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Simple Summary: This study aimed to investigate the impact of 11 Chinese herbal extracts (cinna-
mon extract, Osmanthus extract, tangerine peel extract, dandelion extract, Coptis chinensis extract,
honeysuckle extract, Pulsatilla root extract, yucca extract, licorice extract, Ginkgo biloba extract,
and astragalus extract) on ammonia emissions during in vitro fermentation of the cecum of laying
hens. The results showed that the most significant ammonia inhibition was achieved via astragalus
extract, resulting in a 26.76% reduction. Astragalus extract inhibited ammonia emission from lay-
ing hens by changing the gut microbial community structure, reducing the relative abundance of
ammonia-producing bacteria, and reducing microorganisms’ uricase and urease activities.

Abstract: The objectives of the study were to screen one or several Chinese herbal extracts with good
ammonia emission reduction effects using an in vitro gas production study. The study consisted
of a control (without Chinese herbal extract), and 11 experimental groups with added cinnamon
extract (CE), Osmanthus extract (OE), tangerine peel extract (TPE), dandelion extract (DE), Coptis
chinensis extract (CCE), honeysuckle extract (HE), Pulsatilla root extract (PRE), yucca extract (YE),
licorice extract (LE), Ginkgo biloba extract (GBE), or astragalus extract (AE). The results showed
that HE, PRE, YE, LE, GBE, and AE significantly reduced ammonia production (p ≤ 0.05). The
most significant ammonia inhibition was achieved via AE, resulting in a 26.76% reduction. In
all treatments, Chinese herbal extracts had no significant effect on pH, conductivity, or uric acid,
urea, and nitrate-nitrogen concentrations (p > 0.05). However, AE significantly reduced urease
activity and the relative activity of uricase (p ≤ 0.05). AE significantly increased the relative abun-
dance of Bacteroides and decreased the relative abundance of Clostridium, Desulfovibrio, and Prevotell
(p ≤ 0.05). Astragalus extract inhibited ammonia emission from laying hens by changing the gut
microbial community structure, reducing the relative abundance of ammonia-producing bacteria,
and reducing microorganisms’ uricase and urease activities.

Keywords: ammonia; laying hen; Chinese herbal extract; astragalus extract; gut microbiota

1. Introduction

Poultry production is quickly expanding, and harmful gases created during rearing,
such as ammonia [1], are attracting increasing attention because ammonia emissions from
livestock not only contribute to the environment but are also harmful to the health of people
and animals. Elevated ammonia concentrations in poultry barns harm animals’ productive
performance and induce diseases such as pulmonary edema, tracheitis, dyspnea, anemia,
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coma, and even suffocation [2–5]. Moreover, ammonia will react with sulfur dioxide,
nitrogen oxides, and other oxidation products in the atmosphere to generate important
components of PM2.5 [6], such as ammonium nitrate and ammonium sulfate, thus causing
environmental pollution [7]. Compared with other livestock and poultry breeds, the highest
proportion of feed nitrogen (more than 70%) in laying hens will convert into ammonia [8].
As a result, one of the important concerns relating to the sustainable growth of animal
husbandry and raising the standard of living for rural communities is lowering ammonia
emissions from laying hens.

There are two main routes of ammonia production in laying hens. The essence of
ammonia production in laying hens lies in the decomposition of uric acid and undigested
proteins and amino acids in the intestinal tract under the action of microorganisms to
produce ammonia [9]. Uric acid accounts for about 80% of the total nitrogen in the excreta
of laying hens [10]. After uric acid flows back to the cecum, under the action of uricase
and urease secreted by microorganisms, it is decomposed to produce NH4

