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Simple Summary: Canola meal, a by-product of oil production from canola seed, is a source of
protein commonly incorporated into dairy and feedlot rations. Processing conditions and pressure
treatments can alter the quality of protein in canola meal. In this study, the impact of expeller dry heat
and moist heat pressure duration time on general nutritional properties, in vitro protein degradability,
Maillard reaction product formation, and molecular and microscopic structural characteristics
of canola meal were investigated. Increased dry heat temperature rapidly increased digestible
protein and non-protein nitrogen content, and constricted amide II secondary structure. Increased
moist heat pressure treatment duration promoted browning, and the conversion of protein to more
intermediately and slowly degradable forms. Dry heat and moist heat pressure affected meal protein
solubility and protein and lipid-related functional groups. Moist heat pressure fragmented canola
meal into enzyme-resistant aggregates with crevices containing oil bodies. Induced changes may
impact the supply of protein and amino acids and subsequently the yield and composition (protein
and lipid) of milk produced by dairy cows. These findings benefit producers of canola meal by further
describing the effects of processing and treatment conditions on protein characteristics, particularly
those which affect the production potential of ruminants fed canola meal as a source of protein.

Abstract: To improve the protein nutritional quality of canola (Brassica napus L.) meal, further
investigation of the effects of processing conditions and post-production treatments is desirable.
The impact of barrel dry heat temperature (20 ◦C (cold press) and 100 ◦C (expeller)) and moist heat
pressure (MHP) duration time on general nutritional properties, Maillard reaction product (MRP)
formation, in vitro protein degradability, and molecular and microscopic structural characteristics
of canola meals were investigated. Increased MHP duration reduced (p < 0.05) dry matter, soluble
protein, rapidly degradable protein, yellowness (early MRP), whiteness (late MRPs), absorbance at
294 nm (intermediate MRPs), and amide I; and increased (p < 0.05) non-protein N, neutral detergent
fibre, neutral detergent insoluble crude protein (CP), intermediately and slowly degradable protein,
in vitro effective CP degradability, redness, degree of colour change, and browning. Increased
dry heat temperature reduced (p < 0.01) CP and rapidly degradable protein, constricted amide II,
reduced (p < 0.05) protein solubility in 0.5% KOH and increased (p < 0.05) acid-detergent fibre and
intermediate MRPs. Browning index and redness exhibited potential as rapid indicators of effective
CP degradability and soluble protein, respectively. Dry heat and MHP altered (p < 0.05) lipid-related
functional groups. Dry heat affected napin solubility, and MHP altered cruciferin and napin solubility.
Application of MHP induced the formation of proteolysis-resistant protein aggregates with crevices
containing oil bodies. Induced changes may impact the supply of proteins and amino acids and
subsequently the yield and composition (protein and lipid) of milk produced by dairy cows.
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1. Introduction

Global demand for animal-derived protein is projected to double by 2050 [1], in turn increasing
requirement for more animal feed. Canola (Brassica napus L.) meal is a readily available by-product of
canola oil production. Due to its desirable amino acid (AA) profile and digestibility, canola meal is
commonly utilised as a protein supplement in dairy cattle [2,3] and feedlot [4,5] rations. To generate
canola meal, solvent extraction and mechanical (for example, cold press, expeller, and extrusion)
technologies are applied. The protein content of the meal differs depending on the oil extraction method
used [6,7]. During cold press extraction, seeds are mechanically pressed at low heat (≤65 ◦C) from
frictional forces within the expeller barrel to produce canola meal with 11–13% lipid [7,8]. Expelling
utilises moderate temperatures (95–135 ◦C) to generate canola meal with 15–18% moisture and 8–15%
lipid [7–9]. Expeller heat may increase rumen undegraded crude protein (RUP) by establishing
cross-linkages among and within peptide chains, and to carbohydrates [10].

To reduce ruminal degradation, and in turn increase the post-ruminal supply of canola protein,
AA studies have evaluated different chemical and heat treatments. For instance, dry heating (125 ◦C,
10 min) of canola meal was reported to decrease in situ rumen crude protein (CP) disappearance
without compromising intestinal digestibility in ruminants [11]. Dry heating (125 ◦C, 20 min) of
expeller canola meal was reported to reduce rumen CP degradability and, when fed to primiparous
cows, increase milk production [12]. Alternatively, treatment with moist heat pressure (MHP,
autoclaving) involves heating meals with steam under pressure. Application of canola meal with MHP
(117 kPa, 127 ◦C, 15 or 30 min) induced partial protein denaturation and decreased ruminal protein
degradability [13], and was later reported to increase the post-ruminal supply of AA for digestion in
the small intestine [14]. When diets of dairy cows were supplemented with MHP-treated cold-pressed
rapeseed (Brassica rapa L. oleifera subv. annua) cake, milk yields increased relative to an untreated
rapeseed meal [15].

Throughout processing, protein digestibility may be reduced by the formation of compounds that
inhibit digestive enzymes or by the modification of the protein molecule, for example, blocking of active
AA side-chains, or the formation of crosslinks [16]. During the oil extraction process, the heat-damaged
protein formed within the meal from the Maillard reaction is of particular concern for ruminant
nutritionists as it contributes to RUP levels without providing nutritional benefits [17]. Traditionally,
acid detergent insoluble N (ADIN) was utilised to monitor heat-damage protein; however, it is
theorised ADIN analysis does not quantitatively account for all Maillard reaction products (MRPs) [18].
Consequently, it is of interest to quantify the production of MRPs during processing of canola
meal utilising other established techniques, for instance, pH, UV-Vis absorbance [19], colorimetry,
and gel-electrophoresis [20].

To monitor changes in ruminal degradability, economical, high-throughput and non-invasive
alternatives to in vivo, in situ and in vitro ruminal fluid procedures have been established. These
include for example proteolytic assays, mathematical modelling [21], near-infrared reflectance
spectroscopy [22], and molecular spectroscopy [23–26]. Utilising attenuated total reflectance–Fourier
transform infrared (ATR-FTIR) molecular spectroscopy, protein structure characteristics of canola
meal were found to strongly correlate with in situ ruminal degradable CP [23,24]. Furthermore,
ATR-FTIR molecular spectroscopy and synchrotron-radiation-based microspectroscopy were utilised
to characterise the impact of dry heat and MHP on the protein structure for canola seed [25] and canola
seed tissue [26], respectively. Alterations in microscopic structure resulting from solvent extraction
processing were reported for rapeseed meal [27]. Confocal laser scanning microscopy (CLSM) [28],
and scanning electron microscopy (SEM) [28,29] techniques have been applied to investigate the
resistance of protein structure to enzymatic degradation in soybean meal and dried-distillers grains.
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To improve the protein value of canola meal for ruminants, the objectives of this study were
to examine the effects of low (i.e., cold press, 20 ◦C) and high (i.e., expeller, 100 ◦C) barrel dry
heat processing conditions and MHP treatment duration time on general nutritional properties,
protein degradability, MRP formation, and the molecular and microscopic structural characteristics of
canola meal.

2. Materials and Methods

2.1. Canola Meal and Suspension Preparation

2.1.1. Canola

Commercial bulk-handling canola seed was provided by MSM Milling (Manildra, NSW, Australia).
The (~5 kg) heterogeneous seed lot was stored at room temperature (RT, ~21 ◦C), in an air-tight hessian
polypropylene bag within a dark and dry cupboard.

2.1.2. Barrel Dry Heat and Moist Heat Pressure of Canola

To prepare canola meals, seed (~240 g) was passed separately through a primed bench-top
screw-press expeller (Model DSZYJ-200A/B (Taizhou Dengshang Mechanical Electrical Co. Ltd,
Zhejiang, China), 220 V, 50 Hz, 50 rpm) at a barrel dry heat temperature of either 20 ◦C (RT, cold-press)
or a pre-heated temperature of 100 ◦C (expeller); this was then repeated two more times (n = 2 × 3, 6).
The meals were individually ground in an electric mill (Breville Grinder, CG2B) and passed through a
1-mm sieve. The MHP treatment was completed by placing each meal (40 g) in a separate flat rectangle
polypropylene container and autoclaving using a steriliser (Atherton Centenary Series, Melbourne,
Australia) set on the Hard Goods Dry Cycle No. 1.1, for 0, 3, 6, 9 or 12 min (192 kPa, 120 ◦C). For each
triplicate meal, an independent sterilising cycle was performed (n = 6 × 5, 30). The meals were stored
in the dark at RT.

2.1.3. Preparation of Canola Meal Suspensions and Pellets

The meals were ground (<5 µM) by placing 5 g of meal in a stainless-steel screw-top grinding
jar (50 mL) with a � 25-mm grinding ball. The jar was positioned in a mill (MM301, Retsch, GmbH,
Hann, Germany) and shaken for 30 s (frequency 20 per s) followed by a 15-s rest, thrice. To generate
suspensions, ground meal (200 mg) was added to deionised H2O (10 mL) and shaken for 30 min using
a Multi Reax (Heidolph Instruments GmbH, Schwabach, Germany) set at 10. The suspensions were
stored in the dark at 4 ◦C. To prepare circular pellets, canola meal (~0.2 mg) was pressed at 100 bar
utilising an Hydraulic Press (Enerpac, Menomonee Falls, WI, USA).

