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Simple Summary: One of the greatest challenges to achieving a sustainable aquaculture is finding
alternatives to fishmeal as a primary protein source in aquafeeds. Insects represent one of the most
promising alternatives being explored and produced as replacements for this ingredient. This review
addresses the use of two insect species (black soldier fly, Hermetia illucens, and yellow mealworm,
Tenebrio molitor) in freshwater and marine fish diet formulations and the effect of insect meal on
fish gut microbiota. Furthermore, the effects of a probiotic, namely, Lactococcus lactis subsp. lactis,
are considered. The study of fish gut microbiota is very important for aquaculture practice as
gut microbiota plays a significant role in nutrition metabolism, also affecting a number of other
physiological functions, including fish growth and development, immune response, and pathogen
resistance. Along with recent and promising results in this field, new insights and future directions
on fish gut microbiota research are highlighted.

Abstract: Aquaculture is the fastest-growing agricultural industry in the world. Fishmeal is an
essential component of commercial fish diets, but its long-term sustainability is a concern. Therefore,
it is important to find alternatives to fishmeal that have a similar nutritional value and, at the same
time, are affordable and readily available. The search for high-quality alternatives to fishmeal and
fish oil has interested researchers worldwide. Over the past 20 years, different insect meals have been
studied as a potential alternate source of fishmeal in aquafeeds. On the other hand, probiotics—live
microbial strains—are being used as dietary supplements and showing beneficial effects on fish
growth and health status. Fish gut microbiota plays a significant role in nutrition metabolism, which
affects a number of other physiological functions, including fish growth and development, immune
regulation, and pathogen resistance. One of the key reasons for studying fish gut microbiota is the
possibility to modify microbial communities that inhabit the intestine to benefit host growth and
health. The development of DNA sequencing technologies and advanced bioinformatics tools has
made metagenomic analysis a feasible method for researching gut microbes. In this review, we
analyze and summarize the current knowledge provided by studies of our research group on using
insect meal and probiotic supplements in aquafeed formulations and their effects on different fish
gut microbiota. We also highlight future research directions to make insect meals a key source of
proteins for sustainable aquaculture and explore the challenges associated with the use of probiotics.
Insect meals and probiotics will undoubtedly have a positive effect on the long-term sustainability
and profitability of aquaculture.

Keywords: metagenomics; DNA barcoding; rainbow trout; European sea bass; firmicutes;
Actinobacteria; Proteobacteria; Lactobacillus; Bacillus; Aeromonas
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1. Introduction

Aquaculture is one of the fastest-growing food production sectors in the world, supply-
ing more than half of the global fish supply. By 2050, it is expected that global aquaculture
consumption will double. To guarantee long-term food security, efficient and sustainable
animal production methods are urgently required. Aquafeeds are mainly based on fishmeal
(FM) and fish oil (FO), the most abundant dietary protein source. However, the global
increase in aquaculture production has required alternative feedstuff, which often has a
detrimental effect on the growth, intestinal health, and immune response of farmed marine
fish [1–3].

One problem the aquaculture feed industry needs to solve is that of replacing FM with
other protein sources. If this cannot be done, serious concerns exist about the industry’s
capacity to remain economically and environmentally stable. Sardine, anchovy, herring,
capelin, mackerel, and other forage and small pelagic marine fish species are sources of FM
and FO. However, owing to the gradual decline in wild marine fish stocks [4–14], it will
soon no longer be viable to use these aquafeed raw materials. Plant-based proteins and oils
comprise the primary substitutes for FM and FO due to their greater availability and lower
cost [4]. Indeed, soybean and other protein- and lipid-rich plants have replaced FM and FO
in farmed fish diets [5–10]. Soybean meal is a top-rated source of protein in plant-based
diets. However, plant-based diets may decrease fish growth and disease resistance due to
anti-nutritional substances in plant meals that affect fish feed intake, digestion, and nutrient
utilization, causing inflammation in many fish species’ intestines [4–18]. Furthermore,
plant-based feed ingredients are deficient in protein, lack a balanced amino acid profile, are
unpalatable, and compete with other food industrial sectors [16,19,20].

