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Abstract: Environmental pollution caused by petroleum-derived plastics continues to increase annu-
ally. Consequently, current research is interested in the search for eco-friendly bacterial polymers. The
importance of Bacillus bacteria as producers of polyhydroxyalkanoates (PHAs) has been recognized
because of their physiological and genetic qualities. In this study, twenty strains of Bacillus genus
PHA producers were isolated. Production was initially evaluated qualitatively to screen the strains,
and subsequently, the strain B12 or Bacillus sp. 12GS, with the highest production, was selected
through liquid fermentation. Biochemical and molecular identification revealed it as a novel isolate of
Bacillus cereus. Production optimization was carried out using the Taguchi methodology, determining
the optimal parameters as 30 ◦C, pH 8, 150 rpm, and 4% inoculum, resulting in 87% and 1.91 g/L
of polyhydroxybutyrate (PHB). Kinetic studies demonstrated a higher production within 48 h. The
produced biopolymer was analyzed using Fourier-transform infrared spectroscopy (FTIR), confirm-
ing the production of short-chain-length (scl) polyhydroxyalkanoate, named PHB, and differential
scanning calorimetry (DSC) analysis revealed thermal properties, making it a promising material for
various applications. The novel B. cereus isolate exhibited a high %PHB, emphasizing the importance
of bioprospecting, study, and characterization for strains with biotechnological potential.

Keywords: Bacillus cereus; fermentations; isolation; polyhydroxybutyrate; Taguchi design

1. Introduction

In the modern era, plastics have become an essential component of our everyday
existence, consequently resulting in a substantial increase in their production, surging from
1.5 million metric tons in 1950 to roughly 370 million metric tons in recent years [1]. In
response to this issue, heightened endeavors are being directed towards the creation of
biodegradable, bio-based polymers derived from sustainable resources, aimed at mitigating
the accumulation of synthetic plastics [2]. Intensive research has recently focused on
developing alternatives to synthetic plastics, notably biodegradable polymers and polymers
synthesized through microbial processes [3].
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Polyhydroxyalkanoates (PHAs), one of the representative natural polyester-based
biodegradable polymers, are a family of thermoplastic polymers that are produced by
several microorganisms growing under stress conditions, mostly by excessive carbon
sources and nitrogen limitations. The PHA family is considered biodegradable, non-toxic,
eco-friendly, and can be produced from sustainable resource materials [4]. The monomer
units of PHA can be categorized depending on their carbon atom count: short-chain- and
medium-chain-length PHAs (scl-PHA and mcl-PHA). Scl-PHA materials have thermoplas-
tic properties like those of synthetic plastics. One of the polymer’s scl-PHA representatives
is polyhydroxybutyrate (PHB), due to it containing a methyl group in its chemical structure;
additionally, PHB has a considerably higher crystallinity, enhanced thermal stability, and
reduced oxygen permeability compared to other members [5,6]. PHB or PH3B has gained
much attention as a replacement for non-biodegradable commercial polymers due to me-
chanical strength attributes analogous to those of polyethylene (PE) and polypropylene
(PP). PHB exhibits full biodegradability under diverse natural dynamic settings, including
soil, industrial composting, and seawater, by the presence of diverse aerobic and anaerobic
microbial consortia [7,8]. Moreover, these inherent physical properties of PHB enable its
diverse application in various commercial scenarios, such as its utilization as a packaging
material, agricultural coating, and as a carrier in drug delivery systems [9].

Consequently, there is an increasing demand for PHB production. According to
statistics from the Nova Institute, global PHB production was projected to increase from
34 thousand metric tons in 2013 to approximately 7.4 thousand metric tons in 2018. How-
ever, the significant obstacle hindering large-scale PHB production remains its production
cost [10]. Considerable endeavors have been invested in mitigating the production ex-
penses of PHB in recent years. This has been achieved by searching for efficient bacterial
strains and optimizing both the fermentation and recovery procedures [11].

Although the accumulation of these carbonosomes has been investigated in various
microorganisms, Bacillus species have shown a yield of up to 90% PHA from the total dry
cells produced by liquid fermentation. Because its physiological versatility enables it to
widely distributed in nature, Bacillus spp. is found in almost all habitats, from extreme to
temperate climates throughout the world. This genus is suggested as a viable candidate
among microorganisms for PHA production, primarily due to its capacity to attain elevated
yields, while requiring a minimal number of fermentation factors [7,12]. The cell size of
the Bacillus ranges from 0.6 to 1.2 µm in width and 0.9–8 µm in length [13]. However, the
size may vary depending on the species, culture medium, and growth conditions. On the
other hand, agricultural soil has been differentiated from other soils by reporting higher
numbers of PHB-producing isolates [14].

The objective of the present study was to isolate bacteria of genus Bacillus producers’
microbial biopolymers, screening strains by qualitative techniques, and select a hyper-
producing strain using the quantitative technique (liquid fermentation) for PHB production.
This study also aimed to determine the identity of the strain through molecular techniques.
In addition, we use a Taguchi experimental design to determine the optimal fermenta-
tion parameters, and probe with chemical analysis the structure of PHB, as well as its
thermal stability.

2. Materials and Methods
2.1. Chemicals and Substrates

All analytical-grade chemicals and substrates used in this project were obtained from
Sigma-Aldrich Co. (St. Louis, MO, USA).