+ and CO2 [11],
and NH4

+ is converted into ammonia under alkaline conditions [12]. Among them, about
60–70% of uric acid in the cecum will be degraded, and about 38% will be converted into
ammonia [13]. Escherichia, Clostridium, Proteus, and Klebsiella Trevisan in the gut have a high
urease activity [14]. In addition, ammonia is derived from the fermentation of proteins by
microorganisms in laying hens. Due to the short intestine of laying hens, many undigested
proteins in the small intestine are hydrolyzed into amino acids and peptides by enzymes
secreted by microorganisms [15]. Amino acids and polypeptides are catabolized after
entering the cecum; bacteria decompose their metabolites to synthesize bacterial proteins,
while ammonia is generated via deamination reactions [16]. However, it is a sluggish and
less significant route. Similar to Clostridium, Campylobacter can cause deamination [17].
Therefore, ammonia emission reduction can be achieved by inhibiting the formation of
uric acid, promoting the digestion and absorption of protein and amino acids in laying
hens, inhibiting the proliferation of microorganisms related to ammonia production, and
reducing the activities of uricase and urease [18].

Chinese herbal extracts possess diverse effective ingredients such as polysaccharides,
alkaloids, organic acids, glycosides, and flavonoids [19,20]. At present, there have been
many studies on the effects of Chinese herbal medicine extracts on animal performance and
immune indexes [21]. Still, the effects on odor emission of poultry production are mainly
concentrated on yucca extract and camphor plant extract [22,23]. In addition, there are few
studies comparing the effects of different Chinese herbal medicine extracts. The efficiency
and mechanism of removing ammonia using Chinese herbal extracts in laying hens, which
produce the most ammonia, have yet to be reported. However, the active ingredients in
Chinese herbal medicine confer on it the potential to reduce ammonia emissions. The
effective components in Chinese herbal extracts can reduce the formation of uric acid by
inhibiting the activity of xanthine oxidase [24]. Glycosides, alkaloids, flavonoids, and other
active substances in traditional Chinese herbal extracts can also improve the digestibility
of feed protein, thereby reducing the concentration of microbial fermentation substrates
and reducing ammonia production [25]. A variety of Chinese herbal extracts have broad-
spectrum antibacterial effects, which can inhibit the proliferation of ammonia-producing
bacteria such as Escherichia coli, Clostridium, and Streptococcus [26–28]. Therefore, in
order to expand the application of Chinese herbal extracts, this study examined the efficacy
and possible mechanisms of ammonia reduction of cinnamon extract (CE), Osmanthus
extract (OE), tangerine peel extract (TPE), dandelion extract (DE), Coptis chinensis extract
(CCE), honeysuckle extract (HE), Pulsatilla root extract (PRE), yucca extract (YE), licorice
extract (LE), Ginkgo biloba extract (GBE), and astragalus extract (AE) using an in vitro
study model. In order to further highlight the putative mechanism underlying the impact of
Chinese herbal extracts on ammonia emissions, we also examined fermentation parameters
and relative microbial abundance. The current study broadens the uses of Chinese herbal
extracts in the poultry industry by supplying theoretical support and scientific application
guidelines for lowering ammonia emissions in laying hens.
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2. Materials and Methods
2.1. Experimental Design and In Vitro Gas Production

Hyline Grey laying hens at the age of 78-weeks-old were obtained from a local lay
hen producer in this investigation. The hens were provided with clean drinking water
and a regular corn-and-soybean diet that met their nutritional needs [29]. Throughout the
experimental period, in order to regulate the management of the work of the test animals
and ensure the quality of the research, the laying hens were managed in accordance with
the program approved by the Animal Experimental Committee of South China Agricultural
University. Following a period of 28 days of feeding, sixty laying hens with a body weight of
1.78 ± 0.08 kg were selected for slaughter. After the laying hens were killed, the abdominal
cavity was opened, and the cecum contents were quickly collected. After being fully mixed,
the buffer solution (35 g of NaHCO3 plus 4 g of NH4HCO3 per L) was added at the ratio
of 1:3 (w/v), four layers of gauze were used to filter the discarded filter residue, and the
filtrate was collected. The filtrate was placed in a constant temperature water bath at 42 ◦C, and
carbon dioxide (CO2) was continuously injected, which constituted the bacteriological liquid.