As a result of all of these factors, the need to find better ways of getting protein from
other valuable alternatives to FM, for example, animal feed ingredients such as by-products
from slaughterhouses or insect meals (IM), has increased [18,21,22]. From this perspective,
insects have the potential to open a new world of sustainable, protein-rich ingredients
for aquafeeds. Furthermore, single-cell proteins (SCP) deriving from microalgae, bacteria,
and yeast are also being used as fish feed ingredients. Insect, micro- and macroalgae, and
microbial meals are becoming more popular as aquafeed components [23–25]. Among the
scientific publications currently available in indexed databases, just 19% were focused on
IM, whereas 16% discussed the use of microalgae: IM and microalgae are both components
that offer much promise in the aquafeed sector. Animal health and metabolism are influ-
enced by a complex relationship between the host, the gut microbiota, and their feed. A
balanced microbiota is important for the overall health and well-being of the host. The
fish gut microbiota significantly affects fish health and physiology [8]. It helps develop the
immune system and promotes nutrient utilization [26,27]. The structure of the gut microbial
communities, including microbial diversity, is highly influenced by the ingredients of the
diet because the microbiota reacts quickly to dietary changes [28]. It is well established
that replacing FM with plants, yeast, IM, or animal by-products influences the biodiversity
and number of gut bacteria [22,29–34]. Furthermore, the bioactive compounds present
in insects can alter the complex communities of intestinal microbiota. Consequently, the
variety and richness of fish gut bacteria have changed as a result of replacing FM in their
diets with IM, either from Hermetia illucens (HI) or Tenebrio molitor (TM) [35–37].

The gut microbiota is usually called an “extra organ” because of its significant role in
many physiological processes of the host, including digestion, metabolism, reproduction,
development, and immunological response. In recent years, new alternative components
have been investigated and used in aquafeeds. Since gut microbes are important for
digestion and health, a number of studies have been carried out to determine how diet
affects the gut microbiota of aquatic species. Therefore, this review highlights current
developments and future perspectives of alternatives to conventional protein sources,
that is, how IMs used as aquafeed ingredients affect the gut microbiota of marine fish.
Furthermore, we review the effects of probiotics on fish intestinal microbiota.
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2. Insects for Sustainable Aquaculture

Insects are an environmentally sustainable protein-rich feed ingredient for farmed
fish. IM is being considered a potential alternative to FM as a protein source in aquaculture
feeds. Interest in using IM as an alternative to FM has increased since the European
Union (EU) authorized the use of IM from seven distinct insect species in aquaculture
feeds [38,39]. According to the circular economy concept, insects are worthy candidates
for aquafeed ingredients. Many country’s aquaculture industries increasingly depend on
IM instead of FM. Insects are nutritionally valuable due to their high protein (60–80%),
fat (31–43%), essential amino acids, and mineral and vitamin content [24]. Due to their
high protein content and balanced amino acid profile, IM has emerged as a popular
alternative to FM and a new source of protein in terrestrial and aquatic animal diets [40,
41]. Therefore, insects constitute an excellent alternative to conventionally produced
animal-based protein sources for use as feed [42,43]. Many studies have investigated the
effects of FM/IM substitution in various fish species diets. The European Commission
has withdrawn the ban on using processed animal proteins generated from insects in
aquafeed for farm fish under regulation EU-2017/893. As a result, IM can now be used in
aquafeeds. The regulation lists the seven types of insects that are allowed: black soldier
fly, Hermetia illucens; common housefly, Musca domestica; yellow mealworm Tenebrio molitor;
lesser mealworm, Alphitobius diaperinus; house cricket, Acheta domesticus; banded cricket,
Gryllodes sigillatus; and field cricket, Gryllus assimilis. Of these, flies in particular have been
the focus of aquafeed industry research in recent years owing to their many advantages
over other animal protein sources [44]. HI and TM are the main species presently receiving
considerable attention for aquaculture feed formulations [45]. Most studies have shown that
replacing FM with IM is a good approach to increase aquaculture sustainability; however,
the results vary based on the fish and insect species used. We recently obtained promising
findings in marine and freshwater carnivorous fish species with the dietary use of different
inclusion rates of black soldier fly and yellow mealworm meals [36,37,46–49]. Table 1
represents the research that our group has done on the effects of IM on fish gut microbiota.

Table 1. Studies evaluating the effects of insect meal on fish gut microbiota using Next Generation
Sequencing platforms.

Fish Species FM Replacer in the
Feed Type of Sample

Sequencing
Platform/16S rRNA

Gene Region
Major Fnding(s) Reference

Rainbow trout Pupal exuviae meal
(Hermetia illucens)

Intestinal mucosa
and fecal matter Illumina MiSeq: V4

Hermetia illucens-derived exuviae
improved bacterial species

richness in fish gut microbiota by
increasing bacteria belonging to

the Firmicutes and
Actinobacteria phyla.

Exuviae meal increased number
of beneficial chitin-degrading

bacteria, such as Bacillus genera,
thus promoting the microbial
synthesis of short chain fatty

acids, primarily butyrate.

[47]

Rainbow trout IM (Tenebrio molitor) Intestinal mucosa Illumina MiSeq:
V3–V4

Rainbow trout gut and skin
microbiota changed following

FM/IM substitution.
FM substitution with IM did not
have negative effects on rainbow

trout gut and skin
microbial populations.

