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Simple Summary: In the livestock industry, intramuscular fat content is an important indicator
of the meat quality of domestic animals. The variations of the Acyl-CoA Synthetase Long-Chain
Family Member 4 (ACSL4) gene locus are associated with intramuscular fat content in different pig
populations, but the detailed molecular function of ACSL4 in pig intramuscular adipogenesis remains
obscure. Our study reveals the function of ACSL4 in pig intramuscular adipogenesis and provides
new clues for improving the palatability of meat and enhancing the nutritional value of pork for
human health.

Abstract: The intramuscular fat is a major quality trait of meat, affecting sensory attributes such
as flavor and texture. Several previous GWAS studies identified Acyl-CoA Synthetase Long Chain
Family Member 4 (ACSL4) gene as the candidate gene to regulate intramuscular fat content in dif-
ferent pig populations, but the underlying molecular function of ACSL4 in adipogenesis within pig
skeletal muscle is not fully investigated. In this study, we isolated porcine endogenous intramus-
cular adipocyte progenitors and performed ACSL4 loss- and gain-of-function experiments during
adipogenic differentiation. Our data showed that ACSL4 is a positive regulator of adipogenesis in
intramuscular fat cells isolated from pigs. More interestingly, the enhanced expression of ACSL4 in
pig intramuscular adipocytes could increase the cellular content of monounsaturated and polyunsat-
urated fatty acids, such as gamma-L eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA). The
above results not only confirmed the function of ACSL4 in pig intramuscular adipogenesis and meat
quality attributes, but also provided new clues for the improvement of the nutritional value of pork
for human health.

Keywords: ACSL4; intramuscular; adipocyte; pig

1. Introduction

Intramuscular fat (IMF) content is an integral part of meat quality and directly in-
fluences meat tenderness, juiciness, and flavor. IMF refers to the chemically extractable
fat inside the muscle, predominantly from intramuscular adipocytes, which are derived
from preadipocytes that reside in the muscle [1]. However, the underlying mechanisms
controlling the adipogenic differentiation and fat deposition of porcine intramuscular
preadipocytes remain poorly understood, and obviously involve genetic, nutritional, and
environmental factors [2].
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The IMF content varies in different pig breeds and even in different individuals within
the same breed populations. Dozens of functional or candidate genes have been identified
and genetic polymorphisms associated with IMF have also been revealed [3]. Among them,
the ACSL4 is one of the most frequently identified candidate genes related to IMF content
in different population-based association studies in pigs [4–8]. The genomic variations
around the ACSL4 locus control the ACSL4 transcription, but whether the fluctuations of
ACSL4 expression levels could impact the intramuscular fat deposition remains unclear. A
previous study reported that ACSL4 was involved in preadipocyte differentiation in pigs [9].
However, detailed functional validation of pig ACSL4 in the intramuscular adipogenesis
was not thoroughly investigated.

The ACSL4 gene encodes fatty acid-CoA ligase 4, an isozyme of the long-chain fatty-
acid-coenzyme ligase family. It converts free long-chain fatty acids into fatty acyl-CoA
esters, and thereby plays a key role in lipid biosynthesis and fatty acid degradation [10].
Five isoforms of ACSL have been identified in humans and rodents, and they perform
individual functions in fatty acid metabolism. ACSL4 showed a marked preference for
arachidonic and eicosapentaenoic acid as substrates and play important roles in metabolic
regulation of cell proliferation, differentiation and migration [11]. Dysregulation of ACSL4
has been demonstrated to promote ferroptosis in different cell types [12,13], and cause
diverse diseases and disorders, such as hepatocellular carcinoma [14], breast cancer [15],
intellectual disability [16], and mental dysfunction [17]. However, the expression dy-
namics and regulatory function of ACSL4 in adipogenesis or lipogenesis have not been
thoroughly investigated.

In the present study, we explored the expression pattern and regulatory roles of ACSL4
gene during the differentiation of pig intramuscular pre-adipocytes and identified pig
ACSL4 as a positive regulator of intramuscular adipogenesis. Further biochemical analysis
revealed that ACSL4 could modulate the fatty acid composition in the pig intramuscular
adipocytes and thus improve the nutritional value of meat with enriched polyunsaturated
fatty acids.