2.2. General Nutritional Characteristics

The meals were analysed for dry matter (DM) (AOAC 930.15 (Association of Official Agricultural
Chemists)), lipid (AOAC 992.06), CP (6.25 × N) by Leco Dumas N combustion (AOAC 992.23),
and carbohydrate [30]. To determine the quantity of carbohydrate (%DM), each meal suspension
(40 µL) was added separately to deionised H2O (10 µL), concentrated sulphuric acid (150 µL), and 5%
phenol in deionised H2O (30 µL) in a clear flat bottom non-absorbent 96 F Microwell microplate
(Nunc #269620) (Thermo Scientific, Waltham, MA, USA). The plate was incubated for 5 min at 90 ◦C in a
shallow water bath, rested for 5 min at RT, wiped dry, placed in a CLARIOstar 5.20 R5 microplate reader
(BMG LABTECH, Ortenberg, Germany), shaken at 500 rpm for 10 s, and measured for absorbance at
490 nm. Values were corrected by deducting an average of blank measurements. A standard curve
(0–10 nmol) was established using a 1 M stock solution of D-mannose (Sigma, St Louis, MO, USA)
prepared in deionised H2O.
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2.3. Protein Solubility and Fractionation

The meals were analysed for soluble protein [31] and solubility in 0.5% KOH [32]. The latter was
performed by stirring samples of the meal (5 g) in 0.5% KOH (33.3 mL) for 20 min, centrifuging at
1250× g for 10 min, and quantifying the protein in the supernatant by Leco Dumas N combustion.
The meals were analysed in duplicate (n = 4 × 5, 20) for non-protein N (NPN, tungstic acid [31]), acid
detergent fibre (ADF), neutral detergent fibre (NDF), ADIN and neutral detergent insoluble N (NDIN)
by the Australian Oil Reference Laboratory (Department of Primary Industries, NSW, Australia).
Results were utilised to calculate true protein: %, CP − NPN. The meals were partitioned into protein
fractions based on characteristics of degradability according to the Cornell Net Carbohydrate and
Protein System (CNCPS) as described [33]. Using CNCPS, Fraction A is NPN, Fraction B is degradable
protein containing B1 (soluble protein, rapidly soluble in the rumen), B2 (intermediate degradation,
Total CP − (A + B1 + B3 + C)), and B3 (slowly degraded in the rumen, NDIN − ADIN), and Fraction C
is undegradable protein (ADICP).

2.4. In Vitro Effective Protein Degradability

All meals were analysed for in vitro effective CP degradability (i.e., estimated RUP) utilising the
in vitro proteolysis procedure by Krishnamoorthy, et al. [34] validated in vivo in lactating dairy cattle
(r2 = 0.61). The meal (0.5 g) was weighed into a 125-mL Erlenmeyer flask and incubated at 39 ◦C for
1 h in 40 mL borate-phosphate (BP) buffer (pH 8.0). Streptomyces griseus protease (Type XIV 5.4 U per
mg protein, Sigma P-5147) solution (0.33 U per mL, 10 mL BP-buffer) was added, and the meal was
incubated at 39 ◦C for 18 h. The residue was collected on quantitative filter paper (22 µm pore, No. 541,
Whatman, Maidstone, UK), rinsed with distilled H2O and air-dried overnight. All flasks were placed
on ice to suspend proteolytic activity before filtering. Residual CP was determined by combusting the
whole filter paper by Leco Dumas N combustion:

Effective CP degradability (% of CP ) = (CP − undegraded CP)/ CP × 100 (1)

2.5. In Vitro Intestinal Digestion of Protein in Ruminants

The meals were analysed in duplicate for in vitro intestinal digestion of CP utilising the
HCl-pepsin pre-digestion procedure of Calsamiglia and Stern [35] validated in vivo (r = 0.91).
In a 50-mL Falcon tube sample (15 mg CP) was suspended in 10 mL pH 1.9, 0.1 N HCl solution
of 1 g per L pepsin (Sigma P-7012), vortexed, and incubated at 38 ◦C for 1 h in a shaking H2O bath.
Pancreatin solution (13.5 mL: 0.5 M KH2PO4 pH 7.8 containing 3 g per L pancreatin, Sigma P-7545) and
1 N NaOH (0.5 mL) was added, and the tube was vortexed, incubated at 38 ◦C for 24 h in a shaking
H2O bath, vortexing every ~8 h. To cease the reaction, trichloroacetic acid (TCA) (3 mL) was added,
the tube was vortexed, rested (15 min), and then centrifuged (10,000× g, 15 min). The supernatant was
analysed for soluble N, as described. Results were utilised to calculate %pepsin–pancreatin digestion
of protein:

%IVCPD = TCA − soluble N/ initial N × 100 (2)

2.6. Measurement of Maillard Reaction Products

2.6.1. Measurement of Colour

To monitor Maillard reaction product formation, meals were separately placed in a lidded cuvette
then colour was measured with a Chroma Meter CR-300 colorimeter (Minolta CO., Osaka, Japan),
using the CIE-Lab tristimulus system, calibrated with a white tile and a D-65 illuminant source. The a*
(red-green), b* (yellow-blue) and L* (white-black), degree of colour change (∆E), and browning index
(BI) were calculated as previously described [36].
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2.6.2. Measurement of pH

The meal suspensions were monitored for pH by magnetic stirring using a PHM 93 Reference pH
meter (Radiometer, Copenhagen, Denmark) calibrated with buffer solutions at pH 4 and 7.

2.6.3. Determination of UV-Vis Absorbance at 294 nm

The meal suspensions were analysed for UV-Vis absorbance utilising an adapted procedure [19].
The meal suspension (20 µL) was added to deionised H2O (80 µL) in a clear flat bottom non-absorbent
96 F 400 µL Microwell microplate (Nunc #269620), and UV-Vis Abs294nm was measured utilising a
CLARIOstar 5.20 R5 microplate reader (BMG Labtech, Offenburg, Germany).

2.7. Measurement of Structural Changes

2.7.1. Measurement of Surface Hydrophobicity

The meals were analysed in duplicate for surface hydrophobicity (So) with fluorescence
probes [37]. Under darkened conditions, an aliquot of canola meal suspension was made up to
a final volume of 300 µL using 0.01 M sodium tetraborate solution pH 6 in a 400 µL 96-well microplate
(Nunc™ F96 MicroWell™ Black Polystyrene 237105). To each well, 1 µL of 1-anilino-8-naphthalene
sulfonate (ANS, Fluka 10419) reagent was added. The plate was incubated at 25 ◦C for 2 min, then
shaken at 500 rpm for 10 s in a CLARIOstar 5.20 R5 microplate reader. Fluorescence intensity was
measured at an excitation maximum of 390–405 nm and an emission maximum of 470–500 nm. Values
were corrected by deducting an average of blank measurements. To determine sample So, a 0–200 µg
per µL standard curve was established using a 1 M stock solution of bovine serum albumin (Sigma)
prepared in 0.01 M sodium tetraborate solution and stored in the dark at 4 ◦C.

2.7.2. ATR-FTIR Sample Preparation, Data, and Collection Analysis

The molecular spectral data of canola meal pellets were generated by ATR-FTIR 8400S (Shimadzu
Corp., Kyoto, Japan) with a single reflection plate, flat tip, and constant pressure (530 psi) in
absorbance mode (40 scan runs, 4 cm−1, Happ-Genzel apodisation, mid-IR, approximately (ca.)
4000–600 cm−1). The data were collected utilising IR Solution software, baseline corrected [38],
and total peak normalised. The lipid [39], and protein [25] functional groups were identified. Briefly,
the IR total protein fingerprint region ca. 1714–1480 cm−1 included amide I (AI, ca. 1714–1571 cm−1),
amide II (AII, ca. 1572–1480 cm−1), α-helix (peak centre height at ca. 1652 cm−1 with the baseline
of ca. 1714–1480 cm−1), and β-sheet (peak centre height at ca. 1630 cm−1 with a baseline of ca.
1714–1480 cm−1). Lipid regions included the lipid carbonyl C=O ester stretching band (LCCE, baseline
ca. 1789–1701 cm−1 with peak ca. 1744 cm−1), CH3 asymmetric (CH3A ca. 2988–2951 cm−1 with
peak centre at ca. 2955 cm−1), CH2 asymmetric (CH2A ca. 2951–2882 cm−1 with peak centre at ca.
2922 cm−1), CH3 symmetric (CH3S, ca. 2882–2868 cm−1 with peak centre at ca. 2872 cm−1) and CH2

symmetric (CH2S ca. 2868–2790 cm−1 with peak centre at ca. 2852 cm−1).

2.7.3. Gel Electrophoresis of Canola Meal Protein Profiles

Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis

The polypeptide banding profiles of duplicate canola meal samples were visualised utilising
an adapted SDS-PAGE procedure [40] as follows; the sample (~10 mg CP) was dissolved in sample
buffer (1 mL: 11.25 mM tris-HCl, pH 8.5, 3.6% SDS, 18% glycerol, and 0.0025% bromophenol blue),
and heated at 85 ◦C for 10 min. For reducing conditions, 50 mM dithiothreitol (DTT) was added to
the sample buffer. The protein sample (30 µg of CP per well) and standard marker (5 µL, Novex
Mark 12, Invitrogen, Mulgrave, VIC, Australia) were loaded onto a NuPAGE gradient precast gel
(4–12% gradient) bis-tris (10 × 10 cm2) in a Novex Xcell mini cell system (Invitrogen, Mulgrave, VIC,
Australia). Electrophoresis was performed at 80 V for 75 min, followed by 90 V for 75 min in running
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buffer (50 mM methysulfonic acid, 50 mM tris base, 0.1% SDS, 1 mM ethylenediaminetetraacetic acid,
pH 7.3). The polypeptide bands were visualised by incubating the gel in Coomassie Brilliant Blue
R-250 solution (0.1% in 40% methanol, 10% acetic acid) for 25 min, and de-stained (10% ethanol and
7.5% acetic acid) on an orbital shaker at RT overnight.

