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Abstract: In Saccharomyces cerevisiae, pH homeostasis is reliant on ATP due to the use of proton-
translocating ATPase (H+-ATPase) which constitutes a major drain within cellular ATP supply.
Here, an exogenous proton-translocating pyrophosphatase (H+-PPase) from Arabidopsis thaliana,
which uses inorganic pyrophosphate (PPi) rather than ATP, was evaluated for its effect on reducing
the ATP burden. The H+-Ppase was localized to the vacuolar membrane or to the cell membrane, and
their impact was studied under acetate stress at a low pH. Biosensors (pHluorin and mQueen-2m)
were used to observe changes in intracellular pH (pHi) and ATP levels during growth on either
glucose or xylose. A significant improvement of 35% in the growth rate at a pH of 3.7 and 6 g·L−1

acetic acid stress was observed in the vacuolar membrane H+-PPase strain compared to the parent
strain. ATP levels were elevated in the same strain during anaerobic glucose and xylose fermenta-
tions. During anaerobic xylose fermentations, co-expression of pHluorin and a vacuolar membrane
H+-PPase improved the growth characteristics by means of an improved growth rate (11.4%) and
elongated logarithmic growth duration. Our study identified a potential method for improving
productivity in the use of S. cerevisiae as a cell factory under the harsh conditions present in industry.

Keywords: Saccharomyces cerevisiae; pH homeostasis; ATP; proton-translocating ATPase (H+-ATPase);
proton translocating pyrophosphatase (H+-PPase); pHluorin; mQueen-2m; acetic acid; glucose; xylose

1. Introduction

The production of food supplements, such as S-Adenosylmethionine and glutathione,
in yeast species such as Saccharomyces cerevisiae and Candida utilis is promising for the
industrial settings due to their high flux toward these compounds [1,2]. However, recent
studies have shown that the production of these compounds could be further improved by
increasing ATP levels [2–4]. In the production of isoprenoid farnesene and polyketides in
various yeasts, [5] extensive engineering aiming at reducing ATP usage was required [5–7].
Increased ATP levels have recently been achieved in S. cerevisiae through the expression of
ATP-independent light-driven proton pumps [8], but its application in production strains
is yet to be tested. Thus, the total ATP supply could be a bottleneck to produce fine and
bulk chemicals with microbial cell factories, and attempts to improve ATP supply have
already taken various approaches [9].

In S. cerevisiae, pH homeostasis is presumed to use a majority of the ATP produced by
glycolysis [10]. This is due to the use of H+-ATPases (Pma1p and vacuolar ATPases) for
pH homeostasis within the cell organelles, as well as the cytoplasm [10,11]. These pumps
use 1 mole of ATP per translocated mole of protons [12]. Alternatively, organisms such as
bacteria, archaea, and plants use inorganic pyrophosphate (PPi) in addition to ATP as an
energy carrier [13,14]. This molecule is a byproduct of various anabolic processes, especially
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in DNA, RNA, and protein synthesis [15]. In yeast, however, the role of PPi is not well
understood and the majority of the cytosolic PPi formed is hydrolyzed by Ipp1p (inorganic
pyrophosphatase) producing heat [16–19]. PPi has also been shown to facilitate the release
of inorganic phosphate (Pi) from vacuoles under in vitro conditions [20], but other roles are
yet to be investigated. Thus, this may represent an untapped energy source, as it has been
observed that PPi concentrations in S. cerevisiae can be 10 to 1000 times higher than ATP
during early growth on glucose under aerobic, as well as oxygen-limited conditions [21].

Previous studies identified conditions under which there is either an ATP limitation
or ATP formation flux limitation in S. cerevisiae [12,22–25]. One such condition has been
the growth and ethanol production from lignocellulosic biomass in the second-generation
biofuel process. This substrate has numerous inhibitory compounds produced during
their pretreatment steps, including acetic acid that arises from hemicellulose depolymer-
ization [26]. The acid stress tolerance in S. cerevisiae is facilitated by an active export of
protons via the expenditure of ATP [12,23], which is carried out by H+-ATPases (Pma1p
and Vma3p) [27]. The upregulation of PMA1 has also been shown to confer increased acetic
acid tolerance in shake flask cultures [28]. Preadapting yeast by exposure to low levels of
acetic acid also reduced its impact on ethanol productivity, but a similar genetic response
was seen [29]. Another condition was the growth of engineered S. cerevisiae on xylose which
is abundant in lignocellulosic biomass [25,30]. Under these conditions, the pH homeostasis
mechanism is not well elucidated. Nevertheless, it is well understood that the proteins
for pH homeostasis (H+-ATPases) are post-translationally regulated by glucose [10,31].
In S. cerevisiae strains engineered to utilize xylose via the xylose reductase/xylitol dehydro-
genase (XR/XDH) pathway, a relatively higher demand for ATP was observed due to the
reaction in which xylulose is phosphorylated to xylulose 5-phosphate by xylulose kinase
(XK), the need to overexpress the entire pentose phosphate pathway, the high expression
levels of XK, and the lack of a known negative feedback mechanism to control the ATP
utilization of the enzyme [32,33].

In the current study, it was evaluated whether engineered strains of S. cerevisiae can
utilize PPi as an alternative energy carrier to improve growth and ethanol production, and
under what environmental conditions this phenotype will emerge. A proton-translocating
pyrophosphatase (H+-PPase) from Arabidopsis thaliana was used to assist in maintaining the
intracellular pH (pHi) homeostasis. This protein, which is instrumental in seed germination
in A. thaliana, has been expressed successfully in S. cerevisiae before and shown to confer
amine fungicide resistance, as well as increased tolerance to metal stressors (Cd, Mn,
and Zn); however, these studies did not focus on the impact of heterologous expression on
the growth rate, productivities or their effects on cellular morphology [34–37]. Since it is
known that inorganic pyrophosphate homeostasis is essential for proper yeast growth [38],
an overexpression of a heterologous PPi-driven proton pump may impact the fermentation
profiles of the yeast. To provide additional real-time measurements, the pHi and ATP
levels were studied using the pHluorin and mQueen biosensors [39–41]. The present study
expands on these earlier studies by examining the impact of the A. thaliana H+-PPase on
the pHi homeostasis of engineered S. cerevisiae strains, especially during stress conditions
that exist within industrial settings: (a) growth at a low pH in the presence of acetic acid
and (b) xylose fermentation, using glucose fermentation as the control. The H+-PPase was
targeted toward either the cell membrane or the vacuolar membrane, and the impact of its
localization on cell morphology, growth, physiology, pHi and ATP levels, was evaluated.
The relatively small GFP-based biosensors used for pHi and ATP usually have a minimal
impact on growth, but manifested varying degrees of impact on growth depending on the
severity of the environmental conditions.