The inoculant solution was configured as described by Menke and Steingass and
modified to be suitable for laying hens. The inoculum solution was then mixed with the
above bacterial solution at a volume of 2:1 as an in vitro fermentation solution [30,31].
The piston should evenly apply Vaseline to the surface of the syringe before inserting
it, and slowly insert the syringe to prevent the fermentation substrate from blowing out.
The experimental group received 0.1% Chinese herbal extract which was mixed evenly,
500 mg of fermentation substrate was accurately weighed for each group, the fermentation
substrate was slowly moved into the bottom of the syringe with a long strip of paper,
and the prepared in vitro fermentation liquid sucked into the syringe: 30 mL each. The
control group did not receive Chinese herbal extract, and the other steps were the same.
The syringe was sealed with a water stop clamp, and the fermentation tube was placed in
an anaerobic environment and cultured at 60 rpm in a constant temperature oscillator at
42 ◦C for 12 h.

2.2. Sample Collection

Following a 12-h incubation period, the syringes were subjected to a cold bath in order
to halt the fermentation process, and the amount of air in the top of each syringe was
measured. We immediately transferred the headspace gas to the sulfuric acid absorption
solution to collect the ammonia; we immediately took 10 mL of the fermentation solution
and placed it in a 15 mL centrifuge tube to determine the pH value. In addition, part of
the fermentation liquid was collected and stored in the refrigerator at −80 ◦C to determine
the relative abundance of ammonium-nitrogen, nitrate-nitrogen, uricase, urease, uric acid,
urea, and microbial relative abundance.

2.3. Sample Analysis

The ammonia collected in the sulfuric acid solution, ammonium-nitrogen, nitrate-nitrogen,
uric acid, and urea were measured as described by Wang et al. The determination of urease
and uricase activity was conducted by colorimetry, also as described by Wang et al. [31].

In order to assess the impact of eleven distinct Chinese herbal extracts on the diversity
of the microbial community, an analysis was conducted on the total bacterial DNA. The
DNA was extracted using a bacterial DNA extraction kit (Omega, Norcross, GA, USA).
Electrophoresis on a 1% agarose gel was used to check the integrity of the DNA sam-
ples. The DNA purity was assessed through the measurement of the absorbance ratio at
260 and 280 nm using an advanced ultraviolet (UV) spectrophotometer. It was necessary for
the DNA samples to have an OD260:OD280 ratio within the range of 1.8 to 2.0. The DNA
samples were forwarded to Beijing Novogene Co., Ltd. (Beijing, China) for the purpose of
conducting DNA analysis.
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2.4. Statistical Analyses

The data were statistically analyzed and preliminarily sorted by Excel 2010. The data
were analyzed by a one-way analysis of variance (ANOVA) using SPSS software (version 22.0,
Chicago, IL, USA), and multiple comparisons were made using Duncan’s test. Test data are
expressed as the mean ± standard error of the mean. At p ≤ 0.05, there was a significant
difference. The 16S rRNA data were analyzed with QIIME 1.9.1 [32]. The determination of
alpha diversity, PCA plots, the phylum heatmap, and the identification of important genera
between treatments was conducted using the Phyloseq software package version 3.8 [33].
The microbiome’s function was estimated through the utilization of PICRUSt, which
was afterward followed by the examination of the significance of anticipated functional
genes and the generation of plots utilizing DESeq2 version 1.26.0 in the R programming
language [34].