2. Materials and Methods
2.1. Animals and Tissues

The animal experiments were approved by the Animal Care Committee of the Institute
of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences. The
neonatal Yorkshire pigs were taken from the affiliated farm of the Institute of Animal
Husbandry and Veterinary Medicine, Hubei Academy of Agricultural Sciences. The tissues
(heart, liver, spleen, lung, kidney, longissimus dorsi, and adipose tissue) were collected
from three 3 month-old castrated boars and stored at liquid nitrogen.

2.2. Primary Cell Isolation, Proliferation and Differentiation

Pig longissimus dorsi muscle tissue was cut with scissors into approximately 1 mm
sections under sterile conditions and digested with collagenase type II for 2 h at 37 ◦C in
a shaking water bath. The digested tissue was first centrifuged at 100× g for 1 min, and
the resulting floating cells were collected in DMEM at 37 ◦C. The non-adherent cells were
mostly intramuscular fat precursor cells. After adding fresh complete culture medium (89%
DMEM/F12 medium + 10% FBS + 1% penicillin), most of the cells adhered to the culture
dish after 2 days. When the cell confluence reached 90%, trypsinization was used to digest
the cells and the medium was changed every 2 days.

For the proliferation assay, pig preadipocytes were seeded in 96 well plates at 4 × 103

cells per well with the complete medium. CCK-8 solution was added to each well and
incubated at 37 ◦C, 5% CO2 for 1.5 h, and the 450 nm absorbance was measured with
a microplate reader (Meigu Molecule, Shanghai, China). The linear growth graph was
drawn according to the OD value. For the cell differentiation analysis, the intramuscular
adipocytes were cultured to complete confluence for 2 days, growth medium was replaced
with differentiation medium (89% DMEM/F12 medium + 10% FBS + 1% penicillin +
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5 µg/mL insulin + 0.5 µmol/L 3-isobutyl-1-methylxanthine + 1 µmol/L dexamethasone)
for at least 3 days and lipid droplet should be visible.

2.3. Oil Red O Staining

The differentiated adipocytes were washed three times with PBS and fixed in 4%
paraformaldehyde for 30 min, followed by washed with deionized water and incubated
with 60% Oil Red O solution for 10 min. The cells were protected from light and washed
with PBS three times. The images were captured using a microscope (Leica 4000B, Wetzlar,
Germany). Oil Red O quantification was performed by measuring the positive area in three
different fields (stained pixels were measured using Image J).

2.4. siRNA Knockdown

In our study, the ACSL4 siRNAs were designed according to their mRNA sequence
(GenBank NM001038694.1) with the free online design tools (https://www.thermofiser.
com/us/en/home/brands/invitrogen/ambion.html, accessed on 21 February 2020), and
all the siRNA sequences were synthesized by Shanghai Genepharm Co.,LTD. The sequences
are as follows. ACSL4-siRNA: 5′-GTCCAAGAGATGAATTATATT-3′; a scramble sequence
5′-GTTCTCCGAACGTGTCACGT-3′ was also synthesized as a negative control. Transfec-
tion was conducted with Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA) according
to the manufacturer’s protocol. The preadipocytes were transfected with 5 µL Lipofec-
tamine 3000 with 100 pmol siRNA-ACSL4 or siRNA-NC in 125 µL Opti-MEM™ media
and the fluorescence of FAM group was observed. After 72 h, the cells were harvested for
further analysis.

2.5. Adenovirus Transduction of Intramuscular Preadipocytes

For overexpression analysis, the ACSL4 CDS sequence was cloned into the Y4261
adenovirus plasmid and transfected in HEK293 cells to package the recombinant adenoviral
vector containing the ACSL4 gene, according to the manufacturer instructions (Genepharm
Co., Ltd., Shanghai, China). The pig intramuscular preadipocyte cells were seeded into
12 well culture plates at 80% confluence and the adenovirus was added to the medium.
After 48 h of transfection, the cells were collected and total RNA and protein were extracted
for expression analysis. Adenovirus ADV4-ACSL4 and ADV4-NC (both at 1011 pfu/mL)
were synthesized by Gene Pharma. The preadipocytes were cultured in a six-well plate, and
adenovirus was added (MOI = 50) when the cells reached 80–90% confluence. Fluorescence
expression was observed after 48 h. The cells were collected 72 h later for further analysis.