2. Materials and Methods
2.1. Strains and Maintenance

All yeast strains used in this study are mentioned in Table 1. Escherichia coli NEB5α
(New England Biolabs, Ipswich, MA, USA) made chemically competent was used as the
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general cloning host for plasmid construction and maintenance [42]. All organisms and
strains were stored in 25% glycerol at −80 ◦C.

Table 1. List of the nine S. cerevisiae strains used in this study. ((Tc) is the signal peptide from Trypanosoma
cruzi; (Suc2) is the signal peptide (first 25 amino acids) of invertase as used in Drake et al. [34]).

Strain Designation Strain Name Relevant Genotype References

TMB 3504 Parent Strain

CEN.PK 2-1C; MATa; ura3-52; ∆gre3;
his3::HIS3 PGK1p-XKS1-PGK1t;

TAL1::PGK1p-TAL1-PGK1t;
TKL1::PGK1p-TKL1-PGK1t;
RKI1::PGK1p-RKI1-PGK1t;

RPE1::PGK1p-RPE1-PGK1t; ura3::YIpRC5p

[43]

TMB_KS_S02 Vacuolar membrane H+-PPase strain TMB 3504; XI-3::TEF1p-(Tc)AVP1-CYC7t This study

TMB_KS_S03 Cell membrane H+-PPase strain TMB 3504; XI-3::TEF1p-(Suc2)AVP1-CYC7t This study

TMB_KS_S04 Parent strain with pHluorin TMB 3504; X-4::GPD1p-pHluorin-CYC7t This study

TMB_KS_S05 Parent strain with mQueen TMB 3504; X-4::GPD1p-mQueen2m-CYC7t This study

TMB_KS_S06 Vacuolar membrane H+-PPase strain
with pHluorin TMB KS S02; X-4::GPD1p-pHluorin-CYC7t This study

TMB_KS_S07 Vacuolar membrane H+-PPase strain
with mQueen TMB KS S02; X-4::GPD1p-mQueen2m-CYC7t This study

TMB_KS_S08 Cell membrane H+-PPase strain
with pHluorin TMB KS S03; X-4::GPD1p-pHluorin-CYC7t This study

TMB_KS_S09 Cell membrane H+-PPase strain
with mQueen TMB KS S03; X-4::GPD1p-mQueen2m-CYC7t This study

The E. coli strains were grown and maintained in a Luria broth (LB) [44] supple-
mented with ampicillin (100 µg·mL−1) and agar (15 g·L−1) whenever necessary. All E. coli
cultivations were carried out at 37 ◦C for 16 to 18 h.

The yeast strains were revived and maintained in YPD (yeast extract 10 g·L−1, pep-
tone 20 g·L−1, D-glucose 20 g·L−1) supplemented with geneticin (200 µg·mL−1) and
nourseothricin (100 µg·mL−1) for CRISPR-Cas9 modifications. All yeast cultivations were
carried out at 30 ◦C.

2.2. Plasmid Construction

The plasmids used in this study are listed in Table 2. pUC57-VP-Suc2PSP-AVP1
contained a yeast codon-optimized vacuolar H+-PPase sequence (AVP1) from Arabidopsis
thaliana fused to signal peptides consisting of both the N-terminal domain of Trypanosoma
cruzi H+-PPase, followed by the N-terminal domain of the endogenous S. cerevisiae in-
vertase (the first 25 amino acids from Suc2p), as mentioned in [34], were synthesized by
GenScript (Piscataway, NJ, United States). Restriction enzymes, Phusion High-Fidelity
DNA polymerase, DreamTaq polymerase, and T4 DNA ligase (5 U·µL−1) were obtained
from Thermo Fisher Scientfic (Waltham, MA, United States). Plasmid extraction, gel extrac-
tion and PCR purification were carried out using GeneJET extraction kits (Thermo Fisher
Scientific) according to the manufacturer’s protocols. Primers were obtained from Eurofins
Genomics (Ebersberg, Germany). The plasmid pTMB_KS_042 was constructed by ampli-
fying pUC57-VP-Suc2PSP-AVP1 with the primer pair 88—Tc_VP_R and 88r—AVP1_FW,
and was blunt-end-ligated. The plasmid pTMB_KS_043 was constructed by amplifying
pUC57-VP-Suc2PSP-AVP1 with the primers 89—Suc2SP_F and 90—KS_Tef1p_Rev, and was
blunt-end-ligated. The cassettes of pTMB_KS_044 and pTMB_KS_045 were obtained by
cloning using BamH1 and KpnI restriction sites.
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Table 2. Plasmids used in this study. ((Tc) is the signal peptide from Trypanosoma cruzi; (Suc2) is the
signal peptide (first 25 amino acids) of invertase as used in Drake et al. [34]).

Name Relevant Genotype Source

pRSET-QUE2m ColE1; AmpR; T7p-QUEEN-2m-T7t [40] [Addgene; #129350]
pUC57-VP-Suc2PSP-AVP1 AmpR; M13p-TEF1p-(Tc)(Suc2)AVP1-CYC7t This study

pYES-pACT1-pHluorin AmpR; URA3; ACT1p-pHluorin-CYC1t [39]
p426-GPDp URA3; AmpR [45]

pTMB_KS_036 AmpR; URA3; GPD1p-pHluorin-CYC7t; This Study
pTMB_KS_038 AmpR; URA3; GPD1p-Queen-2m-CYC7t; This Study

pCFB2312 KanR; pTEF1p-Cas9-CYC1t [46]
pCFB3035 gRNA_X-4; natMX [46]
pCFB3042 X-4 MarkerFree backbone; Geneticin [46]
pCFB2904 gRNA_XI-3; natMX [46]
pCFB3045 XI-3 MarkerFree backbone; Geneticin [46]

pTMB_KS_040 pCFB3042; GPD1p-pHluorin-CYC7t This Study
pTMB_KS_041 pCFB3042; GPD1p-Queen-2m-CYC7t This Study
pTMB_KS_042 AmpR; M13p-TEF1p-(Tc)AVP1-CYC7t This Study
pTMB_KS_043 AmpR; M13p-TEF1p-(Suc2)AVP1-CYC7t This Study
pTMB_KS_044 pCFB3045; TEF1p-(Tc)AVP1-CYC7t This Study
pTMB_KS_045 pCFB3045; TEF1p-(Suc2)AVP1-CYC7t This Study