Native Gel Electrophoresis

The native protein profiles of duplicate canola meal samples were visualised by gel-electrophoresis
following manufacturer’s instructions. In brief, sample (~10 µg CP per µL) was added to 2.5 µL
NativePAGETM sample buffer (4×), 1 µL NativePAGETM 5% G-250 sample additive, and made to
10 µL with deionised H2O. The sample and NativeMarkTM unstained protein standard (5 µL, LC0725,
Invitrogen, Mulgrave, VIC, Australia) were loaded onto a NativePAGETM 4–16% gradient precast
bis-tris (10 × 10 cm2) gel in a Novex Xcell mini cell system (Invitrogen, Mulgrave, VIC, Australia).
The running buffer contained 50 mM BisTris, 50 mM tricine, pH 6.8, and the sample buffer contained
50 mM BisTris, 6 N HCl, 50 mM NaCl, 10% w/v glycerol, and 0.001% Ponceau S, pH 7.2. The upper
(inner) buffer chamber contained cathode buffer (200 mL: 10 mL NativePAGETM running buffer 20×,
10 mL NativePAGETM cathode additive 20×) and the lower (outer) buffer chamber contained anode
buffer (600 mL: 50 mL NativePAGETM running buffer 20×, 950 mL deionised H2O). Electrophoresis
was performed at 150 V for 110 min. The native proteins were visualised by incubating the gel in
40% methanol and 10% acetic acid for 25 min, Coomassie Brilliant Blue R-250 solution (0.02% in 30%
methanol and 10% acetic acid) for 25 min, and 8% acetic acid on an orbital shaker at RT overnight.

2.7.4. Confocal Laser Scanning Microscopy

The microscopic structure of duplicate canola meal and in vitro proteolytic digested CP
residues were analysed at RT utilising a TCS SP5 confocal laser-scanning microscope (CLSM, Leica
Microsystems, Wetzlar, Germany) fitted with a 20× oil immersion objective. The meal (100 mg) was
fluorescently labelled in Fast Green FCF (1 drop, 0.4% in H2O) and Nile blue (1 drop, 0.5% in H2O)
dyes, to stain for protein and lipid, then excited at 633 and 488 nm, and reflected emitted light was
collected at 662–744 and 520–626 nm with HeNe and argon lasers, respectively.

2.7.5. Scanning Electron Microscopy

The duplicate canola meal and in vitro proteolytic digested CP residues were adhered to
aluminium sample holders using double-sided smoothest carbon tabs (ProSciTech Pty Ltd, Kirwan
QLD, Australia). The samples were imaged in a S4300 SE/N variable pressure scanning electron
microscope (SEM) (Hitachi, Tarrytown, NY, USA). The environmental secondary electron detector was
used with a pressure of 50 Pa, accelerating voltage of 20 kV at RT and a working distance of 15 mm.

2.8. Statistical Analysis

Statistical analyses of data were performed using the statistical software OriginLab v 95E (Origin,
Northampton, MA, USA). To establish differences, the one-way ANOVA mathematical model used for
analysis was:

Yij = µ + Tj + eij (3)

where Yij is an observation on the dependent variable ij; µ is the population mean for the variable,
and Tj is the effect of treatment (i = MHP duration time and/or barrel dry heat temperature), as a fixed
effect. The independent barrel runs at each temperature were experimental replications and eij value is
the random error associated with the observation ij. A post hoc Fisher’s least significant difference
test was performed to determine the statistical significance of differences between individual means,
declared at p < 0.05. Normal distribution was established by performing an Anderson-Darling test,
p > 0.05. The Spearman correlation coefficient (rs) with a two-tailed test of significance (p < 0.05) was
used to define strength and association of relationships between MHP duration time and dependent
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variables. Polynomial regression was performed to determine the coefficient of determination (r2),
using the equation:

Yi = β0 + β1xi + β2x2
i + εi (4)

3. Results

3.1. General Nutritional Characterisation of Canola Meals

The effects of barrel dry heat and MHP duration on general nutritional characteristics of canola
meal are presented in Tables 1 and A1. The CP content of the non-treatment cold-pressed meal (33.8%)
was higher (p < 0.01) than that of expeller canola meal (33.2%). The CP content decreased (p < 0.05)
with MHP durations (rs = −0.35, −0.36 for cold-pressed and expeller meals, respectively). The DM
content decreased (p < 0.05) with MHP duration (rs = −0.74, −0.80 for cold-pressed and expeller meals,
respectively) and was similar (p > 0.05) in non-treatment cold-pressed (92.8%) and expeller meals
(93.1%). Lipid content remained similar between MHP durations in cold-pressed meals (p > 0.05)
unlike expeller canola meals (p < 0.05). The lipid content did not vary (p > 0.05) between non-treatment
cold-pressed (15.9%) and expeller (15.3%) meals. Carbohydrate content decreased (p < 0.05) with
increasing MHP duration time in expeller meals (rs = −0.58), unlike in the cold-pressed meals
(rs = −0.26). Carbohydrate content did not vary (p > 0.05) between the non-treatment cold-pressed
(14.9% DM) and expeller (15.0% DM) meals. NPN, NDF, NDICP, and ADICP contents were similar
(p > 0.05) between dry heat temperatures, whereas ADF was greater (p < 0.05) in non-treatment expeller
(16.6%) as compared to cold-pressed (15.1%) meals (see Tables 1 and A1). Overall, NPN, NDF, and
NDICP (rs = 0.84, 0.82, 0.96) were strongly and positively (p < 0.05) associated with MHP duration in
cold-pressed meals, unlike ADF and ADICP (rs = −0.12, 0.26) (p > 0.05).

Table 1. General chemical and protein degradability characteristics of cold-pressed (20 ◦C) and expeller
(100 ◦C) canola meals with moist heat pressure treatment for durations of 0, 3, 6, 9 or 12 min.

Characteristic
Barrel Moist Heat Pressure Duration (min)

SEM PMHPD PBT PAll rs r2

(◦C) 0 3 6 9 12

CP (% DM)
20 33.8 bc 34.5 ab 34.3 b 33.5 c 33.7 c 0.11 *

** *
−0.35 * 0.10

100 33.2 33.4 33.4 33.8 33.4 0.08 NS −0.36 * 0.25

DM (% AsIs)
20 92.8 ab 92.1abc 92.6 bcd 92.2 a 91.2 d 0.17 **

NS **
−0.74 * 0.54

100 93.1 a 93.3 a 92.5 ab 92.6 ab 91.9 a 0.16 ** −0.80 * 0.57

Lipid (% DM) 20 15.9 16.3 15.5 15.9 16.4 0.13 NS
NS *

0.30 0.15
100 15.3 b 16.3 a 16.4 a 16.4 a 16.5 a 0.14 * 0.50 0.60

Carbohydrate (% DM) 20 14.9 14.8 15.0 14.9 14.8 0.39 NS
NS NS

−0.26 0.12
100 15.0 a 15.0 a 14.7 b 14.8 ab 14.7 b 0.47 * −0.58 * 0.15

NPN (% DM)
20 0.09 b 0.09 b 0.11 a 0.11 a 0.12 a 0.00 **

NS NS
0.84 * 0.86

100 0.10 c 0.11 c 0.12 b 0.12 ab 0.13 a 0.00 ** 0.99 * 0.95

ADF (% DM)
20 15.1 15.6 15.9 15.1 15.6 0.13 NS

* NS
0.25 0.23

100 16.6 16.1 15.5 15.9 15.7 0.18 NS −0.52 0.39

NDF (% DM)
20 19.4 19.7 19.9 20.9 22.6 0.44 NS

NS NS
0.86 * 0.68

100 19.5 19.9 21.0 21.7 21.6 0.35 NS 0.81 * 0.72

ADICP (% DM)
20 1.34 1.44 1.53 1.59 1.63 0.04 NS

NS NS
0.81 * 0.67

100 1.63 1.93 1.71 1.87 1.59 0.07 NS 0.03 0.20

NDICP (% DM)
20 5.37 b 5.92 b 6.29 b 7.39 ab 9.99 a 0.58 **

NS NS
0.99 * 0.75

100 5.20 b 5.76 b 6.77 ab 8.80 a 9.11 a 0.54 ** 0.94 * 0.89

Soluble protein (% CP) 20 70.0 a 49.5 b 31.1 c 28.4 cd 23.0 d 4.46 **
* NS

−0.97 * 0.93
100 69.0 a 45.0 b 32.1 c 28.9 cd 22.1 d 4.48 ** −0.95 * 0.94

Solubility 0.5% KOH (%) 20 55.1 a 41.3 b 35.6 c 24.1 d 20.4 d 3.37 **
* NS

−0.98 * 0.88
100 34.7 c 54.9 a 43.6 b 43.9 b 22.7 d 2.95 ** −0.35 * 0.80
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Table 1. Cont.