2.6. RNA Extractions, cDNA Synthesis and Realtime PCR

Total RNA from porcine tissues and cells was isolated using a total RNA extraction kit
and a reverse transcription kit (TIANGEN, Beijing, China), according to the manufacturer’s
instructions. The qPCR primers of ACSL4, FASN, ACACβ, and C/EBPα were designed ac-
cording their cDNA sequence (GenBank NM_001033600.1; NM_007988.3; XM_006530111.4;
NM_001287514.1) with free online design tools (https://www.ncbi.nlm.nih.gov/tools/
primer-blast/index.cgi, accessed on 18 March 2020) The details of the realtime-PCR primer
sequences is in Table S1 and the relative quantification of (m)RNA expression was analyzed
according to standardized GAPDH content adopting the method of 2−∆∆CT.

2.7. Western-Blot Analysis

The total cellular protein extracts were collected in the RIPA Lysis and Extraction
Buffer (Thermo Fisher, Waltham, MA, USA). Protease inhibitor (PMSF) at a concentration
of 1% was added into the RIPA buffer to avoid proteolysis. For each sample, 50 µL protein
lysate collected in a 1.5 mL centrifuge tube was treated in an ice bath for 30 min, followed
by centrifugation at 10,000× g at 4 ◦C for 15 min. Protein supernatant in the tube was
transferred into a new tube and stored at 4 ◦C for further protein quantification by BCA
protein assay kit (P0006, Beyotime, Shanghai, China). In all, 20 µg of protein extract for each

https://www.thermofiser.com/us/en/home/brands/invitrogen/ambion.html
https://www.thermofiser.com/us/en/home/brands/invitrogen/ambion.html
https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi
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sample was subjected to 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE Gel Preparation Kit, Beyotime) and transferred to polyvinylidene difluoride
(PVDF) membrane (Bio-rad, Berkeley, CA, USA). The membranes were blocked in a TBST
(150 mM NaCl, 20 mM Tris-HCl at pH 8.0, 0.05% Tween 20) blocking buffer with 5%
non-fat dry milk powder at room temperature for 1 h. After three washes with the TBST
buffer, the membranes were then incubated with primary antibodies overnight at 4 ◦C
with shaking. After three washes in the TBST buffer, blots were incubated with secondary
antibodies. The protein bands were then visualized by ECL detection reagent (Beyotime).
The band identification and quantification were conducted using a ChemiDoc™ XRS+
System and Image Lab Software (BioRad). The primary antibodies used for Western
blotting were rabbit monoclonal antibody against the mouse ACSL4/FACL4 (ab205199,
Abcam; dilution 1:1000) and mouse monoclonal antibody against the human GAPDH
(60004-1-Ig, proteintech, Wuhan, China; dilution 1:2000). The HRP-conjugated secondary
antibodies were anti-mouse and anti-rabbit IgG (7076 and 7074, respectively, Cell Signaling
Technology; dilution 1:2000). The intensity of the protein bands was measured by the Image
Lab software package.

2.8. Transcriptome Analysis by RNAseq

After a 48 h transfection of the adipose precursor cells with siRNA, the samples were
lysed with TRIzol reagent and stored in a refrigerator at −80 ◦C. The RNA-seq library
for each sample was constructed by Beijing Compass Bio-Technology Co., Ltd., Beijing,
China (www.kangpusen.com, accessed on 20 June 2020) based on the protocols of Illumina
HiSeqTM2500/MiSeq™ to generate paired-end reads. The quality of the RNA-seq reads
from all the samples was checked using FastQC (0.11.5, Babraham institute, Cambridge,
UK). The reads that passed the quality control were mapped to the sus scrofa genome from
Ensembl using STAR program (2.5.2a).