[49]
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Table 1. Cont.

Fish Species FM Replacer in the
Feed Type of Sample

Sequencing
Platform/16S rRNA

Gene Region
Major Fnding(s) Reference

Rainbow trout IM (H. illucens) Intestinal mucosa
and fecal matter Illumina MiSeq: V4

Firmicutes, especially Bacilli,
increased, whereas Proteobacteria,

mainly Pseudomonas, decreased.
Lactobacillus and Bacillus genus
bacteria increased in the gut of
fish fed with the IM based diet,
but Aeromonas genus bacteria
decreased dramatically in the

same fish group.

[46]

Rainbow trout IM (H. illucens) Intestinal mucosa
and fecal matter

Illumina MiSeq:
V3–V4

The intestinal bacterial
community of trout was
influenced by IM, which
improved fish gut health.

Fish fed with insect-based diet
showed higher bacterial diversity
and less Proteobacteria than fish

fed on an FM-based diet.

[36]

Rainbow trout IM (H. illucens) Digesta Illumina MiSeq:
V3–V4

IM increased fish gut microbiota
biodiversity and richness.

Insect-based feed boosted lactic
acid and butyrate-producing

bacteria, improving fish
gut health.

[37]

2.1. Black Soldier Fly (Hermetia illucens, HI)

When producing IM, the black soldier fly HI is an excellent potential species because
its amino acid profile is similar to that of FM, making it a suitable alternative protein
source [24]. HI is the most widely studied and used insect species, representing our
research group’s primary alternative to FM raw material. Indeed, HI can be raised quickly,
have a high fertility rate, and turn waste into high-quality protein [50]. An increasing
number of feeding trials have been conducted, demonstrating that HI meals can be a
suitable FM replacement in aquaculture diets [41,44,51]. During the last few decades,
approximately 130 research publications with the terms “Black soldier fly,” “Larvae meal,”
and “Aquaculture” have been indexed in PubMed, Scopus, Web of Science, and other
databases. Prepupae of HI comprise an intriguing choice for producing IM since mass-
rearing procedures for high-quality output currently exist [24]. Using HI in fish feed
provides a way to solve problems in the aquaculture industry related to managing a
sustainable aquatic environment. According to several studies, HI can replace conventional
FM and totally replace SBM in aquaculture feeds without negatively influencing fish
growth, feed efficiency, digestion, or fillet quality [37,52–54]. Our experiments have shown
that rainbow trout (Oncorhynchus mykiss) can tolerate up to 50% HI meal in their diet with
no negative effects on fish growth and survival [36,37,46,48,55] and with positive effects on
the gut microbiota of fish.

Effects of FM/HI Meal Replacement on Fish Gut Microbiota

HI meals are becoming more popular in aquaculture feeds, but ideal inclusion levels
still must be determined to ensure fish growth and health. An increasing number of studies
have examined the effects of substituting HI meals for FM in the diets of different species
of fish. Most research recommended partial replacements of FM with HI meals. However,
some recent studies revealed 100% replacement without affecting fish growth, especially
for carnivorous fish [52].

Regarding fish growth, health, and gut microbiome, our group’s work has shown that
partial or up to 50% inclusion of HI meal in the diet is well tolerated and has no negative
effects on fish growth or survival. Diet has a significant role in shaping the gut microbiota,
but the surrounding environment and environmental factors can also significantly impact
microbiota composition. Our research group previously evaluated the effects of different HI
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inclusion levels in high-FM diets on fish gut microbiota using high-throughput sequencing
technologies [36,37,46]. In all the experiments, we applied high-throughput sequencing of
the 16S rRNA gene to assess the dynamics of major gut bacterial taxa in response to diet.
PICRUSt1 bioinformatics software was used to determine gut microorganisms’ key active
biological pathways. We reported that the partial substitution of dietary FM with 10%, 20%,
or 30% of a defatted HI meal had an important effect in modulating the intestinal transient
(allochthonous) and resident (autochthonous) bacterial communities in trout [36,37,46].

HI diet increased butyrate-producing bacteria in the fish gut [36,37,49] and led to diver-
sification and other alterations in the intestinal bacterial makeup of rainbow trout [37,53,56].
In addition, dietary IM increased the colonization of beneficial bacteria, such as lactic acid
bacteria (LAB), which are often used as probiotics in animal nutrition [36,37]. This was a
good result as it is known that beneficial bacteria species compete with gut detrimental
bacteria for niche space and produce and secrete antimicrobial peptides, thus protecting
the host from colonization and proliferation of environmental pathogens [57].