2.2. Sample Collection and Isolation of Bacterial Strains

Soil samples were collected from agricultural soil in General Teran, Nuevo León,
Mexico (25◦20′45.0′′ N 99◦35′29.0′′ W) and subjected to treatment for the isolation of
microbial PHB producers. For this, 1 g of soil sample was dissolved in 10 mL of sterile
distilled water and heated at 80 ◦C for 10 min, to isolate only endospore-forming bacteria



Microorganisms 2024, 12, 863 3 of 18

(Bacillus). Serial dilutions of this sample were carried out up to 10−5. Then, 1 mL of the
diluted sample was poured onto nutritive agar plates and incubated at 30 ◦C for 48 h [15].
A total of 20 bacterial colonies were isolated and underwent staining studies (simple
staining, Gram staining, and spore staining) to confirm their morphology, Gram status, and
spore presence.

2.3. Qualitative Screening of PHB-Producer Bacterial Strains
2.3.1. Sudan Black B Staining

A thin smear of isolated bacteria was prepared on clean slides and heat-fixed. The
smeared surface was then stained with Sudan black B solution (0.3% w/v) for 10 min.
Afterward, it was washed with xylene and stained with safranin (0.5% w/v) for 5 min.
Following this, the stained smear was washed with distilled water and dried. The smear
was observed under a BA410E light microscope (Motic, Hong Kong) at a magnification of
100× [16].

2.3.2. Nile Blue A Staining

The isolates were smeared and heat-fixed on clean slides, stained with Nile blue A
dye (1% w/v) at 55 ◦C for 10 min, and washed with an acetic acid solution (8% v/v) and
then with distilled water. Finally, the preparation was covered with a clean coverslip and
visualized using a VE-146YT fluorescence microscope (VELAB tm, Pharr, TX, USA) at a
magnification of 100× with a wavelength of 460 nm. This procedure was carried out to
detect intracellular PHB granules, which appear as orange fluorescence [17]. The most
efficient PHB producers among the bacterial isolates were identified through the analysis of
Nile blue staining intensity by ImageJ V. 1.53. The integrated density of PHB-accumulating
cells in the isolates was determined by analyzing Nile blue-stained images obtained from
fluorescent microscopy studies using the ImageJ program plugin [18].

2.4. Quantitative Screening of PHB-Producer Bacterial Strains
2.4.1. Evaluation of Biomass Generation and PHB Production

The biomass generation and PHB production of qualitatively selected bacterial strains
were assessed using GRPD growth medium at pH 6. This medium comprises glucose
(15 g/L), peptone (2 g/L), yeast extract (2.5 g/L), and NaCl (1.25 g/L) [19]. To conduct
these assessments, we followed the methodology outlined by Martínez-Herrera et al. [20].
In this method, a 250 mL flask pre-inoculum, containing 100 mL of GRPD growth medium,
was inoculated with 100 µL (108 colony-forming units [CFU]/mL) of a spore solution of
the selected bacterial strains and incubated at 30 ◦C and 150 rpm for 24 h in a MaxQ4000
shaking incubator (Thermo Scientific, Waltham, MA, USA). Subsequently, PHB production
was evaluated in a 500 mL Erlenmeyer flask containing 200 mL of GRPD growth medium.
This was inoculated with 2% (v/v) of 24 h-old pre-inoculum and incubated at 150 rpm
and 30 ◦C for 48 h using a MaxQ4000 shaking incubator (Thermo Scientific, Waltham,
MA, USA).

2.4.2. PHB Extraction Protocol

PHB extraction and purification were carried out following the protocol reported
by Martínez-Herrera et al. [20]. In the first stage, cellular biomass was collected after
fermentation by centrifugation at 4 ◦C for 15 min at 10,000× g using a J251 ultracentrifuge
(Beckman Coulter, Brea, CA, USA), and the supernatant was discarded. In the second stage,
the obtained pellets were treated with commercial NaOCl (Cloralex®, Oakland, CA, USA)
and incubated for 30 min at 20 ◦C in a 5510R-MT ultrasound bath (Branson, CT, USA). The
digested sample was then centrifuged, and the pellets were washed with distilled water
and centrifuged. In the third stage, the resulting pellets were treated with chloroform and
boiled in a water bath for 1 min. The extract was placed in pre-weighed glass Petri dishes
and dried overnight.
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2.4.3. Quantification of Biomass Generation

The assessment of biomass generation followed the methodology outlined by Aram-
vash et al. [21]. To do this, 10 mL of growth medium was dispensed into pre-weighed 2 mL
microtubes and centrifuged for 15 min at 1900× g using a TM22R microcentrifuge (Beck-
man Coulter, Brea, CA, USA). After discarding the supernatant, the pellets were washed
with distilled water and subsequently dried at 60 ◦C for 24 h; finally, the microtubes were
weighed using an AG204 analytical balance, with an accuracy of 0.1 mg (Mettler Toledo,
Columbus, OH, USA). The total biomass generation was quantified in grams per liter (g/L).

2.4.4. Quantification of PHB Accumulation Percentage

The PHB accumulation percentage (%PHB) was calculated employing the following
formula [22]:

%PHB =

[
P
X

]
× 100

where P is the PHB production calculated in g/L and X is the biomass generation calculated
in g/L.

2.5. Statistical Analysis

The quantitative analysis (see Section 2.4) was performed in triplicate. Likewise, these
data were statistically compared and evaluated by employing a One-Way Analysis of Vari-
ance (ANOVA), as well as a Tukey posterior test for homogeneous groups; a p-value ≤ 0.05
was considered significant. Data are expressed as mean values ± standard deviation. The
parameters evaluated were biomass generation (g/L) and PHB production (g/L). Statistical
analysis was performed using SPSS v20 software.