3. Results
3.1. Total Gas and Ammonia Production

Using an in vitro fermentation methodology that has been described as a valid method
for imitating gas production from microbial fermentation in the cecum, this study assessed
the odorous gas emissions from laying hens. The effects of eleven different types of Chinese
herbal extracts on the production of total gas and ammonia in an in vitro fermentation
broth are shown in Figure 1. As shown in Figure 1a, compared with the control group,
the CE (p = 0.002), OE (p = 0.000), TPE (p = 0.001), DE (p = 0.014), CCE (p = 0.001), HE
(p = 0.000), PRE (p = 0.000), YE (p = 0.018), LE (p = 0.004), GBE (p = 0.008), and AE (p = 0.002)
groups had a significantly reduced total gas production (p ≤ 0.05). The emission reduction
rates were 23.68%, 32.46%, 27.19%, 18.42%, 27.19%, 26.32%, 30.70%, 30.70%, 17.54%, 27.19%,
and 20.18%, respectively. Figure 1b shows the effects of eleven different types of Chinese
herbal extracts on the concentration of ammonia production during in vitro fermenta-
tion. Variance analysis showed no significant difference between the CE (p = 0.519), OE
(p = 0.066), TPE (p = 0.152), DE (p = 0.152), and CCE (p = 0.052) groups and the control
group (p > 0.05). Compared with the control group, the HE (p = 0.026), PRE (p = 0.011), YE
(p = 0.006), LE (p = 0.010), GBE (p = 0.003), and AE (p = 0.000) groups exhibited a significantly
reduced ammonia production (p ≤ 0.05), and the emission reduction rates were 14.65%,
16.99%, 18.69%, 20.17%, 21.87%, and 26.76%, respectively. The ammonia production in the
GBE and AE groups was significantly lower than in the CE, OE, TPE, DE, and CCE groups
(p ≤ 0.05). The effect of ammonia emission reduction in the AE group was the greatest.

3.2. Contents of Ammonium-Nitrogen and Nitrate-Nitrogen

The effects of eleven different types of Chinese herbal extracts on the content of
ammonium-nitrogen and nitrate-nitrogen in an in vitro fermentation broth are shown in
Figure 2. As shown in Figure 2a, the results of the ANOVA indicated that the concentrations
of ammonium-nitrogen in the LE (p = 0.018) group and AE (p = 0.019) group were signifi-
cantly lower than that in the OE group (p ≤ 0.05), and there was no significant difference in
the concentration of ammonium-nitrogen between the other groups (p > 0.05). The addi-
tion of Chinese herbal extracts had no significant effect on the change in nitrate-nitrogen
concentration in the fermentation broth (p > 0.05).

3.3. Contents of Uric Acid and Urea

Figure 3 illustrates the impact of eleven distinct Chinese herbal extracts on the levels of
uric acid and urea in an in vitro fermentation broth. The analysis of ANOVA results indicated
that there were no statistically significant differences in the levels of uric acid and urea in the
fermentation broth between each treatment group and the control group (p > 0.05).
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DE—dandelion extract, CCE—Coptis chinensis extract, HE—honeysuckle extract, PRE—Pulsatilla 
root extract, YE—yucca extract, LE—licorice extract, GBE—Ginkgo biloba extract, AE—astragalus 
extract. Error bars indicate standard errors (n = 6). Different letters above the bars indicate 
statistically significant differences between the samples (ANOVA followed by Duncan’s test, p ≤ 
 0.05). 
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Figure 1. (a) Effect of different types of Chinese herbal extracts on the in vitro production of total
gas. (b) Effect of different types of Chinese herbal extracts on the in vitro production of ammonia.
CK—control group, CE—cinnamon extract, OE—Osmanthus extract, TPE—tangerine peel extract,
DE—dandelion extract, CCE—Coptis chinensis extract, HE—honeysuckle extract, PRE—Pulsatilla
root extract, YE—yucca extract, LE—licorice extract, GBE—Ginkgo biloba extract, AE—astragalus
extract. Error bars indicate standard errors (n = 6). Different letters above the bars indicate statistically
significant differences between the samples (ANOVA followed by Duncan’s test, p ≤ 0.05).

Animals 2023, 13, x FOR PEER REVIEW 6 of 18 
 

 
Figure 2. (a) Effect of different types of Chinese herbal extracts on the in vitro ammonium-nitrogen 
content. (b) Effect of different types of Chinese herbal extracts on the in vitro nitrate-nitrogen 
content. CK—control group, CE—cinnamon extract, OE—Osmanthus extract, TPE—tangerine peel 
extract, DE—dandelion extract, CCE—Coptis chinensis extract, HE—honeysuckle extract, PRE—
Pulsatilla root extract, YE—yucca extract, LE—licorice extract, GBE—Ginkgo biloba extract, AE—
astragalus extract. Error bars indicate standard errors (n = 6). Different letters above the bars indicate 
statistically significant differences between the samples (ANOVA followed by Duncan’s test, p ≤ 
 0.05). 