2.9. Fatty Acid Analysis by Gas Chromatography-Mass Spectrometry

The adipose precursor cells were transfected with adenovirus vector. 1 × 107 cells
were harvested for each cell sample and resuspended with 1 mL of chloroform-methanol
(2:1) solution. The samples were snap frozen in liquid nitrogen and then dissolved at
room temperature. The samples were ground at 60 Hz for 2 min, followed by ultrasonic
treatment for 30 min. The samples were then centrifuged at 13,000 rpm for 5 min at 4
◦C and the supernatant was collected and mixed with 2 mL of 1% methanolic sulphate.
The mixed samples were esterified at 80 ◦C for 30 min and 1 mL of hexane was added
for extraction. The samples were washed at 4 ◦C with 5 mL dd H2O, followed by sodium
sulphate powder anhydrous to remove extra water. The supernatant was collected by
centrifuging at 13,000× g rpm for 5 min and mixed with 25 µL of methyl salicylate. The
supernatant from the mixture was placed on a DB5 capillary column (30 m × 0.25 mm) for
gas chromatography mass spectrometry (Agilent 6890N/5975B) analysis.

2.10. Statistical Analysis

The numbers of biological replicates and technical repeats in each experimental group
were three or more. The statistical analyses were performed using Graphpad Prism (Graph-
pad Software 6.0, Chicago, IL, USA). The data are expressed as means + SEM or SD. p-value
of 0.05 is considered statistically significant.

3. Results
3.1. The Isolation, Proliferation, and Differentiation of Porcine Intramuscular Preadipocytes

The differential velocity adherent technique was employed to isolate the intramuscular
preadipocytes from the pig muscles. After their attachment to the surface of the culture
dishes, the cells stretched out like fibroblasts in morphology and staggered protrusions
between adjacent cells were easily observed (Figure 1A). In the growth media, the in-
tramuscular fat precursor cells showed an S-shaped growth curve (Figure 1B). The cells

www.kangpusen.com
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proliferated robustly during the first 2 to 3 days of inoculation, and reached the plateau
phase after 4 days. In order to examine the fat deposition and lipid droplet morphology
in the cultured intramuscular adipocytes, the cell differentiation was induced and stained
with Oil Red O. After 3 days of induction, a small amount of lipid droplets was detected
(Figure 1C). The abundance of lipid droplets gradually increased from day 3 to day 9,
and a large number of lipid droplets appeared on day 9 (Figure 1C). Therefore, we suc-
cessfully established the intramuscular adipogenesis system with porcine intramuscular
pre-adipocytes for subsequent molecular and cellular functional studies.
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Figure 1. Isolation, proliferation and differentiation of pig intramuscular preadipocytes. (A) Purified
intramuscular preadipocytes from pig skeletal muscle. (B) The proliferation dynamics of porcine
intramuscular preadipocytes in culture. (C–E) The adipogenic differentiation of porcine intramuscular
preadipocytes at 3, 6, and 9 days. The upper panels are bright view and the lower panels are Oil Red
O staining. (Scale bars, 50 µm). (F) The quantitation of Oil Red O (ORO)-positive region for porcine
intramuscular preadipocytes at 3, 6, and 9 days. Data are expressed as means + SEM. * indicated
p < 0.05, *** indicated p < 0.001.

3.2. The Spatial-Temporal Expression Pattern of Pig ACSL4 Gene

We first examined the expression of ACSL4 gene in different tissues from the devel-
oping animals which are depositing intramuscular fat aggressively. We found relatively
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high expression of ACSL4 in the liver, lung and spleen (Figure 2A), suggesting that the
liver is the major organ for fatty acid synthesis. However, the ACSL4 expression in the
muscle tissues was much lower compared to other organs, indicating that ACSL4 is only
expressed in specific type of cells within the bulk muscle tissue, or it is not the predominant
fatty acid-CoA ligase isoform in the developing muscle. Therefore, we further validated
the ACSL4 expression in the purified intramuscular preadipocytes during the adipogenic
differentiation program. We detected both the mRNA and protein expression of ACSL4
in the preadipocytes purified from the pig skeletal muscle. The mRNA and protein levels
of ACSL4 gradually increased and peaked on day 3 during the adipogenic differentiation
process (Figures 2B,C and S1), when most of preadipocytes differentiated into adipocytes.
Subsequently, the expression of ACSL4 showed a steady declining trend, suggesting that
ACSL4 was induced in the early stage of adipogenic differentiation and remained low
during adipocyte maturation.
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Figure 2. The pig ACSL4 expression pattern in different tissues and during adipogenic differentiation.
(A) The ACSL4 gene expression in different pig tissues including heart, liver, spleen, lung, kidney, fat,
and skeletal muscle. (B) The mRNA expression levels of pig ACSL4 during adipogenic differentiation
of intramuscular preadipocytes. (C) The protein levels of pig ACSL4 during adipogenic differentiation
of intramuscular preadipocytes as shown by Western blot. Data are expressed as means + SEM.