The fluorescent sensor cassette for pHi was constructed by amplifying the pHluorin
gene from pYES-pACT1-pHluorin using 84r—phlu_BamH_F and 85—phlu_EcoRI_R and
cloned into p426GPD using BamHI and EcoRI sites to obtain pTMB_KS_036. The fluorescent
sensor cassette for monitoring intracellular ATP levels was constructed by traditional
cloning of the Queen2m gene from pRSET-QUE2m into p426GPD using BamHI and EcoRI
sites to attain pTMB_KS_038.

The plasmids for integration of the sensor cassettes into the X-4 intergenic site designed by
Jessop-Fabre et al. (pTMB_KS_040 and pTMB_KS_041) targeted by pCFB3042 [46] were assem-
bled from pTMB_KS_036 and pTMB_KS_038 by amplification with NM_CYC7tSdaI_RV_R
and NM_GPDpSac1_FW_F, and restriction cloning into pCFB3035 using SdaI and SacI sites.
All plasmids constructed were confirmed using Sanger sequencing from Eurofins Genomics
(Ebersberg, Germany), using the primers listed in Supplementary Table S1.

2.3. Yeast Strain Engineering

The different strains of S. cerevisiae were obtained using the CRISPR/Cas9 system [46].
High-efficiency competent yeast cells were obtained by using a modified version of the
lithium acetate method [47] that used 10% (v/v) DMSO prior to the heat shock treatment.
TMB 3504 containing pCFB2312 was transformed with pCFB2904 in addition to NotI
linearized pTMB_KS_044 or pTMB_KS_045 to acquire the vacuolar membrane H+-PPase
strain (TMB_KS_S02) and the cell membrane H+-PPase strain (TMB_KS_S03), respectively.

Strains TMB 3504, TMB_KS_S02, and TMB_KS_S03 were subjected to subsequent trans-
formation using pCFB2312, pCFB3035, and NotI linearized pTMB_KS_040, and pTMB_KS_041
to obtain strains TMB_KS_S04 to TMB_KS_S09. The verification of the transformants was
achieved by colony PCR using primers mentioned in Supplementary Table S1.

2.4. Microtiter Plate Cultures

Single colonies of the different strains were inoculated into 5 mL of a Verduyn mineral
medium [48] at pH 5.0 containing 20 g·L−1 of glucose. The culture was incubated for
24 h to 26 h at 30 ◦C and 180 rpm, washed with sterile H2O and then used to inoculate
a 96-well microtiter plate containing a Verduyn mineral medium at pH 5.0 or pH 3.7
with 20 g·L−1 of glucose and 0, 3, or 6 g·L−1 of acetic acid to an optical density (OD) of
approximately 0.1. The pH of the mineral medium was adjusted to 3.7 using 3 M KOH
after adding glacial acetic acid or with 2 M H2SO4 when no acetic acid was added. The OD
was measured at 620 nm every 2 h in an automated spectrophotometer (Multiscan Ascent,
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Thermo Electron Corporation, Waltham, MA, USA) maintained at 30 ◦C with background
shaking for 2 min at 8 min intervals. A total of three technical replicates (3 wells) per
biological triplicate (3 independent clones) were performed for each condition. At the end
of the growth experiment, cell count was carried out by using a MACSQuant VYB with an
uptake volume of 15 µL culture and a flow rate of 25 µL·min−1 to get the correlation of the
cell number to OD620.

The maximum growth rates were estimated by using the logistic model in Growthcurver [49]
on R v4.2.2. The growth rate was determined using all the data in the technical triplicates
for each biological triplicate. The growth rates and the cell counts were subjected to an
ANOVA followed by a Tukey’s post hoc test whenever applicable.

2.5. Growth Studies in Bioreactors (or Growth Studies or Cultivations)

A 3 L bioreactor (Applikon, Schiedam, The Netherlands), equipped with an ADI
1025 Bio-Console and an ADI 1010 Bio-Controller, was used for culturing 2 different
biological clones of the yeast strains at a working volume of 1 L. The pH of the medium
was maintained at 5.0 ± 0.1 by automatic titration of 3 M KOH. The bioreactor was kept at
30 ◦C using an electric heat blanket and the stirring was set at 400 rpm.

For fermentations on glucose, the pre-culture was prepared by inoculating a single
colony from a YPD plate into 30 mL of Verduyn mineral medium with glucose (20 g·L−1)
and grown aerobically in baffled shake flasks for 24 to 26 h. The bioreactor was sparged
continuously with N2 at 400 mL·min−1, and inoculations of 0.01 g CDW·L−1 were carried
out after 2 h of sparging to ensure anaerobic conditions.

The pre-cultures for xylose fermentations were started by inoculating a single colony
into 5 mL of YPD and incubated overnight. The overnight culture was washed, and the
resuspended cells were inoculated in a sealed flask to an OD620 of 0.3 in a 50 mL Verduyn
mineral medium with xylose (50 g·L−1) and incubated under oxygen-limited conditions
in 250 mL serum vials with a 23 gauge 1′′ needle connected to a sterile syringe filled
with cotton as a gas vent and incubated for 36 to 48 h. The bioreactor was sparged at
250 mL N2·min−1 for 2 h and subsequently, the bioreactor was sealed after inoculation with
0.03 gCDW·L−1. This condition was sustained until the biomass reached 0.06 gCDW·L−1,
after which N2 sparging was reinitiated. Up to 5 mL of samples were frequently taken
for OD, flow cytometry and HPLC analysis. Of the samples, 25 mL was taken for cell dry
weight measurements at 3 time points during logarithmic growth.