Characteristic
Barrel Moist Heat Pressure Duration (min)

SEM PMHPD PBT PAll rs r2

(◦C) 0 3 6 9 12

ECPD (%CP)
20 16.8 d 26.4 c 34.7 b 37.4 b 43.4 a 2.58 **

NS *
0.96 * 0.97

100 17.3 d 29.1 c 35.1 b 39.4 ab 42.9 a 2.45 ** 0.97 * 0.96

IVCPD (%)
20 14.1 14.1 14.6 14.7 14.7 0.20 NS

NS **
0.45 0.22

100 14.0 13.7 14.1 14.0 13.5 0.17 NS −0.27 0.09

CP: crude protein; DM: dry matter; NPN: non-protein N; ADF, ADICP: acid-detergent fibre and insoluble CP,
respectively; NDF, NDICP: neutral-detergent fibre and insoluble CP, respectively; ECPD: in vitro effective CP
degradability; IVCPD: in vitro CP digestibility; MHP: moist heat pressure. Means in rows with unlike superscripts
differ (p < 0.05). SEM: standard error of mean; rs: pair-wise Spearman correlation coefficient; r2: coefficient of
determination; PMHPD: difference between MHP duration times; PBT: difference between barrel temperatures
at 0 min of MHP; PAll: difference between barrel temperatures inclusive of MHP treatment samples; ** p < 0.01;
* p < 0.05; NS: not significant.

3.2. Barrel Dry heat and MHP Duration Induced Changes in Protein in Canola Meal

3.2.1. Protein Solubility

The effects of barrel dry heat and MHP duration on BP-buffer protein solubility (pH 6.7) and
solubility in 0.5% KOH of canola meals are presented in Tables 1 and A1. Protein solubility in BP buffer
decreased (p < 0.01) with increasing MHP duration in cold-pressed (rs = −0.97) and expeller meals
(rs = −0.95). Protein solubility in BP-buffer was lower (p < 0.05) in non-treatment expeller (69.0%)
than cold-pressed (70.0%) meals. In cold-pressed meals, unlike expeller meals, 0.5% KOH solubility
decreased (p < 0.05) with increasing MHP duration (rs = −0.98, −0.35). Protein solubility in 0.5% KOH
was less (p < 0.05) in non-treatment expeller (34.7%) as compared to cold-pressed (55.1%) meals and
decreased (p < 0.01) with increasing MHP duration (rs = −0.98, r2 = 0.80).

3.2.2. Protein Degradability

The effects of dry heat and MHP duration on effective CP degradability (ECPD; %CP) and
in vitro CP digestibility (IVCPD) content of canola meals are presented in Tables 1 and A1. The ECPD
was positively associated with MHP duration (r2 = 0.97, rs = 0.97), and was similar (p > 0.05) in
non-treatment cold-pressed (16.8) and expeller (17.3) meals. The IVCPD content of meals was
unaffected (p > 0.05) by MHP duration and was similar (p > 0.05) in non-treatment cold-pressed
(14.1%) and expeller (14.0%) meals.

3.2.3. Protein Fractionation

Protein fractions B2, B3 and C were similar (p > 0.05) between dry heat temperatures, whereas
A was less (p < 0.05) and B1 was greater (p < 0.01) in non-treatment cold-pressed (0.05, 69.8) meals
as compared to expeller meals (0.05, 66.9), respectively (see Table 2). Overall, Fractions A, B2, and
B3 (rs = 0.95, 0.87, 0.94) were positively and B1 (rs = −0.96) was negatively associated (p < 0.05) with
MHP duration, except C (rs = 0.86) which was positively (p < 0.05) associated in cold-pressed meal
only (see Tables 2 and A2).

Table 2. Cornell Net Carbohydrate and Protein System protein fractions of cold-pressed (20 ◦C) and
expeller (100 ◦C) canola meals with moist heat pressure treatment for durations of 0, 3, 6, 9 or 12 min.

Protein Fraction
Barrel Moist Heat Pressure Duration (min)

SEM PMHPD PBT PAll rs r2

(◦C) 0 3 6 9 12

A
20 0.05 c 0.06 c 0.09 b 0.11 b 0.17 a 0.01 **

* NS
0.99 * 0.90

100 0.05 b 0.07 b 0.12 b 0.15 a 0.16 a 0.05 ** 0.96 * 0.94

B1
20 69.8 a 53.1 b 41.1 c 34.8 c 23.6 d 5.45 **

** NS
−0.99 * 0.94

100 66.9 a 48.5 b 33.4 c 28.5 c 26.2 c 5.13 ** −0.96 * 0.98

B2
20 14.4 c 29.8 b 40.6 a 43.3 a 46.8 a 4.50 **

NS NS
0.99 * 0.93

100 17.4 b 34.2 a 46.1 a 45.4 a 46.3 a 3.84 ** 0.79 * 0.93
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Table 2. Cont.

Protein Fraction
Barrel Moist Heat Pressure Duration (min)

SEM PMHPD PBT PAll rs r2

(◦C) 0 3 6 9 12

B3
20 11.9 b 13.0 b 13.8 b 17.2 b 24.6 a 1.62 *

NS NS
0.99 * 0.75

100 10.8 c 11.5 c 15.2 bc 20.5 ab 22.7 a 1.66 * 0.94 * 0.87

C
20 3.95 4.16 4.46 4.70 4.81 0.13 NS

NS **
0.86 * 0.70

100 4.90 5.76 5.14 5.51 4.76 0.21 NS 0.03 0.19

Calculated as previously described [33], using B3 (NDIN − ADIN), and B2 (Total CP − (A + B1 + B3 + C)). A:
non-protein N; B1: rapidly degraded true protein; B2: intermediately degraded true protein; B3: slowly degraded
true protein; C: undegradable true protein; MHP: moist heat pressure. Means in rows with unlike superscripts
differ (p < 0.05). SEM: standard error of mean; rs: pair-wise Spearman correlation coefficient; r2: coefficient of
determination; PMHPD: difference between MHP duration times; PBT: difference between barrel temperatures
at 0 min of MHP; PAll: difference between barrel temperatures inclusive of MHP treatment samples; ** p < 0.01;
* p < 0.05; NS: not significant.

3.3. Barrel Dry Heat and MHP Induced Formation of Maillard Reaction Products

3.3.1. Colour Development

Colour development as a function of dry heat and MHP duration in canola meals is presented
in Tables 3 and A2. As MHP duration increased the meals decreased (p < 0.01) in yellowness (b*,
rs = −0.54, −0.90), decreased (p < 0.05) in whiteness (L*, rs = −0.64, −0.69), and increased (p < 0.01)
in redness (a*, rs = 0.94, 0.90). Non-treatment expeller and cold-pressed canola meals were similar
(p > 0.05) in whiteness (54.7 vs. 54.5), redness (1.80 vs. 1.56), and yellowness (17.3 vs. 17.0). The degree
of colour change was positively associated (rs = 0.73, 0.88) and increased (p < 0.01) with MHP duration.
As MHP duration increased the cold-pressed (rs = 0.95) and expeller canola meals (rs = 0.87) increased
(p < 0.01) in BI. Non-treatment expeller (73.4) and cold-pressed (68.2) meals had similar (p > 0.05)
BI values.

Table 3. Monitoring of Maillard reaction product formation in cold-pressed (20 ◦C) and expeller
(100 ◦C) canola meals with moist heat pressure treatment for durations of 0, 3, 6, 9 or 12 min.

Characteristic
Barrel
(◦C)

Moist Heat Pressure Duration (min)
SEM PMHPD PBT PAll rs r2

0 3 6 9 12

b*
20 17.0 ab 15.6 abcd 13.2 bcd 14.7 bd 13.9 d 0.425 **

NS NS
−0.54 * 0.58

100 17.3 a 17.2 a 15.4 ab 13.8 b 13.2 b 0.488 ** −0.90 * 0.80

a*
20 1.56 c 1.87 c 3.12 b 3.53 ab 4.73 a 0.290 **

NS NS
0.94 * 0.81

100 1.80 b 2.20 b 2.68 a 3.36 a 3.34 a 0.186 ** 0.90 * 0.81

L*
20 54.5 a 54.1 abc 51.3 cd 52.5 cd 51.5 d 0.422 *

NS *
−0.64 * 0.51

100 54.7 a 56.6 a 54.6 ab 53.4 bc 52.5 c 0.447 * −0.69 * 0.55

∆E
20 0.80 c 2.72 b 5.30 a 3.68 ab 5.17 ab 0.470 **

NS NS
0.73 * 0.73

100 0.17 b 2.14 b 2.30 b 4.17 a 5.05 a 0.431 ** 0.88 * 0.75

Browning index 20 68.2 c 73.4 c 97.0 b 106.6 ab 122.5 a 5.660 **
NS NS

0.95 * 0.90
100 73.4 d 81.0 cd 90.0 bc 101.8 ab 102.9 a 3.460 ** 0.87 * 0.77

pH 20 6.39 d 6.54 a 6.54 a 6.49 b 6.43 c 0.016 **
NS NS

0.03 0.83
100 6.40 b 6.53 a 6.50 a 6.48 ab 6.42 b 0.014 ** 0.01 0.67

Intermediate MRP
20 1.61 ab 1.81 a 1.60 ab 1.45 bc 1.22 c 0.059 **

* NS
−0.74 * 0.72

100 1.93 ab 1.86 ab 1.20 bcd 1.53 cb 1.34 c 0.084 ** −0.63 * 0.54

So (% soluble CP)
20 3.73 4.02 3.55 4.21 5.12 0.385 NS

NS NS
0.30 0.21

100 1.94 b 2.62 ab 4.72a 4.19 a 4.15 a 0.374 * 0.71 * 0.72

b*: yellowness; a*: redness; L*: whiteness; MRP: Maillard reaction product; ∆E: degree of colour change; So: surface
hydrophobicity; MHP: moist heat pressure. Means in rows with unlike superscripts differ (p < 0.05). SEM: standard
error of mean; rs: pair-wise Spearman correlation coefficient; r2: coefficient of determination; PMHPD: difference
between MHP duration times; PBT: difference between barrel temperatures at 0 min of MHP; PAll: difference
between barrel temperatures inclusive of MHP treatment samples; ** p < 0.01; * p < 0.05; NS: not significant.