2.6. Biochemical and Molecular Characterization
2.6.1. Biochemical Characterization

The identification of the selected bacterial strains (both qualitatively and quantitatively)
was carried out through macroscopic and microscopic examinations, as well as biochemical
tests. Macroscopic identification involved assessing colony morphology, surface pigment,
shape, and size on nutrient agar plates. Microscopic examination included Gram staining
to study staining behavior, cell arrangement and granulation, along with spore staining.
Furthermore, a battery of biochemical tests was conducted, including the oxidase test,
catalase test, Sulfur, Indole, and Motility (SIM) test, citrate test, Triple Sugar Iron (TSI) test,
Lysine Iron Agar (LIA) test, Motility Indole Ornithine (MIO) test, urea test, Methyl Red
test, Voges–Proskauer (MR-VP) test, Growth on NaCl 6.5% test, starch hydrolysis test, and
lecithinase test.

2.6.2. Molecular Characterization
DNA Extraction

Genomic DNA extraction was conducted from 24 h liquid culture, isolates using the
modified phenol–chloroform method [23]. Initially, to prepare the cell wall of the isolate,
multiple washes with TE Buffer were performed. Subsequently, the pellet from these
washes was resuspended in lysis buffer, and 0.1 mm glass beads were added. Using a
MagnaLyser instrument, four cycles of 40 s, with 1 min rest intervals, were applied. Using
the supernatant, the subsequent steps involved phenol–chloroform washes to separate the
genetic material from impurities, followed by 70% ethanol washes to remove residual phe-
nol. Finally, using the precipitate, it was quantified using a nanodrop spectrophotometer for
quality and concentration assessment. Agarose gels were then prepared for electrophoresis,
running the DNA samples with GelRed and the Hyperleadeff 1 kb marker. The agarose gel
was set at a 1% concentration, and the samples were electrophoresed at 110 V for 45 min.
Subsequently, the gels were visualized using a UV transilluminator.
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Phylogenetic Analysis by 16S rRNA Sequencing

As part of the polymerase chain reaction (PCR) methodology, universal primers 27F
(5′-AGAGTTTGATCMTGGCTCAG-3′) and 1492R (5′-CGGTTACCTTGTTACGACTT-3′)
were subjected to amplification in a reaction volume of 15 µL. This composition included
0.5 µg of the isolated genomic DNA, 0.5 µL for each primer, 7.5 µL of DreamTaq PCR
master mix (2X) (Thermo Fisher Scientific), and 6 µL of nuclease-free water. The thermal
cycler (Eppendorf, Hamburg, Germany) utilized for the PCR-cycling protocol was defined
as follows: an initial denaturation at 95 ◦C for 3 min, 30 cycles of denaturation at 95 ◦C for
30 s, primer annealing at 49 ◦C for 30 s, and extension at 72 ◦C for 1 min, followed by a final
extension step at 72 ◦C for 10 min. Subsequently, the amplified PCR products underwent
re-examination through electrophoresis on a 1% agarose gel.

The PCR product was cloned using the pGEM t easy vector system (Promega, Tokyo,
Japan), according to the manufacturer’s instructions and following the method published
by Fuentes et al. [24]. Finally, the genomic DNA sample was sent to be sequenced by Sanger
technology for the 16S rRNA gene using a 3130 genetic analyzer (Applied Biosystems,
Waltham, MA, USA). The sequence was derived from the resulting electropherograms, and
the isolate was identified using the BLAST tool (https://blast.ncbi.nlm.nih.gov/Blast.cgi,
accessed on 15 December 2023).

The 16S ribosomal sequence, obtained from the primers, was processed in Bioedit v
7.0.5.3. The sequence was subsequently queried against the NCBI database (https://blast.
ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=
blasthome, accessed on 15 December 2023) using the BLAST tool to identify the closest
matches to the isolate sequences. Subsequently, the sequence was aligned, incorporating
reference sequences obtained from the NCBI database. The alignment comprised 15 se-
quences and was further processed in MEGA11. Next, this alignment was analyzed to
determine the optimal substitution model for constructing the phylogenetic tree (in this
case, the Kimura 2-parameter). Finally, within the same software, the phylogenetic tree was
constructed using the “Maximum Likelihood”.

2.7. Optimization of PHB Production and Kinetic Studies
2.7.1. Optimization of Incubation Parameters

To determine the optimal parameters for PHB production, a Design of Experiments
(DoE) methodology was employed using the Taguchi experimental design, which aims
to optimize individual yield characteristics [25]. This design utilized a loss function to
measure the deviation between the experimental values and the desired values. This loss
function is then transformed into a signal-to-noise (S/N) ratio. In the analysis of the S/N
ratio, three types of quality characteristics are considered: ‘the smaller the better’, ‘the
bigger the better’, and ‘the nominal the best’ [26]. In this study, ‘the nominal the best’
approach was employed for the experimentation and validation of PHB optimization
processes [25]. This approach included four factors with five levels each: pH (6, 6.5, 7,
7.5, and 8), temperature (28, 30, 32, 34, and 36 ◦C), inoculum size (1, 2, 3, 4, and 5% v/v),
and agitation speed (110, 120, 130, 140, and 150 rpm), which were identified and selected
for PHB optimization (Table 1). Next, an experimental matrix was created to account for
variations in the control factors at the five different levels. A Taguchi orthogonal array
design L25 (5*4) was used for conducting 25 experimental trials to determine and analyze
the optimal PHB biosynthesis processes. The validation analysis was based on the designed
experiments and their results, using the signal-to-noise (S/N) ratio. During this step,
biomass generation (g/L), PHB (g/L), and %PHB were considered for validation. The
obtained data was analyzed using Minitab 17v software.