2.6. Analytical Methods

Continuous CO2 analysis in the effluent gas was performed using either a BlueVary
(BlueSens gas sensor GmbH, Herten, Germany) or a Tandem PRO Gas analyzer (Magellan
Instruments Ltd., Limpenhoe, UK). The trends for CO2 production were used to determine
the end of the batch fermentations. The Tandem PRO Gas analyzers logged data at 10 s
intervals, whereas the BlueVary gas analyzer had 5 s intervals.

Organic acid detection was performed using a HPLC (Waters, Milford, MA, USA)
equipped with an Aminex HPX-87H ion exchange column being maintained at 60 ◦C with
5 mM H2SO4 as an eluent pumped at 0.6 mL·min−1. Detection was performed using a
refractive index detector (Shimadzu, Tokyo, Japan). Optical density measurements were
performed using an Ultraspec 2100 pro spectrophotometer (Amersham Biosciences, Lit-
tle Chalfont, UK) at 620 nm. Cell dry weight measurements were obtained by filtering
10 mL of culture through 47 mm SupourTM 450 membrane disc filters (Pall Life Sciences,
Port Washington, NY, USA) [50]. Phase contrast microscopy was carried out during the
logarithmic growth phase using a Leica DM750 Microscope equipped with a ICC50W
camera module (Leica Microsystems, Wetzlar, Germany).

2.7. Flow Cytometry

All flow cytometry analyses for growth studies in bioreactors were carried out with
a MACSQuant® VYB flow cytometer (Miltenyi Biotec, Bergisch Gladbach, Germany) ap-
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plying a flow rate of 50 µL·min−1 and a threshold of 0.83 on the forward scatter. The cell
suspensions were diluted to an OD of 0.1 to 0.2 using PBS with 1.32 µg·mL−1 of pro-
pidium iodide [51]. The measurement of the fluorescence for the biosensors was started
within 10 min of sampling. For obtaining standard curves for the pHluorin sensor, samples
taken from the bioreactor were spun down and resuspended in a PBS buffer (pH 7.4) with
0.04 mM Digitonin and incubated with shaking at 30 ◦C for 15 min. The cells were then
spun down and resuspended in 0.2 M phosphate buffer at pH 5.7, 6.4, 7.0, and 8.0 [39].
The zero value for the mQueen ATP sensor was obtained by resuspending the sample from
the bioreactor in a Verduyn medium supplemented with 0.5 g·L−1 2-deoxy-D-glucose and
incubated at 30 ◦C for 1 h [41,52].

The measurements of the pHi with pHrodo® green required a staining period of 30 min
in an LCIS buffer according to the manufacturer recommendations. The protocol for pHi
using this dye was performed on one of the xylose fermentations conducted in bioreactors
on the strains without biosensors in technical replicates and it constituted the resuspension
of a cell pellet to an OD of 0.1 to 0.2 in an LCIS buffer (pH 7.4) with 4 µM of pHrodo® green
and incubation at 30 ◦C for 30 min followed by centrifugation and resuspension in a PBS
buffer (pH 7.0). The flow cytometry used the same instrument setting mentioned above.
For the calibration curve for pH estimation using pHrodo® green, a larger volume of cells
was stained and then incubated at 70 ◦C with 0.04 mM digitonin for 15 min and then split
into 4 tubes and resuspended in citrate–phosphate buffers at pH 4.6, 5.6, 6.6, and 7.6.

The obtained flow cytometry data for the biosensor strains were processed in
MACSQuantifyTM (version 2.13.3). The data were subjected to a polygonal exclusion (not)
gate on the area plots of B1 vs. B2 (525/50 nm vs. 593/50 nm) to select for non-permeable
fluorescent cells. These fluorescent cells were then subjected to an ellipsoid gate on the area
plots of forward scatter (FSC-A) and side scatter (SSC-A) to eliminate instrument noise.
From the remaining events, the means of V2-A (525/50 nm, emission from the violet laser)
and the B1-A (525/50 nm, emission from the blue laser) were obtained. These values were
used to obtain the emission ratios (405/488 nm) from excitation at 405 and 488 nm. The ob-
tained ratio values were used in a linear equation obtained from the ratio values of the
fluorescence emission of the standard curves to obtain pHi values. For the intracellular ATP
levels, the ratio of V2 over B1 from the cells resuspended in 0.5 g·L−1 2-deoxy-D-glucose
was taken as the zero value for each strain and the relative ratio of the samples was used as
an estimate of ATP levels.

The flow cytometry data for the pHrodo® staining were processed in FlowJo (Version
10.10.0, Benton Dickinson & company (FlowJo LLC), Ashland, OR, USA). The data from
the stained cells were subjected to a gate on the area plot of B1 vs. B2 (525/50 nm vs.
593/50 nm) to remove the propidium iodide-stained cells. The geometric mean of B1-A
for the live cells was used for pHi estimation. The samples for the standard curve were
not subjected to propidium iodide staining but instead permeabilized using digitonin, and
thus these cells were subjected to a polygonal gate on the area plots of B1 vs. side scatter
(525/50 nm vs. 561/4 nm) to differentiate live and permeable cells. The geometric mean
of the B1-A for the permeable cells was used to make the standard curve (Supplementary
Figure S1).

2.8. Calculations

The estimated total cell counts for the microtiter plate experiments were obtained
using the total number of events per µL (quantified by flow cytometer) multiplied with the
total volume (200 µL).

The correlation between cell dry weight (CDW) and OD620 was calculated to estimate
the cell dry weight of each sample (Equation (1)).

CDW
(

g·L−1
)
= a[OD620] + 0 (1)
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where a is the slope of the linear regression and 0 is the linear regression constant forced to
0. The values of a varied between strains and conditions.

The specific production or consumption rate (q) at µMax was determined by multiplying
the slope between the substrate or product, and the corresponding CDW, with a maximum
growth rate (µ) (Equation (2)).

q
(

gproduct or substrate·g−1
CDW ·h−1

)
=

∆ Product or Substrate
∆ CDW

× Max (2)

where q is the specific consumption or production rate, ∆Substrate refers to either glucose or
xylose and ∆Product refers to acetate, xylitol, glycerol or ethanol during logarithmic growth.
∆CDW is the difference in cell dry weight over the same period. The period of logarithmic
growth was identified by plotting the natural log of the CDW over time.

The volumetric consumption or production rate (Q) was obtained by multiplying
the ∆product or ∆substrate during logarithmic growth with the maximum growth rate (µ)
(Equation (3)).