3.3.2. Acidity

The pH was used as a measure of Maillard reaction-associated protein-sugar covalent bond
formation in canola meal suspensions. As presented in Tables 3 and A2, pH varied (p < 0.01) between
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MHP duration times, where acidity increased with MHP duration (r2 = 0.83, 0.67). The pH was similar
(p > 0.05) in the expeller (6.40) and cold-pressed (6.39) suspensions.

3.3.3. Intermediate Maillard Reaction Product Formation

UV-Vis Abs294nm was used as a measure of intermediate-MRP formation with increasing MHP
duration in canola meal suspensions, as presented in Tables 3 and A2. Intermediate MRP content
was dissimilar (p < 0.01) among MHP durations with negative (rs = −0.74, −0.63) associations of
intermediate-MRP formation and MHP duration time observed. Intermediate MRP formation was
increased (p < 0.05) in non-treatment expeller (1.93) compared to cold-pressed (1.61) meals.

3.4. Barrel Dry Heat and MHP Induced Changes in Protein Structure

The impacts of changing barrel dry heat and increasing MHP duration on surface hydrophobicity
(So) in canola meal suspensions are presented in Tables 4 and A2. So was similar (p > 0.05) between
expeller (1.94) and cold-pressed (3.73) meal suspensions. There was a positive correlation (r2 = 0.72)
between So and MHP duration in the expeller but not in the cold-pressed meal suspensions. In addition,
So differed (p < 0.05) between MHP durations in the expeller but not the cold-pressed meal suspensions.

Table 4. Changes in protein molecular structure of cold-pressed (20 ◦C) and expeller (100 ◦C) canola
meals with moist heat pressure treatment for durations of 0, 3, 6, 9 or 12 min.

Characteristic
Barrel Moist Heat Pressure Duration (min)

SEM PMHPD PBT PAll rs r2

(◦C) 0 3 6 9 12

Amide I
20 0.706 a 0.680 a 0.549 ab 0.695 a 0.435 b 0.0450 *

NS NS
−0.53 * 0.48

100 0.607 abc 0.670 ab 0.435 bc 0.55 bc 0.501 c 0.0281 * −0.42 0.22

Amide II
20 0.299 a 0.258 ab 0.237 ab 0.313 a 0.187 b 0.0158 *

** NS
−0.42 0.19

100 0.271 0.343 0.247 0.292 0.273 0.0125 NS −0.15 0.03

α-helix
20 0.013 a 0.014 a 0.011 ab 0.011 ab 0.008 b 0.0007 **

NS NS
−0.79 * 0.61

100 0.013 0.011 0.009 0.011 0.010 0.0005 NS −0.31 0.26

β-sheet
20 0.012 ab 0.014 a 0.012 a 0.013 ab 0.010 b 0.0005 *

NS **
−0.43 0.41

100 0.011 0.012 0.008 0.011 0.010 0.0005 NS −0.34 0.15

AI:AII
20 2.368 2.699 2.301 2.220 2.382 0.2616 NS

NS NS
−0.30 0.86

100 2.326 1.954 1.755 1.888 1.826 0.0807 NS −0.37 0.39

α:β 20 1.094 a 0.962 ab 0.903 b 0.853 b 0.831 b 0.0281 **
NS **

−0.90 * 0.80
100 1.153 0.986 1.060 1.095 1.104 0.0290 NS −0.03 0.12

TPFR
20 1.341 1.380 1.275 1.355 1.200 0.0244 NS

NS NS
−0.47 0.30

100 1.297 1.372 1.198 1.286 1.279 0.0224 NS −0.20 0.06

Attenuated total reflectance-Fourier transform infrared spectrum absorbance units were analysed for protein
molecular structure regions, as previously described by Samadi and Yu [39]. The total protein fingerprint region
(TPFR) ca. 1714–1480 cm−1 included amide I (AI area ca. 1714–1571 cm−1), amide II (AII area ca. 1572–1480 cm−1),
α-helix (α peak centre height at ca. 1652 cm−1 with the baseline of ca. 1714–1480 cm−1) and β-sheet (β peak centre
height at ca. 1630 cm−1 with the baseline of ca. 1714–1480 cm−1), as well as the ratio of AI-II (AI:AII), and the ratio of
α-β (height) (α:β). MHP: moist heat pressure. Means in rows with unlike superscripts differ (p < 0.05). SEM: standard
error of mean; rs: pair-wise Spearman correlation coefficient; r2: coefficient of determination; PMHPD: difference
between MHP duration times; PBT: difference between barrel temperatures at 0 min of MHP; PAll: difference
between barrel temperatures inclusive of MHP treatment samples; ** p < 0.01; * p < 0.05; NS: not significant.

3.5. Barrel Dry Heat and MHP Induced Changes in Spectral Characteristics of Protein and Lipid Structure

Infrared molecular spectroscopic characteristics (absorbed area intensity of the protein fingerprint
region, and height intensities of α-helix, β-sheet, AI and AII, and their respective ratios) of the
protein structure of canola meal processed with increasing MHP durations are presented in Table 4
(and Figure A1). In cold-pressed meal, but not expeller meal, MHP duration negatively (p < 0.05)
correlated with AI (rs = −0.53), α-helix (rs = 0.79), and the ratio of α-helix-β-sheet (rs = −0.90). In both
cold-pressed and expeller meals, the AI region differed (p < 0.05) between MHP durations. Protein
molecular regions were similar among barrel temperatures, except AII (0.271 vs. 0.299) was reduced
(p < 0.01) in non-treatment expeller compared to cold-pressed canola meals.
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Infrared molecular spectroscopic characteristics of lipid structure (absorbed height intensities of
CH functional groups, and LCCE bands) of non-treatment cold-pressed and expeller meals treated
at increasing durations with MHP are presented in Table 5 (and Figure A1). MHP duration did not
(p > 0.05) induce structural changes in CH3AS functional groups or ratios of CH3-CH2 asymmetric and
symmetric functional groups. MHP was positively (p < 0.05) associated with and induced structural
changes of the LCCE bands (rs = 0.56), CH2AS (rs = 0.72), CH3S (rs = 0.78), and CH2S (rs = 0.79) in
cold-pressed meals. Absorbance intensities of CH2AS, CH3S, and CH2S were higher (p < 0.05) in
non-treatment expeller than cold-pressed meals (0.002 vs. 7.34 × 10−5, 5.21 × 10−4 vs. 2.24 × 10−4,
and 8.72 × 10−4 vs. −8.58 × 10−5

, respectively). The CH3-CH2 asymmetric ratio was similar (p > 0.05),
and CH3-CH2 symmetric ratio was greater (p < 0.01) in non-treatment expeller than cold-pressed
canola meals.

Table 5. Changes in the lipid-related molecular structure of cold-pressed (20 ◦C) and expeller (100 ◦C)
canola meals with moist heat pressure treatment for durations of 0, 3, 6, 9 or 12 min.

Characteristic
Barrel
(◦C)

Moist Heat Pressure Duration (min)
SEM PMHPD PBT PAll rs r2

0 3 6 9 12

LCCE
20 0.000 b 0.000 b 0.000 b 0.000 b 0.002 a 0.0002 *

NS **
0.62 * 0.56

100 0.001 0.001 0.002 0.002 0.002 0.0003 NS 0.29 0.15

CH3AS
20 0.000 0.000 0.000 0.000 0.000 0.0001 NS

NS **
0.47 0.49

100 0.000 0.000 0.001 0.001 0.000 0.0001 NS 0.29 0.21

CH2AS
20 0.000 b 0.000 b 0.000 b 0.000 b 0.002 a 0.0003 *

* **
0.72 * 0.62

100 0.002 0.002 0.003 0.002 0.002 0.0002 NS 0.22 0.16

CH3S
20 0.000 b 0.000 b 0.000 b 0.000 b 0.001 a 0.0001 *

* **
0.78 * 0.59

100 0.001 0.001 0.001 0.001 0.001 0.0000 NS 0.44 0.36

CH2S
20 0.000 b 0.000 b 0.000 b 0.000 b 0.001 a 0.0002 *

* **
0.79 * 0.62

100 0.001 0.001 0.002 0.001 0.001 0.0001 NS 0.09 0.17

CH3:CH2AS
20 −0.363 −3.330 −0.828 0.998 0.407 0.6815 NS

NS NS
0.08 0.14

100 0.464 0.463 0.403 0.433 0.501 0.0226 NS 0.07 0.11

CH3:CH2S
20 −2.725 −2.688 1.481 12.21 0.830 2.2728 NS

** NS
0.69 * 0.16

100 0.798 0.592 0.545 0.576 1.352 0.1483 NS 0.04 0.27

Attenuated total reflectance-Fourier transform infrared spectrum absorbance units were analysed for lipid-related
molecular structure regions, as previously described by Samadi and Yu [39]. Regions included the lipid carbonyl
C=O ester stretching band (LCCE, baseline ca. 1789–1701 cm−1 with peak height ca. 1744 cm−1), asymmetric CH3
(CH3A ca. 2988–2951 cm−1 with peak height centre at ca. 2955 cm−1), asymmetric CH2 (CH2A ca. 2951–2882 cm−1

with peak height centre at ca. 2922 cm−1), symmetric CH3 (CH3S ca. 2882–2868 cm−1 with peak height centre at ca.
2872 cm−1), and symmetric CH2 (CH2S ca. 2868–2790 cm−1 with peak height centre at ca. 2852 cm−1). MHP: moist
heat pressure. Means in rows with unlike superscripts differ (p < 0.05). SEM: standard error of mean; rs: pair-wise
Spearman correlation coefficient; r2: coefficient of determination; PMHPD: difference between MHP duration times;
PBT: difference between barrel temperatures at 0 min of MHP; PAll: difference between barrel temperatures inclusive
of MHP treatment samples; ** p < 0.01; * p < 0.05; NS: not significant.