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
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Table 1. Factors and levels used in Taguchi experimental design to produce PHB.

Parameter Factor Level

1 2 3 4 5

Agitation speed (rpm) A 110 120 130 140 150

pH B 6 6.5 7 7.5 8

Temperature (◦C) C 28 30 32 34 36

Inoculum (%) D 1 2 3 4 5

2.7.2. Analysis of Bacterial Growth Kinetics

Growth kinetics analysis of the selected bacterial strain under optimal conditions was
conducted in triplicate. This kinetic analysis was performed at 0, 6, 12, 18, 24, 36, 48, 60,
and 72 h, while varying glucose concentrations (0, 5, 10, 15, 20, and 25 g/L) were used to
determine the optimal concentration; it used a One-Way Analysis of Variance (ANOVA).
Additionally, the 3,5-dinitrosalicylic acid (DNS) method was employed to measure sugar
concentrations throughout the fermentation time [27]. From the experimental data, the
following kinetic parameters were calculated to evaluate growth and PHB production
behavior [28–30].

µ =
ln
(

X
X0

)
T − T0

where µ is the specific growth rate (h−1) and X2 and X1 are the biomass generation (g/L)
obtained at time T1 and T2, respectively.

Td =
LN(2)

µ

where Td represents the doubling time (h), which is calculated as the natural logarithm of
2 divided by µ (h−1).

YP/X =
(P2 − P1)

(X2 − X1)

YX/S =
(X2 − X1)

(S1 − S2)

YP/S =
(P2 − P1)

(S1 − S2)

where YP/X represents the product yield on biomass (g/g), calculated as the difference
between the PHB produced (g/L) and the biomass generated (g/L). YX/S represents the
biomass yield on substrate (g/g), calculated as the difference between the biomass gen-
erated (g/L) and the substrate consumed (g/L). YP/S represents the product yield on
substrate (g/g), calculated as the difference between the PHB produced (g/L) and the
substrate consumed (g/L).

Qp =
P

(T2 − T1)

where Qp is the productivity rate (g/L*h), which is calculated as the ratio between the PHB
produced (g/L) and the fermentation time (h).

2.8. PHB Characterization
2.8.1. Fourier-Transform Infrared Spectroscopy (FTIR)

The characterization of functional groups was analyzed using Fourier-transform
infrared (FTIR) spectra, which were obtained with a PerkinElmer Spectrum Frontier spec-
trometer. A piece of biopolymer was scanned in the range of 400–4000 cm−1, with 25 scans
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recorded per sample, using a resolution of 4 cm−1 and the ATR mode. Analysis of the
spectra was conducted using GraphPad Prism 8 software.

2.8.2. Differential Scanning Calorimetry (DSC)

The thermal transitions of the composites were determined by DSC using a Q2000
differential scanning calorimeter (TA Instruments, New Castle, DE, USA). Samples were
placed into an aluminum hermetic pan, which was sealed and scanned over a range from
25 to 300 ◦C at a heating rate of 5 ◦C/min. Thermal properties, including melting en-
thalpy (∆Hm), melting temperature (Tm), crystallization temperature (Tc), and degradation
temperature (Td), were computed from the thermograms using Universal Analysis 2000
software v 2.0. All experiments were conducted in triplicate. In all cases, the sealed
pans that contained samples were equilibrated at 25 ◦C for 1 h before DSC analysis. The
crystallinity (χ) was evaluated using the formula reported by S. Maity et al. [31].

Xc (%) = (∆Hm)/(∆Hmo)× 100

where ∆Hm is the melting enthalpy of the sample and ∆Hmo is the heat of fusion of
standard PHB (146 J/g).

3. Results and Discussions
3.1. Isolation and Qualitative Screening

From the soil sample collected in our study, twenty bacteria were isolated with different
colony morphologies, obtained by pure culture techniques in nutritive agar media. The
isolate strains presented macroscopic morphological characteristics (circular colonies of
medium size exhibiting a grayish-white hue, opacity, and a flat, drying morphology) and
microscopic characteristics (Gram-positive, endospore-forming, bacilli shape) typical of
the genus Bacillus [32] (Figure 1). These bacterial strains were utilized for evaluation in a
qualitative screening of PHB producers.
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Figure 1. Microscopic morphology of the isolated Bacillus strains (1–20) observed through optical
microscopy after 24 h, 30 ◦C, Nutritive agar, Gram staining (100×).

The strains proved to be positive in the production of PHB. Through Sudan Black
B and safranin staining, granules composed of fatty acids, colored black, were observed
inside pink cytoplasm (Figure 2a). This stain is useful, because the size and volume that
the granule occupies within the cell can be observed, and it is considered a specific stain in
the search for strains that produce this biopolymer [33,34].
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Bacillus sp. 12GS (300 ppp).

Bacillus strains were also tested with Nile blue A for confirmation PHB production
(Figure 2b). It was observed that the isolates presented a different biopolymer production,
due to the presence of various degrees of orange-red fluorescence in all the strains, using
fluorescence microscopy [35]. This staining allows us to confirm and select the bacterial
strains in PHB producers by the intensity of fluorescence (Table 2). Bhagowati et al. [35]
considered an integrated density value of 6513.5 as a sign of a high producer of PHB. In
this way, strains of our study with the highest reported values, according to the results of
Sudan Black B, were selected for quantitative screening. The strains B7, B8, B10, B15, B16,
and B19 were discarded for low fluorescence.