Based on the metabarcoding results, three phyla, Firmicutes, Proteobacteria, and
Tenericutes, were found to be the most abundant in the digestive tract of rainbow trout [37],
and in fish fed with 10–30% HI meal; diversity was higher in allochthonous, but not in
autochthonous gut microbiota [36,37]. Instead, another study [53] observed that trout fed a
diet containing 20% HI meal had a higher species richness in their gut microbiota. Further-
more, the autochthonous bacterial community significantly influenced host metabolism
and health status more than the allochthonous intestinal bacteria.

Fish gut microbiota studies vary in many ways, including the techniques used to
analyze the microbiome. The dietary HI meal’s effects on autochthonous microbiota of
trout were first explored using the gradient gel electrophoresis (DGGE) method [53], which
identified a lower number of bacterial species than the Illumina MiSeq method, which
we used in all our studies [36]. We analyzed the inclusion of 10%, 20%, and 30% HI
meals on the autochthonous intestinal microbiota of rainbow trout (O. mykiss) and found a
reduced abundance of Proteobacteria and an increased abundance of Mycoplasma, which
produce lactic and acetic acid as final products of its fermentation [36,37]. These differences
in the composition of the autochthonous intestinal microbiota are due to the prebiotic
characteristics of fermentable chitin. In one of our previous studies [37], Proteobacteria,
Firmicutes, and Actinobacteria dominated trout’s allochthonous gut microbial community.
Interestingly, also other studies reported that LAB (Firmicutes phylum) were only found
in large numbers in the gut contents of trout that had been fed IM but they were absent
in gut mucosa [53]. In contrast, trout intestinal mucosa in our study contained many
Proteobacteria (Gammaproteobacteria) bacteria, which was in line with previous work on
rainbow trout [53,58]. The most common phyla are not the only ones for which differences
between these findings and our previously published data were observed. Fish mucosa
samples contained considerably fewer operational taxonomic units (OTUs) (74 vs. 450,
respectively) than fish gut digesta samples [37]. These results agree with another study [59],
which found that microbial diversity was lower in the gut mucosa than in the luminal part.
This indicates that certain species of bacteria colonize the gut mucosal layer poorly and that
the number of bacteria and the diversification of the autochthonous bacterial community
may be different from the allochthonous microbiota [60]. In our studies, 20% IM increased
biodiversity (Shannon and Simpson evenness indices) but not bacterial richness [36,37]. In
line with previous research, we found that HI meal inclusion in the trout diet had positive
effects on gut bacterial biodiversity [37,53,56]. Furthermore, since dietary effects may in
part be biased by taxa from the feed microbiome [61], we included the feed as control and
did not use digesta as a proxy for the intestinal microbiome [36,37]. Indeed, to fully unveil
the response of gut microbiota to dietary changes, we performed concurrent profiling of
feed microbiota, and digesta- and mucosa-associated gut microbiota.

In addition to their protein and fat content, insects contain a large amount of chitin,
which is the building material that gives strength to the exoskeletons of insects. Studies
have shown that the gut microbiota of fish may be altered by chitin [62]. In Atlantic
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salmon, a chitin-rich diet altered gut microbiota, revealing over 100 autochthonous bacterial
species [63]. Dietary chitin or chitosan modulates fish gut microbiotas due to its prebiotic,
antibacterial, and immunomodulatory properties [37,46,49,64,65]. Many fish cannot digest
chitin, so it is possible to consider it as an insoluble fiber with possible prebiotic qualities.
These properties may help maintain a well-balanced and healthy gut microbiota. The gut
microbiota helps digest otherwise indigestible feed ingredients, generating short-chain
fatty acids (SCFAs), which are the main energy source for intestinal epithelial cells [66].
Furthermore, our latest research [47] on the effects of chitin-rich shrimp head meal (SHM)
and HI pupal exuviae on the gut microbiota of rainbow trout demonstrated that HI exuviae
exert a modulatory influence on the fish gut microbiota by increasing the number of
Firmicutes and Actinobacteria. Pupal exuviae thus represent a promising prebiotic for
fish gut microbiota, increasing gut bacterial richness and the amount of beneficial chitin-
degrading bacteria, such as Bacillus species, which promotes SCFA synthesis, especially
butyrate. Similarly, adding krill or chitin into salmonid diets increased bacterial alpha
diversity [62]. Therefore, our findings should not be unexpected when considering the
chitin level of the IM.