3.3. Contents of Uric Acid and Urea 
Figure 3 illustrates the impact of eleven distinct Chinese herbal extracts on the levels 

of uric acid and urea in an in vitro fermentation broth. The analysis of ANOVA results 
indicated that there were no statistically significant differences in the levels of uric acid 
and urea in the fermentation broth between each treatment group and the control group 
(p > 0.05). 
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root extract, YE—yucca extract, LE—licorice extract, GBE—Ginkgo biloba extract, AE—astragalus
extract. Error bars indicate standard errors (n = 6). Different letters above the bars indicate statistically
significant differences between the samples (ANOVA followed by Duncan’s test, p ≤ 0.05).
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3.4. Relative Activity of Uricase and Urease

The effects of eleven different types of Chinese herbal extracts on the relative activity of
uricase and urease activity in an in vitro fermentation broth are shown in Figure 4. As shown in
Figure 4a, compared with the control group, the HE (p = 0.018), PRE
(p = 0.006), YE (p = 0.005), LE (p = 0.049), GBE (p = 0.019), and AE (p = 0.001) groups exhib-
ited a significantly reduced uricase activity (p ≤ 0.05), and the RPE, YE, and AE groups
exhibited a significantly lower uricase activity than the CE, OE, TPE, DE, and CCE groups
(p ≤ 0.05). As shown in Figure 4b, compared with the control group, the HE (p = 0.000), PRE
(p = 0.002), YE (p = 0.004), GBE (p = 0.000), and AE (p = 0.000) groups exhibited a significantly
reduced urease activity in the fermentation broth (p ≤ 0.05). The GBE and AE groups showed
significantly lower activities than the HE, PRE, and YE groups (p ≤ 0.05).

3.5. The pH and Electrical Conductivity

The effects of eleven different types of Chinese herbal extracts on the pH and electrical
conductivity in an in vitro fermentation broth are shown in Figure 5. The results of the
ANOVA showed that the pH and electrical conductivity in the fermentation broth of each
treatment group were not significantly different from those of the control group (p > 0.05).
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Figure 5. (a) Effect of different types of Chinese herbal extracts on the in vitro pH. (b) Effect of
different types of Chinese herbal extracts on in vitro electrical conductivity. CK—control group,
CE—cinnamon extract, OE—Osmanthus extract, TPE—tangerine peel extract, DE—dandelion extract,
CCE—Coptis chinensis extract, HE—honeysuckle extract, PRE—Pulsatilla root extract, YE—yucca
extract, LE—licorice extract, GBE—Ginkgo biloba extract, AE—astragalus extract. Error bars indicate
standard errors (n = 6). Different letters above the bars indicate statistically significant differences
between the samples (ANOVA followed by Duncan’s test, p ≤ 0.05).
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3.6. Microbial Diversity and Relative Abundance

The methodology employed in this study involved the utilization of 16S rRNA se-
quencing to assess both the abundance and structure of the microbiome in response to the
various therapies. The effects of eleven different types of Chinese herbal extracts on the
microbial diversity and relative abundance in the fermentation broth in vitro are shown
in Figure 6. The alpha diversity of the microbial community in the cecum of laying hens
was represented by the chao1 index. The chao1 index reflects the abundance of species
in a sample, that is, taking into account only the number of species in the sample rather
than the abundance of each species in the sample. Compared with the control group, TPE,
YE, and LE significantly increased the number of the chao1 index (p ≤ 0.05). The bacterial
microbiota composition differed between different processing groups, as shown by the
principal coordinates analysis (PCoA) plot (Figure 6b).
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Figure 6. (a) Effect of different types of Chinese herbal extracts on Chao 1 index of fermentation
bacteria. (b) Principal coordinate analyses based on unweighted Unifrac distances. (c) Effect of
different types of Chinese herbal extracts on the phyla of the microbial community. (d) Effect of
different types of Chinese herbal extracts on the genera of the microbial community. CK—control
group, CE—cinnamon extract, OE—Osmanthus extract, TPE—tangerine peel extract, DE—dandelion
extract, CCE—Coptis chinensis extract, HE—honeysuckle extract, PRE—Pulsatilla root extract, YE—
yucca extract, LE—licorice extract, GBE—Ginkgo biloba extract, AE—astragalus extract.