3.6. Barrel Dry Heat and MHP Induced Changes in the Protein Profile

The gel electrophoresis analysis of water-soluble (pH 7) native, non-reduced, and reduced protein
subunits of cold-pressed and expeller meals treated with increasing MHP durations are presented
in Figure 1. Native conformation of water-soluble expeller and cold-pressed canola meal proteins
consisted of a large 300–400 kDa protein band and protein smearing from 50 to 200 kDa. With increasing
MHP duration the 300–400 kDa protein band varied in intensity. In non-reduced conditions, protein
polypeptide bandings included: ~177, ~118, 73.5, 76.8, 41–55, 37.1, 28.5, 27.5, 26.7, 22.9, 21.1, 18.3, and 14
kDa. Under non-reducing conditions in water-soluble protein fractions, polypeptide banding intensity
was reduced at 6 min of MHP duration. A 14 kDa polypeptide band was reduced at 12 min and
9 min of MHP duration in cold-pressed and expeller meals, respectively. Under reducing conditions in
water-soluble protein fractions, polypeptide banding intensity noticeably reduced at 6 min and 3 min
of MHP duration in cold-pressed and expeller meals, respectively. In both meal types, increasing MHP
duration decreased the intensity of 4 and 9 kDa polypeptide bands.
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Figure 1. Native gel electrophoresis (a), and SDS-PAGE (non-reduced, (b)) and (reduced, (c))
water-soluble (pH 7) protein profile of cold-pressed (20 ◦C, (i)) and expeller (100 ◦C, (ii)) canola
meal with moist heat pressure treatment for different durations (0, 3, 6, 9 or 12 min) revealed with
Coomassie Blue Stain. Representative images presented. A 30 µg aliquot of each sample was loaded
per well. A 5 µL aliquot of NativeMark™ Unstained Protein Standard (m) or Mark 12 Protein Standard
(M) was loaded.

3.7. Barrel Dry Heat and MHP Induced Changes in the Structural Organisation

The effect of MHP duration on canola meal structural organisation, notably protein and lipid,
is presented in Figure 2a (and Figure A2 in Appendix A). Untreated meals exhibited intact cotyledon
structure, and protein aggregation within and between cellular walls, to produce a heterogeneous
matrix with embedded lipid bodies. Barrel associated shearing fractured cell walls surrounding the
outer edges of meal flakes, to release lipid bodies (droplets of < ~5 µm). MHP duration constantly
produced irregularly sized meal fragments ranging in size from 5–500 µm, that contained dense mats
of aggregated protein matrix embedded with < ~15 µm coalesced lipid droplets. The width of internal
crevices, created from dense aggregated heterogeneous protein matrix, increased with MHP duration.
Residual lipid was observed embedded within the matrix and coalesced within crevices and on the
surface of fragments.

The effect of increasing MHP duration on resistance of canola meal to in vitro proteolytic digestion
is presented in Figure 2b (and Figure A3). Degradation around sides of the intact cotyledon cellular
structure was similar among untreated cold-pressed and expeller canola meals. Fragments of detached
protein matrix were observed in both meal types and at all MHP durations. Regardless of MHP
duration times, in vitro proteolytic degradation of cellular structure was similar in expelled and
cold-pressed meals. After 3 min of MHP, crevices within the aggregated protein matrix widened
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and after 6 min of MHP, the amount of surface lipid bodies and coalesced lipid droplets within
crevices decreased.

Figure 2. Representative confocal laser scanning micrographs of cold-pressed (20 ◦C) and expeller
(100 ◦C) canola meal treated with increasing durations of moist heat pressure ((a), 0, 6 and 12 min) and
proteolytic digestion (b). Protein is stained red with Nile Blue dye, and lipid is stained green with Fast
Green FCF dye. Scale bars correspond to 100, 75 or 50 µM.
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3.8. Induced Changes in the Surface Morphology

The effects of increasing MHP duration on meal surface morphology, utilising SEM, are presented
in Figure 3a (and Figure A4). At MHP durations of 0 and 3 min, intact, irregular, and complex surface
and fragment structures were observed, and at 6, 9 and 12 min the surface of meal became more round
and flat. After in vitro proteolytic digestion (see Figures 3b and A5), micrographs revealed surface
structures at 9 and 12 min were more intact than at shorter MHP durations.Animals 2018, 7, x 14 of 28 
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4. Discussion

The cold-pressed and expeller canola meals had similar carbohydrate (15%, [9]), CP, DM, and lipid
contents to previously published canola and rapeseed meal values (25.2–38.2% CP, 88.3–96.1% DM,
8.5–17.0% lipid [7,8,41–43]). Differences between cold-pressed and expeller meal types were previously
reported [8], whereby cold-pressed meal (expelled at 60 ◦C) contained less DM (91.7 vs. 95.3%) and CP
(30.6 vs. 36.1%) and more lipid (17.8 vs. 11.6%) than expeller canola meal (barrel dry heat 98–112 ◦C).
Increased lipid content in cold-pressed and expeller canola meals contributes to greater energy values;
thus, monitoring of such is important for the correct formulation of livestock feeds [9]. A reduction



Animals 2018, 8, 147 15 of 29

of CP at higher temperatures and for prolonged MHP duration suggests increased retention of CP
in extracted oil (thereby decreasing the CP content of the meal), or the degradation of thermolabile
proteins [44].

While no association of lipid with dry heat was observed, decreased lipid content in rapeseed
meal expelled at higher temperatures (104, 112, vs. 121 ◦C) was previously reported [45]. This study
found MHP decreased (p < 0.05) DM and had no impact on CP contents of expeller meals. A negative
association of DM content with MHP duration suggests the introduction of moisture from steam
during the autoclaving process. Moisture reduction by heat evaporation is also known to further
catalyse the Maillard browning reaction [46]. Prolonged MHP treatment (120 ◦C, 1 h) of canola seed
was previously reported to not impact (p > 0.05) CP, DM, lipid, or carbohydrate (non-treatment 25.2%,
94.9%, 41.8%, 29.0% vs. autoclave treated 25.0%, 94.9%, 44.6%, 26.4%) [25].

The NDF, ADF, NDICP, and ADICP values were similar to values published for canola meal
by the National Research Council [47] and DairyOne [48]. A variance of ADF in ground canola
seed before and after dry heat (120 ◦C, 1 h) was similarly reported [25], whereby MHP (120 ◦C, 1 h)
increased (p < 0.05) NDICP and NDF, while having no impact on ADF and ADICP. In comparison,
this study observed a positive association (rs = 0.81, p < 0.05) of MHP duration with ADICP in the
cold-pressed canola meal. The NDICP fraction forms an essential part of RUP [49], while increases in
NPN (Fraction A) suggest MHP induces production of instantaneously solubilised peptides [47].

Protein solubility in 0.5% KOH and BP-buffer decreased (p < 0.05) with the application of dry
heat and reduced (p < 0.01) with MHP duration, to imply dry heating disrupted bonds involved in
the formation and maintenance of the protein structure to induce protein denaturation [50]. Reduced
protein solubility in expeller relative to cold-pressed rapeseed meal (protein solubility in 0.5% KOH,
59.8% vs. 88.3–90.9%, protein solubility in borate, 39.9% vs. 86.8–87.2%) was previously reported [43].
Dry heating (at 100 ◦C) is postulated to induce denaturation of cruciferin (12S globulin), a major
storage protein in canola with an endothermic temperature of 91 ◦C [51] that accounts for 60% of
the total protein in mature seeds [52]. According to soluble protein classifications [53], non-treated
cold-pressed meals, and expeller meals treated with MHP for 3 min were very well processed and of
high nutritional value (55–60% solubility), whereas MHP treatment cold-pressed meals and expeller
meals treated for 0, 6, 9 and 12 min with MHP were overprocessed and declined in nutritional value
(<45% solubility). A strong negative relationship of BP-buffer protein solubility with MHP duration
implied MHP induces the formation of insoluble protein complexes. Thermal denaturation was found
to reduce protein solubility [54]. Furthermore, application of pressure is known to affect quaternary
structure by inducing dissociation followed by aggregation of the sub-units or precipitation [55].