Chitin is a prebiotic that increases the diversity of the bacteria in the gut. A healthy gut
is typically characterized by a diverse bacterial population. In contrast, decreased diversity
is typically associated with dysbiosis and illness risk, due to low bacterial competition
for space and resources and enteric pathogen colonization [67,68]. The addition of HI
meal to the trout diet significantly decreased indigenous Proteobacteria in the intestinal
digesta [36,37]. The same finding was obtained in a study on the digesta and mucosa-
associated trout microbiota [56]. Chitin, an insoluble fiber, may reduce Proteobacteria
in IM-fed groups. According to several investigations, chitin and deacetylated chitin
derivatives are antibacterial and bacteriostatic against Gram-negative pathogens [47,69].
We reported that trout-fed HI meal showed decreased Gammaproteobacteria, including the
genera Shewanella, Aeromonas, Citrobacter, and Kluyera, which are considered responsible
for some diseases in fish [36]. Therefore, including IM meal in trout diets has a positive
effect that inhibits potential pathogen growth. Fish fed 20% and 30% HI diets had more
Mycoplasma-genus bacteria in their intestines, and these may be beneficial [36,37,47]. Many
studies have identified Mycoplasma as the predominant genus in the distal intestines of
rainbow trout and other farmed salmonids [33,70,71]. Bacilli and Clostridium, which
are also included in the phylum Firmicutes, are closely related to Mycoplasma. They are
generally obligate symbiotic microbes of the gastrointestinal ecosystem because their small
genome size makes it unlikely that complex metabolic functions take place in the fish
gut [36]. Lactic and acetic acids are the main metabolites of Mycoplasma bacteria [71,72].
Mycoplasma maintains intestinal homeostasis in trout by using fermentable substrates and
releasing end products from bacterial fermentations [73]. Recent research on trout revealed
that a lower level of Mycoplasma in the gastrointestinal tract makes the fish more susceptible
to disease [74]. These findings suggest that Mycoplasma produces antimicrobial chemicals,
such as lactic and acetic acids, which are the main metabolites that benefit host health.

2.2. Yellow Mealworm (Tenebrio molitor, TM)

Yellow mealworms are becoming more popular as an alternative source of protein in
aquaculture diets due to their high efficiency in converting organic waste, being consid-
ered an ideal circular economy insect. Defatted TM provides up to 63.84% crude protein
and an amino acid composition similar to that of FM [75]. Furthermore, TM contain
anti-tumoral, antibacterial, antioxidant, and immunomodulatory, physiologically active
compounds [76,77]. TM has been evaluated as a potential alternative to FM as a protein
source in the diets of various fish species. The nutritional value of TM varies with its
substrate composition and rearing settings. Although most studies have indicated that
25% to 30% of TM be included in the diet [78], rainbow trout fed different FM/TM meal
replacement levels showed better performance [49]. Significant growth improvement was
seen in red seabream (Pagrus major) fed diets containing 65% defatted TM larval meal, com-
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pletely replacing FM [79]. TM showed the highest apparent digestibility coefficient of the
four IMs tested in Nile tilapia [80]. This proves that TM larvae can replace FM as a protein
source in fish diets. One of our studies examined the impact of replacing FM with TM meal
in rainbow trout diets on fish weight gain and gut and skin microbiome [49]. Dietary FM
substitution with TM has been explored extensively on fish development performance but
less on host symbiotic microbial population [49]. Like HI, TM contains bioactive chemicals
that are abundant in chitin and lauric acid and affect the gut microbiota [35–37]. Most
current research on fish microbiota has focused on the bacterial diversity that may be
discovered in the fish’s gut; however, fish also have distinct microbial diversity in other
important body sites. Particularly, the skin microbiota of fish and most farm animals has
not been thoroughly studied but would require careful consideration. Fish skin constitutes
one of their vital mucosal barriers to the outer world. Thus, skin microbiota plays a very
important role in preventing fish diseases. In one of our studies, therefore, we investigated
how the gut and skin microbiota of trout changed when FM was replaced with TM larvae
meal [49].

Effects of FM/TM Meal Replacement on Fish Gut Microbiota

A considerable amount of research has been conducted on mealworm meals in
aquafeeds. TM is an excellent alternative to FM, positively influencing fish growth rates
and gut microbiota. The appropriate TM meal inclusion rates in feeds for different fish
species depend on the nutritional requirements of a given fish species and the nutritional
quality of the TM, which in turn depends on the diet and culture conditions of the larvae.
Insect meal manufacturers have increased defatted insect meal production in recent years.
Defatting insect meal increases crude protein and degradation resistance [24]. In rainbow
trout diets, 25% or 50% TM meal did not affect fish weight but significantly improved feed
conversion and the protein efficiency ratio [81,82]. The amount of protein, amino acids,
micronutrients, lipids, and fatty acids in TM meal makes it a suitable replacement for FM
in aquafeeds based on its effects on fish growth performance. In contrast, 50% of full-fat
TM diets in European seabass reduced fish growth compared to FM diets [83]. In marine
carnivorous fish species, high TM levels in aquafeed have led to reduced growth [84].
Our study found no statistically significant differences in growth performance features in
rainbow trout after 90 days of feeding with either a 100% substitution of FM with a partially
defatted TM diet or a diet without TM [49].