The variation in the relative abundance of microorganisms in the fermentation broth at
the phyla level is shown in Figure 6c. Compared with the control group, GBE significantly
increased the relative abundance of Firmicutes (p ≤ 0.05). YE and GBE significantly
decreased the relative abundance of Bacteroidetes (p ≤ 0.05). AE significantly decreased
the relative abundance of Proteobacteria (p ≤ 0.05).

The variation in the relative abundance of microorganisms in the fermentation broth at
the genus level is shown in Figure 6d. At the genus level, 78, 83, 80, 82, 81, 87, 83, 85, 79, 77,
79, and 82 bacteria were identified in the control group, CE, OE, TPE, DE, CCE, HE, PRE,
YE, LE, GBE, and AE groups, respectively. The top 15 genera with relative abundance were
selected for analysis. Compared with the control group, HE, PRE, and AE significantly
increased the relative abundance of Bacteroides (p ≤ 0.05). The results showed that HE and
GBE could dramatically increase the relative abundance of Flavonifractor (p ≤ 0.05). PRE
and AE significantly decreased the relative abundance of Desulfovibrio (p ≤ 0.05). YE, GBE,
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and AE decreased the relative abundance of Prevotella in the fermentation broth (p ≤ 0.05).
HE, PRE, LE, and AE reduced the relative abundance of Clostridium in the fermentation
broth (p ≤ 0.05).

3.7. Microbial Function Prediction Analysis

PICRUSt was employed to ascertain the functional attributes of the microbiome, re-
lying on the analysis of 16S rRNA sequencing data. The KEGG database serves as an
integrated platform for the integration of genomic, chemical, and system function infor-
mation [35]. There were 6909 KEGG orthology (KO) pathways noted in the results of
this study. Then, 59 KO IDs associated with ammonia production were filtered from the
prediction results. A total of 20 KO IDs showed a greater abundance in the GBE treat-
ment, with examples including hydroxylamine reductase, carbamate kinase, ferredoxin-
nitrite reductase, nitrogenase molybdenum-iron protein beta chain, and the nitrogenase
molybdenum-cofactor synthesis protein NifE (Figure 7a). Further, glutamate dehydroge-
nase (NADP+), hydroxylamine reductase, nitrogenase iron protein NifH, dihydrolipoamide
dehydrogenase, glutaminase, nitrogenase molybdenum-iron protein beta chain, the nitroge-
nase molybdenum-cofactor synthesis protein NifE, nitrogenase molybdenum-iron protein
alpha chain, urease alpha subunit, and urease accessory protein were elevated in the AE
treatment (Figure 7b).
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4. Discussion

The livestock industry has a heavy focus on ammonia emissions as an environmental
problem. Chinese herbal medicine extracts have the advantages of natural sources, no
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pollution, low cost, etc., and are rich in a variety of active substances and have a wide
range of effects, which may have the potential to reduce ammonia gas in laying hens. Yucca
extract has been proven to lower the levels of ammonia [22,36–38]. Thus, 11 Chinese herbal
extracts were selected to validate their potential to minimize ammonia emissions from
laying hens during in vitro fermentation. The results of this study demonstrated that HE,
PE, YE, LE, GBE, and AE could significantly reduce ammonia production in the cecum layer,
among which GBE and AE were superior. Adding licorice extract could decrease ammonia
production without affecting the overall rumen fermentation process [39]. Studies have
shown that the addition of licorice extract reduces the ammonia concentration at 12 h of
fermentation [40]. The results showed that adding saponins could reduce the concentra-
tion of ammonia-N during in vitro fermentation, and the concentration of ammonia-N
decreased in a dose-dependent manner [41]. Another study showed that capsicum, co-
riander, and thyme decreased ammonia-N concentration during in vitro batch microbial
fermentation [42].