Table 2. Qualitative evaluation of PHB by Bacillus strains.

Stainings of PHB (Qualitative Screening)

Strain Sudan Black B (Production) Nile Blue A
(Integrated Density)

B1 (++) 44,013.228

B2 (+++) 166,705.709

B3 (+++) 728,499.860

B4 (++) 31,617.513

B5 (++) 87,029.191

B6 (++) 8140.101

B7 (+) 2472.227

B8 (+) 2551.696

B9 (++) 7311.102

B10 (+) 4247.510

B11 (++) 173,663.663

B12 (+++) 1,695,242.386

B13 (++) 123,182.626

B14 (++) 72,675.122

B15 (+) 5060.914

B16 (+) 4856.413

B17 (+++) 175,356.035

B18 (+++) 347,629.345

B19 (+) 5420.557

B20 (++) 29,617.563
(+): Low production, (++): Medium production, (+++): High production.
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3.2. Quantitative Screening of the Bacterial Isolates

The selected isolates (B1, B2, B3, B4, B5, B6, B9, B11, B12, B13, B14, B17, B18, and B20)
were evaluated for quantitative screening. The results show that all the tested isolates
produced PHB (Table 3). The dry biomass ranged from 0.96 to 4.6 g/L; these results were
like the studies by Amiri et al. [36], which obtained a maximum 4.3 g/L of biomass using
Bacillus strains isolated from petrochemical wastewater, and Martínez-Herrera et al. [20],
which obtained 3.76 g/L using GRPD media and Bacillus isolated from soil. Likewise,
Thammasittirong et al. [37] obtained lower values of twenty isolates of Bacillus using 1%
of sucrose. PHB production varied from 0.31 to 0.65 g/L. All the strains were higher
than those found by Yadav et al. [38]; they obtained 0.07 g/L using a strain of Bacillus
subtilis, and Sun et al. [39] obtained 0.55 g/L using Bacillus sp. Other studies have reported
findings similar to this work in PHB g/L [40]. Likewise, the %PHB ranged between 18 and
40.7%; this yield was higher than other investigations reported by El-Kadi et al. [41] where
they obtained 20% PHB, using glucose as a carbon source. Other studies obtained values
with a similar %PHB to our work [42]. The strain B12 produced the highest dry biomass
production of 4.6 g/L, along with a PHB g/L production of 0.65 g/L.

Table 3. Production of biomass g/L, PHB g/L, and %PHB by Bacillus strains.

Strain Biomass g/L PHB g/L % PHB

B1 0.96 ± 0.18 e 0.39 ± 0.08 a 40.7 a

B2 1.67 ± 0.3 b,c,d,e 0.43 ± 0.15 a 25.8 a

B3 1.49 ± 0.07 d,e 0.59 ± 0.18 a 39.8 a

B4 1.4 ± 0.1 d,e 0.39 ± 0.14 a 28.1 a

B5 1.84 ± 0.22 b,c,d,e 0.52 ± 0.1 a 29.8 a

B6 1.73 ± 0.11 b,c,d,e 0.31 ± 0.05 a 18 a

B9 1.88 ± 0.07 b,c,d,e 0.48 ± 0.14 a 25.7 a

B11 1.95 ± 0.26 b,c,d,e 0.41 ± 0.01 a 21.1 a

B12 4.6 ± 0.7 a 0.65 ± 0.15 a 14.2 a

B13 2.81 ± 0.5 b 0.49 ± 0.16 a 17.3 a

B14 2.48 ± 0.27 b,c,d 0.44 ± 0.09 a 17.6 a

B17 2.69 ± 0.9 b,c 0.63 ± 0.15 a 18 a

B18 2.42 ± 0.17 b,c,d 0.44 ± 0.14 a 18.3 a

B20 1.63 ± 0.08 c,d,e 0.64 ± 0.15 a 39.1 a

Note: Superscript letters (a–e) indicate significant differences between treatments.

A significant difference (p ≤ 0.05) was observed between bacterial isolates only for
biomass g/L production. Therefore, the best isolate that yielded the highest biomass was
B12; this isolate was chosen and used in the subsequent experiments, with the intention of
increasing biopolymer production with the experimental design.

3.3. Biochemical and Molecular Characterization

The strain of Bacillus selected (B12 or Bacillus sp. 12GS) is Gram-positive and forms
endospores after Shaffer Fulton and Gram techniques staining; the catalase and oxidase
test were positive, and likewise, the lecithinase and starch hydrolysis were positive. These
positive biochemical tests, characteristics of Bacillus cereus, agree with Amiri et al. and Pirt-
tijärvi et al. [43,44]. Table 4 summarizes the biochemical and morphological characteristics
of the strain.
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Table 4. Biochemical and morphological characteristics of Bacillus sp. 12GS and Bacillus cereus saba.zh.