Many studies have focused on the impact of substituting TM meal for FM on growth
and development without attempting to understand the processes that underlie these
effects. It is important to use molecular genetics and genome sequencing to determine
how TM meal works, how it is metabolized, and how it is absorbed by the digestive
systems of different cultured fish species [49]. The gut microbiota plays an important
role in enhancing feed digestion, which benefits the general health of fish [85]. As TM is
being used in fish diets as a raw material, it is important to understand how gut microbes
respond to adding TM to the diet. Several fish species, including rainbow trout, have
been investigated to determine how dietary TM affects the composition and diversity of
gut microbiota [35,49,86]. Our research group demonstrated how 100% of TM influences
rainbow trout gut microbial populations [49]. Substituting FM with TM meal did not
influence the species richness and variety of gut mucosal bacteria [50], a finding similar
to that obtained from our previous studies [36,37]. Consistent with our findings, feeding
rainbow trout (O. mykiss) or sea trout (Salmo trutta m. trutta) a hydrolyzed TM meal diet did
not affect digesta-associated bacteria [86,87]. According to the results of our metagenomic
analysis, the phylum Tenericutes was most represented in trout intestine irrespective of
diet, followed by Proteobacteria and Firmicutes in descending order [49]; all these bacteria
taxa play a key role in the host’s nutrition and metabolism. Furthermore, the abundance
of Lactobacillus and Enterococcus bacteria increased in the intestines of juvenile rainbow
trout fed a diet containing with 20% TM meal [86]. The prebiotic characteristics of chitin
in dietary IM may be responsible for the increase in lactic acid bacteria. However, in
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our study on 100% FM substitution with a partially defatted TM diet, intestinal LAB
did not increase [49]. This was a surprising result, especially compared to what we had
seen in the intestines of trout-fed diets with HI meal [36,37]. Indeed, substituting FM
with IM from HI larvae positively modulated rainbow trout gut microbiota by raising
the levels of LAB, which are helpful bacteria commonly used as probiotics in the diet of
fish and other vertebrates [36,37,53]. There is no doubt that LAB is crucial for degrading
dietary fiber. In addition, they actively participate in host defense against pathogenic
organisms by generating bactericidal chemicals, such as lactic acid, hydrogen peroxide,
bacteriocins, and biosurfactants, which inhibit pathogen colonization of the intestinal
epithelium [88,89]. The relative abundance of Actinobacteria increased in the digestive
tracts of trout when TM larvae meal was added to their diet, but this effect was not evident
in European sea bass or gilthead sea bream [35]. Indeed, the gut microbiota is usually
changed towards Firmicutes and/or Actinobacteria when dietary fiber such as chitin is
included [46,49,53,90]. Taken together, our data revealed that there were no negative effects
on rainbow trout intestinal microbiota populations when FM was completely replaced with
TM. No noticeable dysbiosis symptoms were found, but only slight microbial changes were
seen [49]. The research revealed that TM larvae meal is a valid substitute for FM as an
animal protein in aquafeeds.

3. Probiotics for Sustainable Aquaculture

Probiotics are living microorganisms that, when administered correctly, positively
regulate an organism’s health [91]. They are regarded as important modulators of many
biological processes such as digestion, immunological activation, restoring microbial bal-
ance, and modulating the microbiota composition and have potent antioxidant qualities
due to their effects on the gut microbiota [92]. Probiotics can inhibit pathogens in vari-
ous ways, including by directly competing for nutrients and cell attachment space and
generating inhibitory molecules, such as lactoferrin, lysozyme, bacteriocins, siderophores,
and enzymes. Probiotics secrete proteases, amylases, and lipases that degrade those feed
ingredients the fish gut cannot digest, leading to enhanced growth and nutrient conversion
efficiency [93–95]. In aquaculture, many probiotic microbial strains are now used [96]. LAB,
such as Lactobacillus sp., Bacillus sp., Enterococcus sp., and yeast, Saccharomyces cerevisiae,
are the most common probiotics used in aquaculture [97,98]. These microorganisms are
widely distributed in nature in the digestive tracts of farmed fish and regulate the fish
microbiota as permanent or transitory inhabitants [99]. Probiotics in aquaculture are gen-
erally also used to reduce antibiotic use and promote aquaculture industry sustainability.
The misuse of antibiotics has a negative effect on the aquatic environment, particularly
in aquatic ecosystems where antimicrobials can persist for a long time and help bacteria
become resistant to multiple antibiotics [100]. Antibiotics also help fish grow but their use
as growth promoters has reduced the variety and abundance of indigenous gut microbiota,
negatively affecting fish immune systems [101]. For these reasons, antibiotics have been
restricted in farmed animals in the EU since 2006 [102,103]; therefore, several research
projects have attempted to substitute antibiotics with probiotics to help the growth and
development of farmed animals [104].