Q
(

gproduct or substrate·L−1·h−1
)
=

∆ Substrate or Product
Volume (1 L)

× Max (3)

where Q is the volumetric consumption or production rate, ∆Product is acetate, ethanol,
glycerol or xylitol, and ∆Substrate is glucose or xylose. The volumetric production rate was
calculated over the same period as specific production or consumption rate.

The total yield of products was calculated using ∆Product divided by ∆Substrate over
the entire fermentation duration (Equation (4)).

Y
(

gProduct·g−1
Substrate

)
=

∆ Product
∆ Substrate

(4)

where Y is the yield calculated over the entire fermentation, ∆Product is the amount of
acetate, ethanol, glycerol or xylitol produced, and ∆Substrate is the amount of glucose or
xylose consumed.

3. Results and Discussions
3.1. Vacuolar Membrane H+-PPase Improved Growth Rates at a Low pH and Acetic Acid Stress

Since pH homeostasis is known to use significant amounts of ATP during a series of
acetic acid stress [10,53], the impact of the addition of H+-PPase on the growth of S. cerevisiae
was tested under these stress conditions. This was to see if PPi could compensate for
the energy drain caused by acetic acid, thereby increasing the growth rate. A. thaliana
H+-PPase was targeted either to the cytosolic or the vacuolar membrane, and the strains
were evaluated for growth in microtiter plates in 20 g·L−1 of glucose supplemented with 0,
3, and 6 g·L−1 of acetic acid at pH 5.0 and 3.7 under oxygen-limited conditions.

There was a significant increase in growth rate upon the additional expression of the
H+-PPase in the vacuolar membrane (strain TMB_KS_S02) as compared to the control strain
(TMB 3504) in mineral media at pH 3.7 and 6 g·L−1 of acetic acid (Figure 1A). This supported
our hypothesized decrease in ATP burden from using PPi as an alternative energy carrier.
These growth rates were obtained by fitting a logistic model through the optical density
values of all three technical replicates of a biological replicate (Supplementary Figures S2
and S3). The cell membrane H+-PPase strain (TMB_KS_S03) showed significantly lowered
growth rates in all conditions and failed to grow at pH 3.7 and 6 g·L−1 acetic acid. Tukey’s
post hoc test was performed for all conditions as the ANOVA showed significant p-values
(pH 5 (0 g·L−1, p = 0.022; 3 g·L−1, p = 0.015; 6 g·L−1, p = 0.003), pH 3.7 (0 g·L−1, p = 0.021;
3 g·L−1, p = 0.008; 6 g·L−1, p = 0.0002)).
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Figure 1. Growth characteristics of the control (TMB 3504), vacuolar membrane H+-PPase
(TMB_KS_S02), and cell membrane H+-PPase (TMB_KS_S03) strains grown in a Verduyn mineral
media with 20 g·L−1 glucose and 0, 3, and 6 g·L−1 of acetic acid at an initial pH of 5 and 3.7 in
microtiter plates. (A) Growth rates of the three strains over three biological replicates at different con-
centrations of acetic acid in minimal media at two different pHs (OD620 = optical density at 620 nm).
The error bars represent the standard deviation between the biological replicates. [NS represents a
p-value greater than 0.1, (.) represents a p-value between 0.05 and 0.1, (*) represents a p-value between
0.01 and 0.05, (**) represents a p-value between 0.001 and 0.01, (***) represents a p-value between 0
and 0.001]. (B) The growth profiles of the parent strain (TMB 3504) (Grey) and the vacuolar membrane
H+-PPase strain (TMB_KS_S02) (Green) under the most stressful condition tested (pH 3.7, 6 g·L−1

acetic acid). The square, diamond and the triangle shapes are biological replicates with three technical
replicates (three individual wells inoculated from separate colonies obtained from a single clone)
represented as the standard deviations for each biological replicate. The solid lines are the logistic
models fitted through the technical replicates for each biological replicate. ND = not determined.

The parent strain showed high variability in the lag phase between the biological
replicates (Figure 1B), ranging from 28 h to over 50 h at pH 3.7 and 6 g·L−1 of acetic
acid. Although it is known that adapting the preculture reduces the lag phase variations
under these conditions [29,54], we still wanted to investigate if the H+-PPase could comple-
ment the pre-adaptation step. When targeted to the vacuolar membrane (TMB_KS_S02),
the H+-PPase reduced the lag phase to below 28 h in all biological replicates (Figure 1B).
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The variations in the lag phase at lower concentrations of acetic acid at pH 3.7 were not
as well pronounced (Supplementary Figures S2 and S3). It was also observed that the
vacuolar and cell membrane H+-PPase strains (TMB_KS_S02 and TMB_KS_S03) displayed a
larger variation in the total estimated cell count determined using flow cytometry between
biological replicates (Supplementary Figure S4).

The direction of the reaction catalyzed by the A. thaliana H+-PPase used in this study
was determined by the proton and inorganic pyrophosphate (PPi) concentration [55].
These concentrations are known to vary naturally during fermentation [21]. Upon ex-
pressing the H+-PPase, we hypothesized that at different growth phases, the H+-PPase
and ATPase are counteracting each other, and at other growth phases, they are acting
synergistically. This would have to be evaluated further and was not within the scope
of the present study. The reduction in growth rate in the strain expressing the H+-PPase
at the cell membrane may also be attributed to this effect. In the cell membrane-targeted
H+-PPase, the direct exposure of the pump to the acidic extracellular environment most
likely reversed the enzyme direction, as it is also dependent on the proton and PPi con-
centrations [55]. However, as the external pH was not maintained in the microtiter plate
set-up, an evaluation of the pHi could not be performed.

3.2. Expression of H+-PPase Led to an Acidified Cytoplasm during Glucose Fermentations

The expression of the H+-PPase at the vacuole improved the growth rates and reduced
the lag phase at a low pH; however, at pH 5.0, there was very little variation in these
parameters. To evaluate whether this expression influenced the pHi and/or cytosolic ATP
under two common fermentation conditions, we integrated a pH-sensitive fluorescent
biosensor (pHluorin) and an ATP binding fluorescent biosensor (QUEEN-2m) into the
genome. The effect of heterologous expression on fermentation profiles and physiological
changes were monitored in anaerobic batch cultures on mineral media with glucose under
defined conditions.