Characterization Bacillus sp. 12GS Bacillus cereus saba.zh [43]

Shape Rod Rod

Gram staining Gram-positive (+) Gram-positive (+)

Sporulation (+) (+)

Oxidase (+) (+)

Catalase (+) (+)

Sulfur (−) —

Indol (−) (−)

Motility (−) —

Citrate (−) (+)

Triple Sugar Iron (K/A) (K/A)

Lysine Iron Agar (−) —

Motility Indole Ornithine (−) —

Urea (+) (−)

Methyl Red (−) (−)

Voges–Proskauer (−) (+)

Growth on NaCl 6.5% (−) —

Starch hydrolysis (+) (+)

Lecthinase (+) —
(+): Positive reaction, (−): Negative reaction, (K/A): Alkaline/Acid. —: Not mentioned.

In order to amplify the 16S rRNA gene of B12 isolate, genomic DNA was extracted
and used for PCR amplification. As a result of the 16S rRNA gene amplification and
sequencing, the B12 strain was found to share a high identity with Bacillus cereus. The se-
quence of the gene that was obtained has been deposited with GenBank with the accession
number PRJNA1066477 and is referred to as Bacillus cereus 12GS. Phylogenetic trees were
constructed for the strain and other Bacillus species (Figure 3). Previous researchers have
conducted similar studies involving the analysis of the 16S rRNA gene for the identifi-
cation of unknown bacterial isolates that produce PHB. New strains of PHB-producing
B. cereus have been isolated from different ecosystems and were identified by analyzing
16S rRNA sequences, including bacteria from TNT-contaminated soil (B. cereus FA11) [42],
petrochemical wastewater (B. cereus saba.zh) [43], plastic waste (B. cereus BNPI-92) [25],
and soil (B. cereus VIT-SSR1) [33], (B. cereus 4N) [20].

B. cereus strains can produce these biopolymers under various nutritional and incuba-
tion conditions, such as an excess of carbon sources and nitrogen limitations [45]. Several
growth media have been identified for PHA production with B. cereus, and the type of
substrate added to the growth media does not impede its ability to produce PHAs. In
general, B. cereus strains can thrive and produce PHAs under conditions of uncontrolled
pH, moderate temperatures, and agitation speeds ranging from 120 to 250 rpm [46]. These
conditions should ensure optimal levels of dissolved oxygen, efficient mass transfer, and
prevent biopolymer degradation [19,47]. Variations in nutritional and incubation param-
eters, including pH, temperature, agitation speed, and fermentation time, affect PHA
productivity and the physicochemical properties of the extracted biopolymer. This variabil-
ity is attributed to metabolic plasticity, as optimal parameters and productive behaviors
differ among B. cereus strains and are often strain-specific. Indeed, each strain tends to
respond according to its original ecological niche. Frequent fluctuations in organic matter
and chemical compounds are common and influence the genetic and metabolic properties
of these strains, affecting their adaptability and productivity [46].
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3.4. Optimization of PHB Production and Kinetic Studies

PHB biosynthesis was optimized for the B. cereus 12GS strain using the DOE Taguchi
method (Table 5). Levels, means, and S/N ratios for the control factor that were able
to give the best value of PHB concentration (g/L) were calculated for factor a (level 5,
mean = 1.1613 and S/N = −13.88), factor b (level 5, mean = 0.9577 and S/N = 20.48), factor
c (level 2, mean = 1.0195, and S/N = 17.11), and factor d (level 4, mean = 0.9889, and
S/N = 14.93) (Figure 4a). An optimum PHB (g/L) mean value was predicted for 150 rpm,
pH 8, 30 ◦C, and 4% inoculum, as shown in Figure 4 (the best level for each factor). The
most important parameters were the agitation speed and pH. According to other studies,
Masood et al. [19] previously reported 150 rpm as the best agitation speed for PHB (g/L)
production using B. cereus FA11, and Mascarenhas et al. [48] reported pH 8 as the best for
PHB production using B. megaterium JHA.

Microorganisms 2024, 12, x FOR PEER REVIEW 12 of 19 
 

 

20 140 8 32 1 3.26 ± 0.32 1.11 ± 0.04 34.09 
21 150 6 34 4 3.42 ± 0.09 0.79 ± 0.19 23.10 
22 150 6.5 28 5 4.33 ± 0.62 1.06 ± 0.33 24.46 
23 150 7 30 1 2.6 ± 0.17 1.28 ± 0.14 48.78 
24 150 7.5 32 2 2.95 ± 0.12 1.67 ± 0.23 56.60 
25 150 8 34 3 2.2 ± 0.21 1.01 ± 0.16 45.98 

 
Figure 4. Effect of control factor (agitation speed, pH, temperature, and inocule) for PHB optimiza-
tion. (a) Mean of control factor for PHB (g/L). (b) Mean of S/N ratio for control factor on PHB (g/L). 

This suggests that the experimental design used to optimize PHB production was 
based on the combination of different factors and their individual performance [25,49]. 
These parameters (150 rpm, pH 8, 30 °C, and 4% inoculum) were probed, and the results 
of the optimization showed an increased PHB production, the values increasing by 0.65 
g/L PHB and 14.2% PHB in the quantitative screening (Section 3.4) to 1.91 g/L PHB and 
87.2% PHB (Table 6). Ronďošová et al. [50] optimized the medium for PHB production 
and obtained 49% PHB. As well, García et al. [51] report 29% PHB using the Taguchi ex-
perimental design. By evaluating the signal-to-noise (SN) ratio, it becomes possible to dis-
cern favorable characteristics (Figure 4b). These discrepancies could be because Bacillus 
strains demonstrate a variety of productive behaviors that are specific to each strain. In 
fact, each strain tends to respond according to its original place of isolation [46]. The pa-
rameter exhibiting the greater SN ratio signifies the highest impact factor. Consequently, 
this approach facilitates the optimization of the parameters. The experimental design de-
tailed the input factors and their associated responses [52]. In this case, the highest SN 
ratio is factor a (agitation speed), then factor 3 (pH), factor 4 (inocule), and finally, factor 
2 (temperature). 