Due to the different types and contents of active components in Chinese herbal extracts
and the complex mechanism of action, the effects of different types of Chinese herbal
extracts are inconsistent. Generally speaking, the reason why Chinese herbal extracts affect
the production of ammonia in animals may be related to their effects on intestinal flora,
uricase, and urease activities [43]. Firstly, the activities of uricase and urease may be related
to the production of ammonia in animals. The higher the uricase and urease activities, the
more ammonia gas is produced by gut microbes [44]. The differences in the concentrations
of uric acid and urea in the fermentation broth were insignificant, possibly because urea
was in a dynamic equilibrium of urea production from uric acid degradation and urea
decomposition. Shi et al. claimed that Magnolia officinalis and Cassia obtusifolia exhibited
significant urease-inhibition actions [45]; Fan et al. showed that yucca extract reduces
uricase and urease activity in intestinal contents and reduces ammonia emissions [46]. Our
findings are similar to those of these studies. Our research revealed that HE, PRE, YE, LE,
GBE, and AE, which may reduce the emission of ammonia gas in laying hens, significantly
reduced uricase activity; among them, HE, PRE, YE, GBE, and AE also significantly reduced
urease activity. In traditional Chinese medicine extracts, the substances that inhibit uricase
and urease are mainly alkaloids, polysaccharides, flavonoids, saponins, terpenes, and
phenols. At the same time, GBE is rich in flavonoids and phenols, terpenes, and other
active substances, and AE is rich in alkaloids, polysaccharides, flavonoids, and saponins.
These results were consistent with the results that GBE and AE exhibited a significantly
better inhibition of urease activity than other Chinese herbal extracts. This may be one
of the reasons why the ammonia emission reduction effect of these two Chinese herbal
extracts was greater than that of other Chinese herbal extracts.

The structure of the animal intestinal flora is closely related to the emission of ammo-
nia [16]. At present, there are many research works on the bacteria related to ammonia
production. Ammonia-producing bacteria mainly use amino acids as raw materials for
protein synthesis, and ammonia production is mainly produced by deammonification
or transammonification. Ammonia-producing bacteria can affect the production of am-
monia gas by affecting the action of microbial enzymes and the production of substrates.
Scholars have reported mixed results when determining which microbes are the primary
producers of ammonia. Mafra et al. found that Propionibacterium, Clostridium, Streptococcus,
Staphylococcus, and Bacillus were common protein- and amino-acid-decomposing bacteria
that can produce ammonia by breaking down proteins and amino acids [47]. Macfarlane
et al. believed that the microorganisms with a high proteolytic activity were mainly Bac-
teroides, Clostridium, propionibacterium, Clostridium, and Streptococcus [17]. The results of
the principal component analysis of the samples in this study (Figure 6b) all showed that
the additional treatment of different Chinese herbal extracts could affect the microbial
community structure of the in vitro fermentation system. Under the conditions of this
experiment, HE, PRE, LE, and AE reduced the relative abundance of Clostridium in the
fermentation broth (p ≤0.05). Clostridium is considered to have strong ammonia-producing
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properties. YE, GBE, and AE decreased the relative abundance of Prevotella in the fermen-
tation broth (p ≤ 0.05). Prevotella are highly ammonia-producing bacteria that produce
ammonia gas by fermenting proteins and amino acids [48]. HE, PRE, and AE significantly
increased the relative abundance of Bacteroides (p ≤ 0.05). The ammonia production capacity
of Bacteroides is weak, and it mainly ferments carbohydrates for energy and rarely uses
nitrogen compounds such as amino acids [49]. HE, PRE, and AE reduced the relative
abundance of Clostridium and urease activity in the fermentation broth (p ≤ 0.05). Studies
have also shown that Clostridium, Proteus, and Klebsiella have a high urease activity and can
decompose urea to produce ammonia [50]. The decrease in the relative abundance of highly
ammonia-producing bacteria may be caused by the inhibition of urease activity synthesized
by itself and the inability to decompose and produce ammonia to maintain a stable living
environment. Our study showed that supplementation of Chinese herbal extract increased
the carbohydrate-fermenting bacteria, such as Bacteroides, decreased the bacteria with a
higher urease activity, such as Clostridium, and increased the bacteria that are less capable
of producing ammonia, such as Bacteroides. The aforementioned information leads to the
conclusion that one route by which a Chinese herbal extract reduces ammonia generation
is by changing the microbial populations to favor carbohydrates and reducing nitrogenous
fermentation. The second mechanism by which Chinese herbal extracts reduce ammonia
production is to reduce urease activity by reducing the abundance of bacteria with a higher
urease activity, thereby reducing ammonia production and emissions. The third mechanism
by which Chinese herbal extracts reduce ammonia production is to reduce the production
of uric acid by inhibiting the activity of uricase, thereby reducing the production and
emission of ammonia.