Effective CP degradability values of non-treatment cold-pressed (16.8) and expeller (17.3) canola
meals were similar (17.8–30.3%, [56]) and higher than other studies (10.8%, [57]) evaluating rapeseed
meal. There was no significant difference in effective CP degradability values among non-treatment
cold-pressed and expeller canola meals. In contrast, heat during the expelling process (unlike cold
press) was found to induce the formation of insoluble peptide chain and carbohydrate complexes, and
lower susceptibility to ruminal degradation [10]. The application of MHP (15 min, 117 kPa, 127 ◦C) to
canola meal was similarly reported to considerably decrease levels of in situ N disappearance (69.9
vs. 25.6%) in the rumen of Holstein steers [13]. A strong positive association (p < 0.01) of effective
CP degradability with MHP duration suggested the formation of insoluble and proteolytic enzyme
resistant complexes under MHP conditions. Heating of meal is theorised to favour bypassing of
un-denatured protein through the rumen to the lower gastrointestinal tract by promoting protein
denaturation and reducing solubility [58]. The IVCPD values for non-treatment cold-pressed (14.1%)
and expeller (14.0%) canola meals were similar and agreed with a report for ground canola seed (9.94%)
and presscake (16.4%) [59]. Prolonged MHP duration did not impact IVCPD of canola meal and
suggests treatment for less than 12 min does not reduce available protein by inducing the formation of
insoluble protein complexes with irreversible bonds [60].
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Compared to previous reports for rapeseed meal [49,56], lower A, B2, and C, and higher B1 and
B3 protein fractions were present in the non-treatment cold-pressed and expeller canola meals. This
suggests less immediately (A fraction) and more rapidly (B1 fraction) protein would be solubilised
in the rumen; while lower C fraction (unavailable protein) may contribute to an overall increase
in AA available post-ruminally [33]. In this study, dry heating (100 ◦C) was shown to decrease
rapidly solubilised (B1 fraction) protein, which implied the formation of insoluble protein complexes
with irreversible bonds [60]. Prolonged dry heating (125 ◦C, 20 min) of expeller canola meal was
previously reported to reduce rumen degradability [12], and at 125 ◦C for 10 min to decrease ruminal
CP disappearance without compromising intestinal digestibility [11].

Moshtaghi Nia et al. [13] reported prolonged MHP (117 kPa, 127 ◦C, 15 and 30 min) treatment of
canola meal induced partial protein denaturation and decreased ruminal protein degradability; and,
at a duration of 30 min increased the post-ruminal supply of AA for digestion in the small intestine [14].
This study showed at shorter durations of 6 min, rapidly degradable (B1 fraction) protein converted
into intermediately digested (B2 fraction) protein, and at 12 min slowly degradable (B3 fraction) protein
formed. The timing of these changes corresponds to decreases in protein degradability. Khan et al. [61]
previously reported that MHP treatment (120 ◦C, 60 min) of Camelina seeds decreased A and B1
fractions, increased B2 and B3 fractions, and was associated with an increase in in situ RUP. These
results showed that MHP at shorter durations significantly changed protein fractions, protein solubility
and proteolytic resistance.

The colorimetry values of the canola meals were similar to an earlier report [62]. Dry heat was
previously reported to negatively impact lightness, a known indicator of non-enzymatic browning
through xylose-glycine and carbonyl-protein reactions and late-MRP formation [63]. MHP duration
decreased canola meal whiteness (p < 0.05) and yellowness (p < 0.01), and increased (p < 0.01) redness,
BI, and ∆E. These results imply MHP induces formation of blue pigments (b*, early MRP) [63],
reduces intermediate MRPs (a*) [64], and induces non-enzymatic browning (BI, late MRPs) [63],
or protein-polyphenolic reactions [65], likely contributing to the observed darkening (L*), where
the degree of colour change increased with MHP duration time (∆E). A darker meal is reported
to be of beneficial quality for dairy cattle [66]. Early reactions triggering colour change have been
observed to impact AA digestibility in monogastrics (poultry) [65]; final Maillard reactions were
noted to result in decomposition of involved AAs, where early and advanced reaction products were
unavailable for digestion. Further research is necessary to investigate the impact on specific AA in
ruminal undegradable protein as the balance of absorbed AA impacts directly on animal production
parameters in ruminants.

The pH of meal suspensions was more basic than a database value (5.2, n = 4) [48]. Application
of MHP increased the pH of the meals, most likely due to an introduction of moisture from steam.
With prolonged MHP the pH decreased, likely from intermediate-MRP protein-sugar covalent bond
formation. Decreases in pH have been theorised to be associated with Maillard reactions involving
amino modification of acid residues by the covalent attachment of reducing sugars in the meal leading
to the formation of formic and acetic acids [20]. Reducing sugars are degraded into these products when
heated in the presence of protein during the Maillard reaction [67]. A decrease in pH as a function of
heating time in controlled (2% porcine plasma) protein-reducing sugar (glucose, fructose and galactose)
systems was previously reported [68]. A reduction (p < 0.01) of Abs294nm and increase (p < 0.05) in
darkness and BI (p < 0.01) implied MHP further progressed Maillard reactions from intermediate to
late, whereas an increase in dry heat increased (p < 0.05) Abs294nm, implying dry heat progressed early
Maillard reactions to intermediate reactions. Induction of Maillard reactions in canola meal processed
at a barrel dry heat temperature of 105 ◦C was similarly reported [65]. Higher UV absorbance was
reported as proportional to the presence of open-chain forms of glucose [69]. In consideration of all
meals studied, strong associations (p < 0.05) of a* (redness) and BI with soluble CP (r2 = −0.84, −0.85),
and effective CP degradability (r2 = 0.89, 0.91), respectively, were observed. These results imply CIE
measures have potential as predictors of soluble CP and effective CP degradability in expeller and
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cold-pressed canola meals. This is key information to consider when formulating production diets for
use in ruminant livestock industries.

The positive correlation of So and MHP duration in expeller meal suggests induction of protein
unfolding and denaturation [70] and aggregation [71]. Heat treatment of rapeseed napin was found
to induce irreversible changes in So at a moderate temperature (90 ◦C) [72]. In this study, observed
increases in protein hydrophobicity suggest the occurrence of protein folding events promoting
surface hydrophilic conformation, turning of side-chains outwards as with protein unfolding, loss of
secondary and tertiary structure, scrambling of disulfide bonds, and formation of irreversible protein
aggregates [71,73].

Increasing (p < 0.01) dry heat temperature had little impact on molecular protein structure
characteristics, except for constricting the amide II region. Elsewhere, prolonged dry heating (120 ◦C,
1 h) of ground canola seed was found to positively increase (p < 0.05) the α-helix-β-sheet ratio, whereas
moist heat pressure (120 ◦C, 1 h) impacted amide I and II regions [25]. Prior research found β-sheet
height is a predictor of intestinal digestible in situ RUP (r2 = 0.83) and total digestible CP (r2 = 0.81) [23].
This study found an association (r2 = −0.40, p < 0.05) of β-sheet with effective CP degradability, unlike
(r2 = 0.04, p > 0.05) the β-sheet with IVCPD.

The molecular structure of cold-pressed meal was more receptive to the effects of MHP than
that of expeller meal. In cold-pressed meal, MHP duration constricted amide I and α-helix height,
the latter reducing the ratio of the α-helix-β-sheet. Similar impacts of MHP treatment (120 ◦C, 1
h) on the ratio of the α-helix-β-sheet and amide I in ground canola seed were reported [25]. In
cold-pressed meal, unlike expeller, associations (p < 0.05) of α-helix and the ratio of α-helix-β-sheet
with KOH solubility (r2 = −0.80, −0.84), soluble CP (r2 = 0.71, 0.90), and protein degradability (r2 =
−0.73, −0.81), respectively, were observed. These results imply changes in the α-helix and the ratio
of the α-helix-β-sheet are likely contributing to protein solubility and digestibility characteristics of
cold-pressed canola meal. The ratio of α-helix to β-sheet was found to positively correlate with in situ
CP degradation and negatively correlate with the in situ intestinal digestibility of RUP [25]. Previously,
MHP and dry heat were reported to have little impact on lipid molecular structure in ground canola
seed [39].

In this study, MHP treatment induced changes (p < 0.05) in LCCE, CH2 and CH3 symmetric,
and CH2 asymmetric regions in cold-pressed canola meal. In addition, dry heat induced changes
(p < 0.05) in CH2AS, CH3S, and CH2S regions, and the ratio of CH3:CH2S. These results imply both
processing and MHP treatment can impact lipid molecular structure of canola meal.

Native gel electrophoresis affirmed cruciferin and napin solubility reduced with increasing MHP
duration. Progressive temperature-induced changes in the structure of cruciferin were previously
reported [70]. These observations imply MHP induces the formation of irreversible bonds and insoluble
high MW protein aggregates in canola meal, which may impact the ability to extract protein. Smearing
was reported to be indicative of heat-induced modifications of napin at 0–6 min MHP duration [70].
Similar total and water-soluble protein SDS-PAGE polypeptide bands were reported for Brassica napus
meal [51,74]. In non-reduced conditions, typical storage protein polypeptide bandings were observed
for 11S globulin (cruciferin), i.e., trimer (~177), dimer (~118) ([70]), procruciferin subunits (73.5, 76.8),
α- (26.7, 28.5, 37.1), β- (18.3, 21.1, 22.9) [75], and monomers with intact disulfide linkages (41–55) [70];
this was also observed for 2S albumin (napin) i.e., dimer (27.5) and monomer (14) [51].

Under reduced conditions, the involvement of disulfide bonds was suggested by the
disappearance of polypeptides for cruciferin (i.e., trimers, dimers, and monomers with intact disulfide
bands (41–55)), as well as for napin (14), in addition to the associated formation of polypeptide bands
for cruciferin (i.e., 9.6–32.0 range) and for napin (i.e., light 4 and heavy 9 kDa). Polypeptide bands
present under non- and reduced conditions at 18–25, 27, or 39, or 41 kDa likely corresponded to
known oil binding proteins of oleosins, caleosins, or steroleosins, respectively [76]. Gel electrophoresis
analysis of canola meal soluble protein fractions revealed MHP impacted both cruciferin and napin
solubility, with the degree of solubility differing depending on dry heat temperature. MHP appeared to
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hinder protein extractability and reduce the solubility of canola meal polypeptides larger than ~40 kDa.
Reductions with increased MHP duration again implied MHP induced the formation of irreversible
bonds and insoluble high MW protein aggregates in canola meal, which may impact the ability of the
animal to break down and utilise protein. Investigations of the heat-moisture effect on wheat flour
similarly reported aggregation of lower-molecular weight proteins, the disappearance of albumins
and globulins, and the destruction of AAs including lysine [77]. It has been theorised that dry heating
of oilseed denatures the protein matrix surrounding fat droplets, in turn functioning to protect dietary
fatty acids from biohydrogenation by ruminal bacteria, and increase the supply of polyunsaturated
fat to the small intestine [78]. Studies of specific temperatures and time-points of denaturation and
aggregations are complicated by the heterogeneous proteinaceous composition of the meal [72].