Probiotics boost feed digestibility and nutrient absorption in cultured fish, leading to
better fish growth and conversion rates [105]. They also maintain gut microbiota balance,
especially at larval stages, when vaccination is challenging [101]. Probiotics are also being
used more in aquaculture, and studies have confirmed the advantages for commercially
important farmed fish [106–108]. In our recent work, gilthead sea bream fed low and high
dosages of probiotic Lc. lactis subspecies lactis showed higher weight gain than control fish
fed a diet without probiotics [109]. High-throughput sequencing was used in our study to
analyze the alterations in sea bream gut microbial populations after Lc. lactis subsp. lactis
feeding. The findings here indicate that digestion and nutrient utilization had improved in
gilthead sea bream fed probiotics. The same results were seen when Lactobacillus spp. and
Shewanella putrefaciens Pdp11 were administered to gilthead sea bream [110]. Many other
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farmed fish species showed improved growth performance when L. lactis was used as a
probiotic [111–113]. Concerning the microbiota analysis, we also analyzed the microbiota
populations associated with feeds at the end of our feeding trial to determine how stable
the probiotics were in the fish diets. Firmicutes and Proteobacteria represented the most
numerous bacterial phyla, followed by the Bacteriodetes and Fusobacteria in descending
order. Compared to the most representative genera of Firmicutes phylum, the relative
abundance of the probiotic L. lactis was higher.

The proportion of L. lactis included in the control diet was 0%, while it was 64% and
71% in the treatment diets, respectively, which corresponds with administering a low and
high dose of probiotics to fish [109]. Gilthead sea bream fed high dosages of Lc. lactis
had an increase in Spirochete bacteria phylum in their gut, which were almost absent in
fish fed low doses of Lc. lactis and in the control fish. Around 200 different genera in the
Firmicutes phylum, including Lactobacillus, help maintain fish intestine health [37,109,114].
Commensal Firmicutes and Bacteroidetes produce butyrate, acetate, and propionate SCFAs
by dietary fiber fermentation. The gut microbiota of sea bream on high-probiotic diets
had a Proteobacteria/Firmicutes ratio five times higher than in the other groups. This
result is not surprising since Lc. lactis subsp. lactis produces the antibiotic nisin, displaying
strong activity against Gram-positive bacteria, and a vast majority of Firmicutes are Gram-
positive [109,115].

In our study, the analysis of gut-adherent (autochthonous) microbiota showed a
lack of colonization of the probiotic Lc. lactis in the host’s intestinal mucosa [109]. This
result was expected because it is well-recognized that the underlying mechanisms of
establishing probiotics in the host intestinal mucosa are challenging and influenced by
complex molecular interactions. Our probiotic modified the fish gut microbiota without
colonizing the host’s intestinal mucosa, proving that colonization is not always required
to trigger host modification [109]. In terms of diversity indices, the analyses of intestinal
microbiota also found significant and controversial differences between groups of fish.
There was a significant difference in the variety and diversification characterized by alpha
diversity parameters in fish fed a low-probiotic diet compared to the control or high-
probiotic diet fish [109].

Consistent with our findings, the bacterial diversity in the intestinal mucosa of Atlantic
salmon supplemented with LAB was higher [116]. On the other hand, in the probiotic-
rich diet group, gut bacteria diversity was lowest despite reaching the highest growth
rates. A functionally unbalanced ecosystem may reduce competition for opportunistic
or invading bacteria if bacterial diversity decreases and is generally regarded as a nega-
tive outcome [110,117,118]. While it has been documented that administering prebiotics
(specialized plant fibers that stimulate the growth of healthy bacteria) increases the mi-
crobial richness of the gut, evidence of the benefits of probiotics on fish remains less clear.
According to findings in the literature, the dietary probiotic Bacillus subtilis, alone or in
combination with prebiotics or microalgae, decreased gilthead sea bream species richness
and diversity indexes [110,119]. Moreover, probiotics such as LAB produce antimicrobial
substances that limit the growth of other microbes, which can change the gut microbiota’s
composition and biodiversity [120].

The correlations found in the aforementioned studies between diet and fish gut micro-
biota suggest that well-designed probiotics could provide a potential way to improve fish
growth performance and digestive ability. However, traditional probiotics, such as lactic
acid bacteria and yeasts are not the dominant indigenous microbes in the digestive tract of
fish, and their use in fish may risk causing microbial dysbiosis in some cases [121]. There-
fore, identifying commensal beneficial bacteria in fish is of great value for the development
of novel probiotics for aquaculture [121].