In this study, the Chinese herbal extracts with the best ammonia emission reduction
effect in laying hens were selected from 11 kinds of Chinese herbal extracts through an
in vitro fermentation model, which provided a theoretical basis for the future application
of Chinese herbal extracts in laying hens. This offered a theoretical framework for applying
Chinese herbal extracts in laying hens in the future. The in vitro intestinal fermentation
model is typically made up of a microbial medium, a gas volume or pressure measuring
device, a constant temperature oscillation device, and a fermentation device. It is the
perfect tool for the investigation of intestinal post-fermentation in animals with a single
stomach because of its benefits of ease of use, high reproducibility, mass manufacturing, and
regulation. This test method has been used to measure gas emissions from livestock [31,44].
In vitro intestinal fermentation models for inoculation and colonization currently come in
various designs and configurations. However, every in vitro culture method has limitations;
thus, it is impossible to completely simulate the microecological environment in vivo.
Additionally, commonly questioned and criticized are the repeatability and functional
stability of the gut microbiota during in vitro intestinal fermentation models. The technical
details, fermentation substrates, and gas production equipment employed in various
laboratories vary, so the variability of data between different laboratories also needs to
be further explored. To obtain more accurate in vivo results, the results of in vitro models
need to be supplemented with in vivo models, which can not only enhance the overall
validity of the in vitro model but also distinguish the functional relationship between the
gut microbiome and the animal body. Considering the importance of in vivo models, it
is suggested to feed the Chinese herbal extract as a feed additive to further clarify the
emission reduction effect and influence mechanism of Chinese herbal extracts on ammonia
in laying hens.

5. Conclusions

In conclusion, the results of our investigation demonstrated that HE, PRE, YE, LE,
GBE, and AE considerably reduced ammonia production via the in vitro fermentation
of cecal contents in laying hens. Of all the treatment groups, GBE and AE exhibited the
best ammonia emission reduction effect, and the emission reduction ratios were 21.87%
and 26.76%, respectively. Due to the different types and contents of active components
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in Chinese herbal extracts and the complex mechanisms of action, the effects of different
Chinese herbal extracts are inconsistent. This study further suggested that the reason why
AE and GBE affect the production of ammonia in animals may be related to their effects
on intestinal flora, uricase, and urease activities. These findings suggest that AE and GBE
have a significant impact on lowering ammonia emissions and odor pollution brought on
by the poultry industry.
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https://www.mdpi.com/article/10.3390/ani13182969/s1, Figure S1: effect of different types of
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of Chinese herbal extracts on the order of the microbial community; Figure S4: effect of different
types of Chinese herbal extracts on the family of the microbial community.
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