Regardless of which combination of biosensors were expressed with the vacuolar
or cell membrane H+-PPase, few differences were observed in growth rates (Figure 2A),
specific production rates (Supplementary Figure S5A), volumetric production rates (Sup-
plementary Figure S5B), yields (Supplementary Figure S5C), or metabolite profiles (Supple-
mentary Figure S6). These results are in-line with previous literature reporting that upon
heterologous protein expression, yeast strains can compensate for the ATP drain caused
by the protein expression. The cell accomplishes this by altering the ratio of metabolites
formed or changing fluxes toward other intracellular metabolites [56–59].

In S. cerevisiae, pHi homeostasis is mediated by proton-pumping ATPases distributed
over the organelles and the cell membrane [10,11,60]. This machinery is regulated by
glucose at both the transcriptional and the protein levels [31,61] and has a major impact on
the ATP concentration. Thus, the introduction of H+-PPases, which has been successively
carried out before [35–37], may influence the ATP concentration even further. Therefore,
the physiological effect of these heterologous pumps was evaluated using fluorescent
biosensors for monitoring the pHi and ATP levels.

During glucose fermentation, a slight acidification of the intracellular pH was observed
upon the introduction of the H+-PPases targeted to either the vacuolar or the cytosolic mem-
brane (Figure 2B) compared to the control strain, TMB_KS_S04, that expressed pHlourin
but no exogenous H+-PPase. The pHi stabilized at about 7.2 for the parent strain carrying
pHluorin (TMB 3504) during logarithmic growth. The pHi stabilized at 7.0 and 6.9 for the
vacuolar membrane H+-PPase strain with pHluorin (TMB_KS_S06) and the cell membrane
H+-PPase strain with pHluorin (TMB_KS_S08), respectively. Statistical testing was not
performed as the data are from biological duplicates. The pHi for the parent strain with
pHluorin (TMB_KS_S04) was 7.2, which is consistent with to that obtained in previous
literature using alternative methodologies [11,39]. The acidification of the cytoplasm can
possibly be explained by the ability of the H+-PPase to function as a PPi synthase when
high levels of ATP and Pi are available [55]. Any effects of the suspected increase in PPi
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concentrations in the cytoplasm were, however, not immediately apparent and require
further investigation.
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Figure 2. Observed factors for anaerobic glucose fermentations. (A) Growth rates of the various strains
[error bars represent the standard deviations between biological duplicates], (B) pHi determined
using pHluorin biosensor [the box represents the quartiles of all the pH readings obtained across the
biological duplicates and the outliers are represented as dots]. (C) Intracellular ATP concentration
detected with QUEEN-2m. pHluorin and QUEEN-2m measurements are made across two biological
duplicates (represented as standard deviations) at distinct time points during glucose fermentation.
The dashed grey line in (C) represents the ATP depletion condition established by resuspending
the cells in mineral media with 0.5 g·L−1 of 2-deoxy-D-glucose for 1 h. TMB_3504 is the parent
strain, and TMB_KS_S02 and TMB_KS_S03 are its derivatives with the proton pump targeted to the
vacuolar and cytosolic membrane, respectively. TMB_KS_S04, TMB_KS_S06 and TMB_KS_S08 are the
derivatives of TMB_3504, TMB_KS_S02 and TMB_KS_S03, respectively, with the pHluorin biosensor.
TMB_KS_S05, TMB_KS_S07 and TMB_KS_S09 are the derivatives of TMB_3504, TMB_KS_S02 and
TMB_KS_S03, respectively, with the QUEEN-2m biosensor.

The ATP levels (Figure 2C) are represented in terms of a fluorescence emission ratio
obtained at 525/50 nm. An increased ratiometric value compared to the ATP depletion
condition (Dashed grey line, Figure 2C) corresponds to an increase in cellular ATP levels.
The ATP depletion condition was established by resuspending the cells in minimal media
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with 2-deoxy-D-glucose as substrate for 1 h [41,52,62,63]. The ATP levels for the vacuolar
membrane H+-PPase strain with QUEEN-2m (TMB_KS_S07) stabilized at a higher value.
This could be due to an alteration in pH homeostasis by the introduced H+-PPase that
can operate in both directions as stated above. The measurement of the ATP levels was
at discrete time points; hence an overall real time measurement would be of interest to
understand the interplay between levels of ATP, Pi, pHcytosolic and pHVacoular.

The lack of variation in growth rates due to an overexpression of proteins is consistent
with other reports [41,52]. Additionally, it has been hypothesized that actively growing
cells have sufficient pools of intracellular metabolites to accommodate for changing require-
ments such as the heterologous expression of proteins [64]. The reduction in pHi and the
increased ATP levels seen in the derivatives of TMB_KS_S02 require further investigation.
Furthermore, the expression levels and the activity of the native pH homeostasis machinery,
as well as the heterologous expressed proton pumps are of interest but are out of the scope
of this study.

3.3. Vacuolar Membrane H+-PPase Improved Xylose Fermentation When pHluorin
Is Co-Expressed

The industrial production of ethanol from lignocellulose is usually performed with
S. cerevisiae due to its long-term industrial use, high ethanol and stress tolerance, and high
ethanol yield from hexose sugars [30]. Acetic acid is commonly formed during the pre-
treatment of lignocellulose biomass prior to fermentation, and thus, the improved per-
formance by the strain expressing the vacuolar membrane H+-PPase is promising for
valorization of lignocellulose streams. However, growth on xylose, an abundant pentose
sugar in many types of lignocellulosic biomass, has required engineering of S. cerevisiae
through introducing functional xylose-assimilation pathways [30]. In the strains with the
XR/XDH pathway, limited ATP formation fluxes under anaerobic conditions have been
discussed as a possible reason for the poor xylose utilization [24,25]. Therefore, xylose fer-
mentation provides another relevant stress condition for evaluating whether the presence
of the vacuolar membrane H+-PPase can be valuable.