4. Metagenomic Analysis for the Identification of Gut Microbiota

Different culture-dependent methods followed by identification based on biochemi-
cal and phenotypic characteristics of bacteria were used to identify and characterize fish
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microbiota in previous times. Unfortunately, culture-dependent techniques give a limited
picture of intestinal microbiota because only a low fraction, down to about 1% of the bacte-
ria from fish intestine, can be cultivated [22]. Therefore, culture-independent molecular
technologies, such as next-generation sequencing (NGS) technologies, targeted amplicon
sequencing of the 16S rRNA gene [122–124], polymerase chain reaction-denaturing gradient
gel electrophoresis (PCR-DGGE) [125–127], or 16S rDNA PCR-DGGE and RNA polymerase
β-subunit gene quantitative PCR [128], have been used more recently to evaluate the
intestinal microbiota. New research approaches have boosted our understanding of the
interplay between microbes and their hosts. In particular, NGS enabled the identification
and quantification of fish gut bacteria at unprecedented resolution, providing novel insights
into the role of the microbiota in fish growth and health [66,129].

Metagenomics has thoroughly changed the study of the fish gut microbiota. With these
methods, it is possible to directly look at the genome of microorganisms from samples taken
from the environment [130,131]. It can provide a deeper understanding of the information
that the retrieved DNA reveals about the host or environment-specific host species and
help researchers understand microbial diversity in aquaculture. The use of 16S rRNA
sequencing as the gold standard for identifying variability of the 16S rRNA to assess the
composition of whole bacterial communities through culture-independent methods is
being used by many researchers [59,132,133]. Additionally, metagenomics methods have
been successfully used to find novel genes and microbial pathways as well as to discover
functional dysbiosis [134].

To investigate the effect of aquafeed ingredients on gut microbiota composition, we
used the Illumina MiSeq platform (Illumina, Italy) for high-throughput sequencing of
the 16S rRNA gene (Figure 1) to analyze and characterize the complete gut microbiome
of different fish species [22,36,37,46–49]. Using the bioinformatics application PICRUSt
(Phylogenetic Investigation of Communities by Reconstruction of Unobserved States),
the active biological pathways of gut bacteria could be identified. This method is being
used more frequently in fish studies. It can quickly and cost-effectively capture detailed
sequencing data that provides additional information on even minute amounts of bacte-
ria [66]. The Illumina, Roche 454, and Ion Torrent PGM (Personal Genome Machine) are the
three leading platforms used to study fish gut microbiota [135]. Many studies have been
performed using these platforms on the microbiota that live in different parts of a fish’s
body, such as the gastrointestinal tract, gills, and skin that evolve to permit colonization on
the mucosal surfaces by complex commensal microorganisms [136]. The skin, gills, and
digestive tract of fish are the main entry routes for pathogens [136]. Thus, most research on
microbial communities has focused on these body regions. Owing to the development and
continuous growth of aquaculture, microbiota study has recently increased. More focus
is now being directed to the microorganisms that inhabit the gastrointestinal systems of
different finfish and crustaceans, such as prawns and crabs [136]. Furthermore, there is an
increasing interest in the impact of aquafeed on the fish gut microbiome, as some recent
findings [61] are consistent with a model wherein gut microbial profiles are to a different
degree influenced by bacterial DNA present in the feed itself through a “feed microbiome”
carry-over effect.
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5. Conclusion and Future Prospects for Applied Research

This review summarizes the results of studies from our research group on the effects
of diets formulated to contain IM from either T. molitor or H. illucens to replace dietary FM
on freshwater fish gut microbiota. It also emphasizes the connection between diet and fish
gut microbiota, suggesting that “tuning” the microbiota composition through the use of
new raw materials could offer a promising strategy towards a sustainable aquaculture. The
effects of a probiotic (Lactococcus lactis subs lactis) used as a feed supplement on marine fish
gut microbiota are also reviewed. According to metagenomic data, IMs from H. illucens,
or T. molitor constitute valid alternative protein sources that can affect gut microbiota
composition and overall fish health. With regard to Lc lactis, although this probiotic did
not colonize the host’s intestinal mucosa, it positively influenced the fish gut microbiota
by changing the abundance of different beneficial bacterial taxa and by impacting many
metabolic pathways associated with protein absorption and digestion. Therefore, insects
and probiotics used in fish diets have a positive effect on the composition of gut microbiota
and on fish nutritional physiology.

We believe this information will be helpful to researchers and aquaculture experts
in fish nutrition, particularly when developing novel feed formulations or experimenting
with various feed components and additives.
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