Table 6. Comparison of B. cereus 12GS production under original and optimized conditions. 

Conditions Biomass (g/L) PHB (g/L) % PHB 
Original (pH 6, 30 °C, 2% inocule, 150 rpm) 4.6 ± 0.7 0.65 ± 0.15 14.2 

Optimized (pH 8, 30 °C, 4% inocule, 150 rpm) 2.19 ± 0.05 1.91 ± 0.1 87.2 

Figure 4. Effect of control factor (agitation speed, pH, temperature, and inocule) for PHB optimization.
(a) Mean of control factor for PHB (g/L). (b) Mean of S/N ratio for control factor on PHB (g/L).



Microorganisms 2024, 12, 863 12 of 18

Table 5. Experimental design using orthogonal array of Taguchi L25 (5*4).

Experiment
No.

Agitation Speed
(rpm) pH Temperature

(◦C) Inocule (%) Biomass
(g/L) PHB (g/L) % PHB

1 110 6 28 1 1.89 ± 0.57 0.65 ± 0.12 52.24

2 110 6.5 30 2 1.86 ± 0.14 0.58 ± 0.21 31.35

3 110 7 32 3 1.93 ± 0.52 0.62 ± 0.13 31.92

4 110 7.5 34 4 1.7 ± 0.01 0.53 ± 0.15 30.9

5 110 8 36 5 1.33 ± 0.07 0.25 ± 0.12 19.19

6 120 6 30 3 1.82 ± 0.11 1.01 ± 0.05 55.45

7 120 6.5 32 4 2.29 ± 0.18 0.93 ± 0.2 40.37

8 120 7 34 5 1.96 ± 0.17 0.58 ± 0.04 29.61

9 120 7.5 36 1 2.06 ± 0.05 0.61 ± 0.09 29.52

10 120 8 28 2 2.6 ± 0.06 1.14 ± 0.07 43.76

11 130 6 32 5 2.16 ± 0.12 0.63 ± 0.22 32.33

12 130 6.5 34 1 2.03 ± 0.27 0.42 ± 0.11 20.5

13 130 7 36 2 1.45 ± 0.08 0.3 ± 0.14 20.48

14 130 7.5 28 3 2.27 ± 0.11 0.7 ± 0.14 30.77

15 130 8 30 4 2.52 ± 0.34 1.26 ± 0.15 50.03

16 140 6 34 2 2.02 ± 0.41 0.53 ± 0.1 26.18

17 140 6.5 36 3 2.28 ± 0.25 0.55 ± 0.4 42.07

18 140 7 28 4 2.61 ± 0.25 1.52 ± 0.13 58.35

19 140 7.5 30 5 2.96 ± 0.43 0.97 ± 0.22 32.75

20 140 8 32 1 3.26 ± 0.32 1.11 ± 0.04 34.09

21 150 6 34 4 3.42 ± 0.09 0.79 ± 0.19 23.10

22 150 6.5 28 5 4.33 ± 0.62 1.06 ± 0.33 24.46

23 150 7 30 1 2.6 ± 0.17 1.28 ± 0.14 48.78

24 150 7.5 32 2 2.95 ± 0.12 1.67 ± 0.23 56.60

25 150 8 34 3 2.2 ± 0.21 1.01 ± 0.16 45.98

This suggests that the experimental design used to optimize PHB production was
based on the combination of different factors and their individual performance [25,49].
These parameters (150 rpm, pH 8, 30 ◦C, and 4% inoculum) were probed, and the results of
the optimization showed an increased PHB production, the values increasing by 0.65 g/L
PHB and 14.2% PHB in the quantitative screening (Section 3.4) to 1.91 g/L PHB and
87.2% PHB (Table 6). Rond’ošová et al. [50] optimized the medium for PHB production
and obtained 49% PHB. As well, García et al. [51] report 29% PHB using the Taguchi
experimental design. By evaluating the signal-to-noise (SN) ratio, it becomes possible to
discern favorable characteristics (Figure 4b). These discrepancies could be because Bacillus
strains demonstrate a variety of productive behaviors that are specific to each strain. In
fact, each strain tends to respond according to its original place of isolation [46]. The
parameter exhibiting the greater SN ratio signifies the highest impact factor. Consequently,
this approach facilitates the optimization of the parameters. The experimental design
detailed the input factors and their associated responses [52]. In this case, the highest SN
ratio is factor a (agitation speed), then factor 3 (pH), factor 4 (inocule), and finally, factor
2 (temperature).
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Table 6. Comparison of B. cereus 12GS production under original and optimized conditions.

Conditions Biomass (g/L) PHB (g/L) % PHB

Original (pH 6, 30 ◦C, 2% inocule, 150 rpm) 4.6 ± 0.7 0.65 ± 0.15 14.2
Optimized (pH 8, 30 ◦C, 4% inocule, 150 rpm) 2.19 ± 0.05 1.91 ± 0.1 87.2

The kinetic analysis showed the best concentration at 20 g/L (Figure 5). The B. cereus
12GS strain showed a 0.07 h−1 specific growth rate with a doubling time of 9.90 h (Table 7).
Likewise, the PHB biomass yield value (Y p/x) was 0.52 g/L*h. Other strains of Bacillus
reported lower values, around 0.40 g/L*h [53,54]. The PHB volumetric productivity value
(Qp) was 0.04 g/L*h, a value higher than reported by Ahmady-Asbchin et al. [55] and
Patel et al. [56] using glucose as a carbon source. On the other hand, other Bacillus cereus
were reported to have similar and lower values, utilizing 30 ◦C and 150 rpm in liquid fer-
mentation [57–59]. The time at which B. cereus 12GS reaches a maximum PHB biosynthesis
(48 h) is one of the advantages for the competitive production of this biopolymer at the
industrial level [60,61].
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Table 7. Kinetic parameters calculated for B. cereus 12GS.