Overall, strains expressing either a H+-PPase (cell membrane or vacuolar), a biosensor
(pHlourin or QUEEN-2m), or a combination of the two, displayed a reduction in growth
rate when grown on xylose (Figure 3). The maximum growth rate was reduced to 85%
and 76% of the parent strain growth rate upon the expression of either the vacuolar or cell
membrane H+-PPase (TMB_KS_S02 and TMB_KS_S03), respectively. Similarly, the intro-
duction of pHluorin and QUEEN-2m (TMB_KS_S04 and TMB_KS_S05) in the parent strain
resulted in a reduced growth rate of 77% and 72%, respectively. There was also a reduction
in the total biomass production. These observations indicated that the expression of the
biosensors resulted in a metabolic burden for this parent strain during the applied cultiva-
tion conditions. The reduction in the growth rate, due to the expression of the H+-PPase,
is likely caused by a combination of two factors. One is a high expression, due to the TEF1
promoter [33,65], and the other is the ability of the H+-PPase to function in the reverse
direction [55]. Regarding the first factor, in previous studies, GFP under a weak promotor
was expressed in similar S. cerevisiae strains that did not lead to an impact on growth rate
most probably because it allowed for low expression [66,67]. In the current study, using
promoters that allowed for higher expression levels of the biosensors was required to
compensate for the lower fluorescence levels of the biosensor proteins under anaerobic con-
ditions. This elevated expression can be compared to how the expression of heterologous
proteins for production purposes typically affects growth negatively [56,58,59].

No substantial synergistic effect was seen for most combinations of heterologous
proteins, but the co-expression of the ATP biosensor (QUEEN-2m) did not affect the
vacuolar H+-PPase strain (TMB_KS_S07) in terms of the growth rate and total biomass
produced as opposed to the parent strain with the ATP biosensor (TMB_KS_S05).
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The expression of pHluorin, in addition to the cell membrane
H+-PPase strain (TMB_KS_S08), further reduced the growth rate to 69% compared to
the parent strain (TMB 3504), although the total biomass formation remained unaffected.

Remarkably, the maximum growth rate of the vacuolar H+-PPase strain with pHluorin
(TMB_KS_S06) increased by 11.4% compared to the parent strain (TMB 3504). The strain
also grew exponentially for a longer duration, reducing the overall fermentation period by
about 35 h, thereby consuming 97% of the xylose (Figure 4B, Supplementary Figure S8B).
The growth profile of this strain is similar to the growth profiles seen on glucose fermen-
tations (Supplementary Figure S6). In contrast, the parent strain (TMB 3504), the vacuo-
lar membrane H+-PPase strain (TMB_KS_S02), and the cell membrane H+-PPase strain
(TMB_KS_S03) grew in a linear fashion that took about 35 to 48 h longer to consume the
same amount of xylose (Figure 4A, Supplement Figure S7A,B). The increased duration of
exponential growth also led to the consumption of approximately 90% of the xylose by 87 h
for the vacuolar membrane H+-PPase strain compared to around 70% for the parent strain
(TMB 3504) during the same time frame (Supplementary Figures S7A and S8B). The result
can be hypothesized to be due to the energy demand caused by the production of pHluo-
rin, redirecting the ATP from pH homeostasis towards heterologous protein production.
This in turn forced the H+-PPase to pump protons into the vacuole and elevating the ATP
burden for pH homeostasis. There are likely other factors that may also contribute to the
observed increase in growth rate and reduction in fermentation duration, but these remain
elusive without additional testing of intracellular metabolites. Thus, conclusive evidence
of this phenomenon requires further investigation which is not within the scope of this
preliminary study.

The volumetric production and consumption rates and specific productivities, (Figure 5)
were calculated during logarithmic growth. The average specific productivity of ethanol
was elevated by 9% for the vacuolar membrane H+-PPase strain carrying the pHluorin
biosensor (TMB_KS_S06) (Figure 5A).

The vacuolar membrane H+-PPase strain with pHluorin (TMB_KS_S06) showed a 25%
increase in the mean volumetric ethanol productivity, 15% increase in the mean volumetric
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xylitol productivity, and a 66% increase in the mean volumetric xylose consumption rates
compared to the parent strain (TMB 3504). Thus, by adding this protein expression bur-
den apparently, a mechanism is triggered, thereby improving the performance of the cell,
which was absent in the strain with only the vacuolar membrane H+-PPase (TMB_KS_S02).
This requires additional testing with an expanded array of various energy drains in the
form of heterologous proteins or nutrient-limiting conditions and is of future interest.
The additional expression of mQueen in the vacuolar membrane H+-Ppase (TMB_KS_S07)
strain did not give the same response as the vacuolar membrane H+-Ppase strain with
pHluorin (TMB_KS_S06), but it is noted that the strain completed xylose utilization 32 h
earlier than the strain with only the vacuolar membrane H+-Ppase (TMB_KS_S02) (Sup-
plementary Figures S7 and S8). All the strains, except the vacuolar membrane H+-PPase
with pHluorin, consumed the majority of xylose during non-logarithmic growth (after 48 h)
(Supplementary Figures S7–S9). This could be due to the additional burden caused by
QUEEN-2m as it is a larger protein than pHluorin (380 AA vs. 238 AA) thus requiring more
ATP. Furthermore, through binding the ATP, the biosensor keeps it out of the catalytic pool
even though ATP is not converted [40,41].
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Figure 4. Time series of cell dry weights (CDW) for anaerobic fermentations on xylose 50 g·L−1 in
bioreactors. (A) The parent strain, the vacuolar, and the cytosolic strain. (B) Derivative strains of
(A) with pHluorin. (C) Derivative strains of (A) with QUEEN-2m. The metabolic profiles for these
fermentations are shown in Supplementary Figures S7–S9. The error bars are the standard deviations
obtained from biological duplicates.
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Figure 5. Specific productivity (q), volumetric productivity (Q), and yield (Y) of the various strains
grown on 50 g·L−1 xylose in bioreactors. [Standard deviations between replicates are represented as
error bars]. (A) The qxylose, qxylitol, and qethanol calculated during logarithmic growth. (B) The Qxylose,
Qxylitol, and Qethanol calculated during logarithmic growth. (C) The Yxylose, Yxylitol, and Yethanol over
the entire fermentation period. TMB 3504 is the parent strain, and TMB_KS_S02 and TMB_KS_S03
are its derivatives with the proton pump targeted to the vacuolar and cytosolic membrane, respec-
tively. TMB_KS_S04, TMB_KS_S06 and TMB_KS_S08 are the derivatives of TMB_3504, TMB_KS_S02
and TMB_KS_S03, respectively, with the pHluorin biosensor. TMB_KS_S05, TMB_KS_S07, and
TMB_KS_S09 are the derivatives of TMB_3504, TMB_KS_S02, and TMB_KS_S03, respectively, with
the QUEEN-2m biosensor. NA = not applicable.