3.3. Knockdown of ACSL4 in Intramuscular Preadipocytes Impairs Fat Deposition and
Cell Development

Next, we wondered whether the knockdown of ACSL4 gene in intramuscular
preadipocytes cells affects the gene expression associated with fat deposition. We per-
formed RNA-seq to measure the expression profiles of intramuscular preadipocyte cells
transfected with siRNA-NC and siRNA-ACSL4. The RT-qPCR and Western blot showed
that the knockdown efficiency could reach more than 70% and 80% for mRNA and protein
levels, respectively (Figures 3A,B and S1). Next, we performed transcriptome analysis in the
ACSL4 knockdown cells and the control cells to discover the differentially expressed genes
(DEG) and related pathways caused by the ACSL4 loss-of-function. A total of six RNA-seq
libraries were constructed. The sequencing reads data and all the expressed genes are
summarized in the supplementary information (Tables S2 and S3). Compared to the control,
134 genes were differentially expressed in the ACSL4 knockdown cells (Fold Change ≥ 2,
p < 0.05). Among the DEGs, we identified that many adipogenesis-related genes were
downregulated, including MOGAT1 [18], IL10 [19], TFAP2B [20], and ACSL6 [21], while
several negative regulators of adipogenesis, such as FABP4 [22] and SST [23], were up-
regulated (Figure 3C). The KEGG pathway analysis of the DEGs shows that the majority
of differentially expressed genes were enriched in signaling pathways that are important
during adipogenesis, such as “response to ATP” and “cellular response to growth factor
stimulus” [24]. Interestingly, several cellular development and differentiation pathways,
such as “cell exploration behavior” and “multicellular organismal response to stress” were
also enriched in the KEGG analysis of the DEGs (Figure 3D), indicating that ACSL4 could
be involved in basic cell development and differentiation processes. These results indicate
that ACSL4 is necessary for the normal adipocyte differentiation and could be responsible
for lipid composition of cell membrane by fatty acid oxidation or lipid production.
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Figure 3. Transcriptome analysis of siRNA mediated ACSL4 knockdown in the pig intramuscular
preadipocytes. (A) Realtime PCR showed ACSL4 gene was dramatically downregulated after siRNA
knockdown. (B) Western blot indicated ACSL4 protein was dramatically reduced after siRNA
knockdown compared to control. (C) Differentially expressed genes after ACSL4 knockdown as
shown by the volcano plot. (D) KEGG pathway analysis of the differentially expressed genes after
ACSL4 knockdown. Data are presented as the mean ± SEM. Comparisons were performed by
unpaired two-tailed Student’s t-tests. *** indicated p < 0.001.

3.4. Overexpression of ACSL4 Results in Enhanced Lipid Deposition and Elevated Polyunsaturated
Fatty Acids Synthesis in Pig Intramuscular Adipocyte

To further illustrate the function of ACSL4 in intramuscular adipogenesis and lipogen-
esis, we performed an adenovirus-mediated overexpression of ACSL4 and evaluated the
lipid deposition and composition in pig intramuscular preadipocytes. Compared to the
control, the transduction of the cells with Adeno-ACSL4 dramatically increased the ACSL4
protein expression and lipid deposition, as shown by the Western blot (Figures 4A and S1)
and Oil Red O staining (Figure 4B). We also observed significantly elevated adipogenic
marker gene expression including FASN, ACACB, and C/EBPα (Figure 4C). Thus, it is
concluded that ACSL4 is a positive regulator of intramuscular adipogenesis in pigs.
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Figure 4. Overexpression of pig ACSL4 gene increased adipogenesis and lipid deposition in pig
intramuscular preadipocytes. (A) Western blot showed that ACSL4 protein increased after adenovirus
mediated overexpression. (B) Oil Red O staining showed that ACSL4 overexpression stimulated
lipid deposition. (C) Realtime PCR showed that adipogenic genes FASN, ACACB, C/EBPa increased
significantly after ACSL4 overexpression. Bars are presented as the mean ± SEM. Comparisons were
performed by unpaired two-tailed Student’s t-tests. * indicated p < 0.05 and ** indicated p < 0.01.

