parameters of the chip, such as sensitivity or linearity, can be optimized, which is important for
the practical application of this platform. Additionally, a complete hand-held electronic device was
developed for processing and displaying the measured data from the proposed microfluidic platform.

Further research in this area will be oriented towards clinical trials with an aim to analyze CPA
sweat concentrations on human subjects and to test the performance of our textile-based microfluidic
platform (determination of the limit of detection (LOD) and limit of quantification (LOQ)), as well as to
determine a possible correlation between blood and sweat CPA concentrations.
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the manuscript.
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