Little difference was observed in the microscopic structure, lipid and protein conformation of
expeller compared to cold-pressed canola meals. Application of MHP for as little as 3 min induced
formation of meal fragments of densely aggregated heterogeneous protein matrix, containing crevices
where coalesced lipid droplets resided. These structural changes reaffirm a reduction of soluble
protein with application of MHP. Application of MHP reduced in vitro proteolytic degradation of
the cellular structure relative to the non-treatment meal, reaffirming observed decreases in in vitro
ruminal degradability. Rounding and flattening of surface morphology may have been associated
with denaturation of canola meal proteins (83 ◦C) and napin (109 ◦C) [51]. Structural resistance
to in vitro proteolysis was observed at longer MHP durations and warrants further investigations
utilising ruminal fluid to better simulate proteolysis in the rumen.

5. Conclusions

This study showed the effectiveness of moist heat pressure treatment at shorter duration times to
decrease protein degradability while retaining protein value for ruminant digestion. Barrel dry heat
was shown to influence canola meal CP, ADF, soluble CP, rapidly digestible protein, napin solubility,
intermediate-MRP formation, amide II constriction, and lipid-related molecular structural regions.
Moist heat pressure duration time impacted canola meal DM, NPN, NDICP, CP solubility, solubility of
canola meal globulin cruciferin and albumin napin proteins, conversion of rapidly into intermediately
to slowly degraded protein, protein degradability, the formation of intermediate to late Maillard
reaction products, and amide I region constriction. Moist heat pressure altered canola meal structural
characteristics including fragmentation of meal to form dense protein aggregates resistant to in vitro
proteolysis, with crevices containing coalesced lipid droplets. These changes may impact on ruminal
degradation and supply of protein and AA for dairy cattle milk production. CIE measures of a* and BI
demonstrated potential as rapid indicators of soluble CP and protein degradability in canola meal,
respectively. To the authors best knowledge this is the first report of the microscopic structure and
protein and lipid characteristics of cold-pressed and expeller canola meals treated with moist heat
pressure. Further analysis of the interrelationships between processing-induced changes in molecular
structure, dietary fatty acid, and milk composition are required.

Findings benefit producers of canola meal by further detailing the effects of moist heat pressure
duration and barrel dry heat on general properties, protein degradability, and structural and ruminal
digestibility characteristics.
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Appendix A

Table A1. Linear and polynomial equations to describe the effects of increasing barrel dry heat (20
and 100 ◦C) and moist heat pressure duration on general nutritional properties, protein degradability,
and protein fractionation characteristics of canola meals.

Characteristic Barrel Temperature (◦C) Equation

Crude protein (% DM) 20 Y = 34.17086 + 0.05135x
100 Y = 33.27538 + 0.02366x

Dry matter (% AsIs) 20 Y = 92.59792 − 0.10669x
100 Y = 93.30686 − 0.10575x

Lipid (% DM) 100 Y = 15.4352 + 0.2516x − 0.014x2

Carbohydrate (% DM) 100 Y = 14.94402 − 0.00932x

Soluble protein (% CP) 20 Y = 64.30043 − 3.57516x
100 Y = 60.06002 − 3.30252x

Solubility 0.5% KOH (%) 20 Y = 52.51116 + 2.37852x
100 Y = 63.23841 − 5.62208x + 0.56584x2

CP Degradability (%CP) 20 Y = 17.12739 + 3.24392x − 0.08598x2

100 Y = 20.4501 + 2.05132x

NPN (% DM) 20 Y = 3.30687 + 0.15978x − 0.00712x2

100 Y = 3.44565 + 0.08882x

NDF (% DM) 20 Y = 18.56099 + 0.34936x
100 Y = 0.10015 + 0.0025x

ADICP (% DM) 20 Y = 1.31674 + 0.0343x

NDICP (% DM) 20 Y = 4.25795 + 0.49673x
100 Y = 4.95482 + 0.36212x

A (% CP) 20 Y = 0.0177 + 0.01406x
100 Y = 0.04959 + 0.0101x

B1 (% CP) 20 Y = 73.68596 − 5.31728x
100 Y = 67.03255 − 7.40306x + 0.33499x2

B2 (% CP) 20 Y = 13.99265 + 3.81137x
100 Y = 17.70644 + 6.5357x − 0.353x2

B3 (% CP) 20 Y = 8.4819 + 1.38412x
100 Y = 9.56942 + 1.09073x

C (% CP) 20 Y = 3.8218 + 0.10772x
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Table A2. Linear and polynomial equations to describe the effects of increasing barrel dry heat (20
and 100 ◦C) and moist heat pressure duration on Maillard reaction product formation and protein and
lipid-related molecular structure of canola meals.

Characteristic Barrel Temperature (◦C) Equation

b *
20 Y = 17.04743 − 0.72851x + 0.04063x2

100 Y = 17.688 − 0.38522x

a *
20 Y = 1.43867 + 0.26433x

100 Y = 1.81067 + 0.14733x

L *
20 Y = 54.28733 − 0.25033x

100 Y = 55.92267 − 0.26x

∆E
20 Y = 1.59069 + 0.32311x

100 Y = 1.0045 + 0.32649x

Browning index 20 Y = 65.17286+ 4.72907x
100 Y = 73.7597 + 2.66263x

pH 20 Y = 6.405 + 0.04527x − 0.00367x2

100 Y = 6.41491 + 0.03355x − 0.00283x2

Intermediate-MRP
20 Y = 1.76237 − 0.0379x

100 Y = 1.87037 − 0.05013x

So (% soluble CP) 100 Y = 1.74298 + 0.58586x − 0.03213x2

Amide I 20 Y = 0.45823 + 0.02123x

α-helix 20 Y = 0.01398 − 4.34865 × 10−4x

AI:AII 20 Y = 0.24981 + 0.67853x − 0.04446x2

α:β 20 Y = 1.05539 − 0.02113x

LCCE 20 Y = −4.04408 × 10−4 + 1.269 × 10−4x

CH2AS 20 Y = −3.49607 × 10−4 + 1.65815 × 10−4x

CH3S 20 Y = 1.34042 × 10−4 + 3.47025 × 10−5x

CH2S 20 Y = −3.36526 × 10−4 + 9.70012 × 10−5x

CH3:CH2S 20 Y = −3.17236 × 10−4 + 0.73354x
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Figure A1. Total protein fingerprint region 1400–1800 cm−1 (a,c) and lipid spectra (b,d) of canola
meals produced at alternate barrel dry heat temperatures (20 ◦C vs. 100 ◦C) without or with moist
heat pressure at increasing durations (0, 3, 6, 9 or 12 min). The α-helix (dashed arrow, 1652 cm−1),
β-sheet (arrow, 1630 cm−1), amide II (ca. 1572–1480 cm−1), amide I region (ca. 1714–1571 cm−1),
and lipid carbonyl C=O ester stretching band (LCCE, ca. 1789–1701 cm−1), asymmetric CH3 (CH3AS

ca. 2988–2951 cm−1 with peak centre at ca. 2955 cm−1), asymmetric CH2 (CH2AS ca. 2951–2882 cm−1

with peak centre at ca. 2922 cm−1), symmetric CH3 (CH3S ca. 2882–2868 cm−1 with peak centre at
ca. 2872 cm−1) and symmetric CH2 (CH2S ca. 2868–2790 cm−1 with peak centre at ca. 2852 cm−1)
functional groups in the attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrum
of canola meals. Spectra of a single representative replicate shown.
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Figure A2. Representative confocal laser scanning micrographs of cold-pressed (20 ◦C) and expeller
(100 ◦C) canola meal treated with increasing durations of moist heat pressure (MHP, 0–12 min). Protein
is stained red with Nile Blue dye, and lipid is stained green with Fast Green FCF dye. Scale bars
correspond to 250, 100, 75 or 50 µM.
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Figure A3. Representative confocal laser scanning micrographs of cold-pressed (20 ◦C) and expeller
(100 ◦C) canola meal treated with increasing durations of moist heat pressure (MHP, 0–12 min) and
proteolytic digestion. Protein is stained red with Nile Blue dye, and lipid is stained green with Fast
Green FCF dye. Scale bars correspond to 250, 100, 75 or 50 µM.
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Figure A4. Representative scanning electron photomicrographs of cold-pressed (20 ◦C) and expeller
(100 ◦C) meal treated with increasing durations of moist heat pressure (MHP, 0–12 min). Images were
taken with ×1.0 k and ×0.1 k resolution.
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Figure A5. Representative scanning electron photomicrographs of cold-pressed (20 ◦C) and expeller
(100 ◦C) meal treated with increasing durations of moist heat pressure (MHP, 0–12 min) post proteolytic
digestion. Images were taken with ×1.0 k and ×0.1 k resolution.
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