Next, to understand how ACSL4 was involved in the de novo lipogenesis in pig muscle,
we applied mass spectrometry-based lipidomics to determine how ACSL4 overexpression
affects the composition and distribution of fatty acids in intramuscular preadipocytes.
The quantification of the lipid classes revealed dramatic ACSL4-induced changes in the
abundance of lipid species in several of the analyzed lipid classes. The overall abundance
of saturated fatty acids (SFAs), which are the most abundant lipid classes in intramuscular
adipocytes, was not affected by ACSL4 overexpression (Table 1). By contrast, we detected
an approximately 22% and 29% increase in the concentration of mono- and polyunsaturated
fatty acids (MUFA and PUFA, respectively) in response to ACSL4 overexpression (Table 1).
Further analysis showed that this increase was caused by increased levels of MUFA contain-
ing C16:1, C18:1, and C24:1 and PUFA containing C18:2, C18:3N6, and C20:4N6 (Table 1).
Both the n-3 fatty acid and n-6 fatty acid increased after ACSL4 overexpression but the
n-6/n-3 ratio remained stable.

Table 1. The fatty acid composition of samples.

Fatty Acid ADV4-ACSL4
(µg/1 × 107 Cells)

ADV4-NC
(µg/1 × 107 Cells)

Saturated fatty acid 50.63 49.07

Monounsaturated fatty acid 24.38 19.98

Polyunsaturated fatty acid 37.87 29.27

n-3 fatty acid 19.35 14.55

n-6 fatty acid 15.00 12.023

n-6/n-3 fatty acid 0.78 0.83

C14:0 (Myristic acid) 0.83 0.63

C14:1 (Myristoleic acid) 0.22 0.23

C15:0 (Pentadecanoic acid) 0.80 0.62

C15:1 (Pentadecenoic acid) 0.14 0.14

C16:0 (Palmitic acid) 21.84 21.99

C16:1 (Palmitoleic acid) 1.69 1.30

C17:0 (Heptadecanoic acid) 1.30 1.04

C17:1 (Heptadecenoic acid) 0.58 0.41

C18:0 (Stearic acid) 24.54 23.61

C18:1 (Oleic acid) 16.63 13.73

C18:2 (Linoleic acid) 2.58 1.89

C18:3N6 (γ- linolenic acid) 0.24 0.16

C18:3N3 (Linolenic acid) 0.13 0.11
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Table 1. Cont.

Fatty Acid ADV4-ACSL4
(µg/1 × 107 Cells)

ADV4-NC
(µg/1 × 107 Cells)

C20:0 (Arachidic acid) 0.69 0.64

C20:1 (Eicosenoic acid) 1.08 0.99

C20:2 (Eicosadienoic acid) 0.45 0.36

C20:3N6 (Eicosatrienoic acid triglyceride N6) 3.93 3.22

C20:3N3 (Eicosatrienoic acid triglyceride N3) 0.15 0.14

C20:4N6 (Arachidonic acid) 10.83 8.64

C20:5N3 (Eicosapentaenoic acid) 1.75 1.14

C21:0 (Heneicosanoic acid) 0.28 0.22

C22:0 (Behenic acid) 0.25 0.23

C22:2 (Docosadienoic acid) 0.49 0.45

C22:1N9 (Erucic Acid) 0.44 0.41

C22:6N3 (Docosahexaenoic Acid) 17.32 13.17

C24:0 (Lignoceric acid) 0.11 0.10

C24:1 (Nervonic acid) 3.59 2.79

Note: Cell sample is 1 × 107 cells and was resuspended in 1 mL of chloroform-methanol solution. Units in the
table means µg/1 × 107 cells.