Kinetic Parameter Value

µ (h−1) 0.07

µmax (h−1) 0.09

Td (h) 9.90

Ks (g/L) 5

Y p/x (g/L*h) 0.52

Y x/s (g/L*h) 0.22

Y p/s (g/L*h) 0.15

Y x + p/s (g/L*h) 0.37

qs (g/L*h) 0.09

qp (g/L*h) 0.014

Qp (g/L*h) 0.04
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3.5. PHB Characterization
3.5.1. Fourier-Transform Infrared Spectroscopy (FTIR)

Fourier-Transform Infrared (FTIR) spectroscopy analysis is a tool to show the chemical
functional groups present in the examined extract. The spectral pattern encompassing a
range from 400 to 4000 cm−1 is graphically shown in Figure 6. Notably, the formed peaks
at approximately 1719 cm−1 are attributable to the carbonyl group (C=O) characterizing
the ester. An additional peak at 1276 cm−1 is suggestive of the (-CH) group. Further
examination reveals a distinctive band appearing at 1450 cm−1, associated with the asym-
metric deformation of the (C-H) bonds within both the (-CH2) and (-CH3) groups, with
another notable occurrence at 1379 cm−1. Within the range of 1000 to 1300 cm−1, a series of
pronounced bands signifies the stretching of the (C-O) bond inherent to the ester group.
Importantly, all these spectral features align closely with the standard commercial poly-
hydroxybutirate (Sigma-Aldrich) (Figure 6); therefore, it is confirmed that the polymeric
extract studied is a short chain named polyhydroxybutyrate (PHB) [29,62].
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3.5.2. Differential Scanning Calorimetry (DSC)

B. cereus 12GS has been found to be a potent producer of polyhydroxybutyrate (PHB),
a biodegradable plastic characterized by promising thermal characteristics. Analysis of the
thermal properties of PHB was performed using DSC (Table 8), conduced to investigate
the melting enthalpy (∆Hm), melting temperature (Tm), crystallization temperature (Tc),
degradation temperature (Td), and crystallinity (χ) of PHB. The Tm and crystallinity of
PHB were found to be 172.49 ◦C and 42%, respectively; other studies [63] reported a
similar-value Tm of 165.6 ◦C for PHB produced by Bacillus megaterium. Bhagowati et al. [35]
reported a melting temperature (Tm) of 109.4 ◦C for PHB synthesized by this bacterium.
This observation was corroborated by Rehman et al. [64], who noted a Tm of 162 ◦C
and a crystallinity of 51.3%. However, Pati et al. [65] reported a lower Tm of 171 ◦C
and a crystallinity of 35%. The Tc found was 163.17 ◦C, a higher value compared to
Martínez et al. [20], using glucose as a carbon source in PHB production. The Td was found
to be 237.24 ◦C, a similar value to what was reported in the literature [63,65]. The ∆Hm
was reported as 61.55 J/g, a result similar to Oliveira et al. [66], with 66.9 J/g for PHB
produced by fermentation with Cupriavidus necator. The thermogram was compared with
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standard PHB (Sigma-Aldrich) (Figure 7). The variations observed stem from disparities in
the production and extraction methodologies, as well as the bacterial strain used. Despite
these discrepancies, the thermal characteristics of polyhydroxybutyrate (PHB) synthesized
by B. cereus 12GS generally exhibit favorable attributes, making it a promising candidate
for diverse applications; likewise, the high thermal stability of polyhydroxyalkanoates
(PHAs) represents an important parameter in the polymerization process, as it permits the
polymer to reach elevated temperatures [67]. The results obtained by DSC indicate that
the PHB produced by B. cereus 12GS exhibits a lower temperature and molecular weight
(apparently), compared to the control PHB. However, this positions it as a polymer of
low fragility but with a better biodegradation rate, making it suitable for applications in
disposable articles and food packaging [68–70].

Table 8. Thermal properties of the commercial PHB control (Sigma-Aldrich) and the PHB produced
by B. cereus 12GS.

Sample Tm (◦C) ∆Hm (J/g) Tc (◦C) Td (◦C) Xc (%)

PHB control (Sigma-Aldrich) 177.38 76.78 166.33 277.83 52.59

PHB by B. cereus 12GS 172.49 61.55 163.17 237.82 42
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4. Conclusions

This study demonstrates a strain of B. cereus recently isolated from agricultural soil
as a high PHB producer up to 87%, without specific growth requirements in the culture
medium. Moreover, when exposed to alkaline pH, it exhibits an enhanced yield, which
is unusual for a bacterial strain of this genus. This was evidenced through the Taguchi
Design of Experiments (DoE), which facilitates the identification of the most favorable
production conditions. Additionally, chemical analyses were crucial in confirming the
structure of short-chain-length polyhydroxyalkanoate (scl-PHA), denominated as polyhy-
droxybutyrate (PHB).
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