4. Discussion

The quality of pork is closely related to the IMF content, so understanding the molec-
ular mechanisms of intramuscular adipogenesis is important for improving pork quality.
Numerous studies indicated that the role of the ACSL4 gene is associated with the IMF
content in different pig populations, but the intrinsic biological function of ACSL4 in
porcine intramuscular adipogenesis is still unclear. To explore the possible roles of ACSL4
in intramuscular adipogenesis, we first established and optimized the adipogenic differ-
entiation procedure by using the porcine preadipocytes derived from skeletal muscle. We
showed that pig ACSL4 expression levels increased during adipogenic induction and
decreased to the levels comparable to the pre-differentiation stage. The loss-of-function
experiments by siRNA knockdown in preadipocytes showed that ACSL4 is necessary for
the full proceeding of the early adipogenic differentiation transcription program. It sug-
gests that the ACSL4 could stimulate adipogenesis and is more effective in the early stage
of adipogenic differentiation. Therefore, consistent with other studies, ACSL4 is a positive
regulator of adipogenic differentiation of adipocytes [9,25,26], epithelial cells [27], and
smooth muscle cells [28] from different tissue origins. Our data also showed that ACSL4
expression remains low in the matured adipocytes, indicating that ACSL4 is dispensable
for the maintenance of fat cells and lipid storage. However, the ACSL4 gene could also
inhibit adipogenic differentiation in cells other than adipocytes, such as bone marrow-
derived macrophages [29]. Thus, it is possible that ACSL4 may produce distinct effects
in different tissues and thus the function of ACSL4 in adipogenesis is context-dependent.
We also noted the high expression profile of ACSL4 in lung tissue. Several studies have
revealed that ACSL4 is mainly expressed in peroxisomes and the ER, while the process
of lung lipid metabolism in lung tissue requires the involvement of substantial numbers
of peroxisomes [30,31]. We postulate that the critical effect of peroxisomes in lung tissue
causes the hyper-expression profile of ACSL4 in lung tissue.

Based on the effects of ACSL4 interference on the preadipocyte transcriptome, we
chose to focus our analyses of the lipogenesis and lipidome on fatty acid compositions.
Our results clearly showed that ACSL4 overexpression can significantly increase the adipo-
genesis and lipid accumulation in porcine intramuscular preadipocytes, as demonstrated
by the Oil Red O staining and marker gene expression. Since the higher ratio of polyun-
saturated (PUFA) to saturated fatty acids (SFA) and a more favorable balance between
n-6 and n-3 PUFA is preferred in meat products [32], we examined the fatty acid compo-
sition in ACSL4-overexpressed porcine intramuscular preadipocytes. Mass-spectrometry
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based lipidomics revealed the extensive remodeling of lipid compositions in response
to ACSL4 overexpression. Of the major lipid classes analyzed, ACSL4 overexpression
led to the enrichment of several species of MUFA and PUFA. Among them, γ-linolenic
acid, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and arachidonic acid
increased by 50%, 54%, 32%, and 25% respectively. The EPA and DHA of n-3 PUFA are
potent lipid mediators that are incorporated in many parts of the body and are essential in
various biological processes, such as brain development, as well as anti-inflammatory and
anti-aging processes [33]. PUFAs play an important role throughout life, but our human
bodies do not efficiently produce n-3 fatty acids such as EPA and DHA. Therefore, EPA
and DHA are essential in the human diet; they are mainly provided by marine sources,
such as fish oil supplements [34]. PUFAs are often present at very low levels in the meat
of domestic animals, especially those of the n-3 series, which have particularly beneficial
effects on health. Regarding the dramatic differences in oleic acid, we found that ACSL4 is
an essential contributor for triggering cellular ferroptosis [12,35]. Meanwhile, a previous
study showed that oleic acid reduced the mortality of ferric death cells [13]. We conclude
that differences in intracellular oleic acid may respond antagonistically to ACSL4 overex-
pression. Animal scientists are consistently searching for new ways to change meat fatty
acid composition, mainly through feeding plant or fish oil sources of PUFA to animals [36].
The current study provided new possibilities to increase PUFA levels through the genetic
selection or manipulation of the ACSL4 gene in pigs to enhance PUFA production and the
nutritional value of pork products.

5. Conclusions

In summary, our loss-of-function and gain-of-function experiments confirmed that
ACSL4 is directly involved in pig intramuscular adipogenesis. Moreover, the lipidomics
analysis also indicated that ACSL4 could be a potential target for the improvement of the
nutritional value of pork for human health.
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