Various stresses have been observed to affect the profiles of fermentation products, for
instance, a redox imbalance stress leading to an increase in glycerol production [68]. How-
ever, although the production and consumption rates were affected by some combinations
of the expression of the biosensors and H+-PPases, the product yields calculated over the
entire fermentation period of the various strains did not differ considerably (Figure 5C).

The carbon dioxide production profiles for the strains with pHluorin were normalized
to the strains without pHluorin to better examine the impact of the biosensor as it affected
growth and fermentation duration. The parent strain engineered to express pHluorin
(TMB_KS_S02) displayed a peak plateau of CO2 production for a period of about 50 h
compared to the parent strain (TMB 3504) (Figure 6A). This corresponded to the period
of linear growth seen in the parent strain with pHluorin (TMB_KS_S04), (Supplementary
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Figure S8A). It further showed that the CO2 production of the parent strain (TMB 3504)
has an elongated decline phase as opposed to the very sharp decline seen on glucose
fermentations (Supplementary Figure S10). A similar profile was also seen for the cell
membrane H+-PPase strain (TMB_KS_S03) and the cell membrane H+-PPase strain with
pHluorin (TMB_KS_S08).
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using pHrodo® green were measured at about 45 min after sampling due to the required 
staining period and this likely affected the readings. It is known from live cell imaging 
that pHi changes are observable in the order of a few minutes in metabolically active cells 
[41]. Nevertheless, the pHrodo® green method indicated that the pHi was maintained at 
near-normal conditions. Alternative non-invasive methods to study pHi are yet to be 
tested and require further investigation for verification of pHi in the strains without the 
biosensors. 

The intracellular ATP levels on xylose (Figure 7C) were higher in the vacuolar mem-
brane H+-PPase strain with mQueen (TMB_KS_S07) than that of the parent strain with 
mQueen (TMB_KS_S05), (Figure 7C). This did not correspond to an increased growth rate 
or an elongated exponential growth phase. This could be due to the burden of expression 
for mQueen-2m being higher than pHluorin or the ability of mQueen-2m to bind and dis-
sociate with ATP, thereby removing ATP from the catalytic pool. The variations in growth 
characteristics between the strains with and without biosensors most likely implies that 

Figure 6. Time course of the carbon dioxide (CO2) production profiles for each of the biological
replicates for various fermentations carried out in bioreactors (measured at either 5 or 10 s intervals
(Section 2.6)). The first ~18 h of the fermentation was carried out without sparging and hence removed
from the image. (A) CO2 production profile for the parent strain (TMB 3504) and the parent strain with
pHluorin (TMB_KS_S04) normalized to the parent strain (TMB 3504). (B) CO2 production profile for
the vacuolar membrane H+-PPase strain (TMB_KS_S02) and the vacuolar membrane H+-PPase strain
with pHluorin (TMB_KS_S06) normalized to the vacuolar membrane H+-PPase strain (TMB_KS_S02).
The CO2 production profiles for the strains with pHluorin are normalized to its ancestor strain.

The vacuolar membrane H+-PPase strain with pHluorin (TMB_KS_S06) showed a
normal batch CO2 profile with a sharper decline in CO2 production after reaching peak
metabolic activity with almost no CO2 produced after 115 h (Figure 6B). This behavior
was not seen in the parent strain (TMB 3504) or the vacuolar membrane H+-PPase strain
(TMB_KS_S02) on xylose fermentations, which, again, indicates that the fermentation
performance was enhanced by the co-expression of the vacuolar membrane H+-PPase
and pHlourin.

The acidification of the cytosol on xylose in native xylose-utilizing yeast strains, such
as Candida tropicalis and Pichia stipitis, as well as wild-type S. cerevisiae which cannot use
xylose, has been well established [52,69,70]. Furthermore, there is evidence of pHi being
a signaling mechanism for sugar sensing [60,61,71]. The manipulation of pHi and its impact
on cell growth is of particular interest for the parent strain (TMB 3504) since it is engineered
to take up xylose, but the mechanism for pHi maintenance during xylose fermentation
remains unknown.
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The expression of pHluorin changed the growth profiles of the strains on xylose.
Additionally, the pHi measurements measured using pHluorin could be trusted only until
45 h into the fermentation since the background GFP autofluorescence in the emission at B1
(525/50), due to excitation at 488 nm, increased and interfered with the calibration curves.
It is seen that the vacuolar membrane H+-PPase strain with pHluorin (TMB_KS_S06)
maintained the pHi around 7.2, whereas the pHi for the parent strain with pHluorin
(TMB_KS_S04) and the cell membrane H+-PPase strain with pHluorin (TMB_KS_S08) had
cytosolic alkalinization leading to a pHi around 7.5 (Figure 7A). Statistical testing was not
performed as the data are from biological duplicates. Previous literature also reported
similar results using a similar biosensor on a co-fermentation of glucose and xylose for
xylonate production [72].
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Figure 7. (A) Intracellular pH determined using pHluorin [the box represents the quartiles of all
the pH readings obtained across the biological duplicates and the outliers are represented as dots].
(B) Intracellular pH determined using pHrodo® green [the box represents the quartiles of all the
pH readings obtained across the biological duplicates]. (C) Intracellular ATP concentration detected
with QUEEN-2m. pHluorin and QUEEN-2m measurements are made across two biological du-
plicates (represented as standard deviations) at distinct time points during glucose fermentation.
The dashed grey line defines the ATP depletion condition. (TMB_3504 is the parent strain, and
TMB_KS_S02 and TMB_KS_S03 are its derivatives with the proton pump targeted to the vacuo-
lar and cytosolic membrane, respectively. TMB_KS_S04, TMB_KS_S06 and TMB_KS_S08 are the
derivatives of TMB_3504, TMB_KS_S02, and TMB_KS_S03, respectively, with the pHluorin biosensor.
TMB_KS_S05 and TMB_KS_S07 are the derivatives of TMB_3504 and TMB_KS_S02, respectively,
with the QUEEN-2m biosensor).

Since the growth profiles of the strains changed due to the expression of pHluorin,
a second method for pHi measurements was performed using pHrodo® green (Thermo
Fisher Scientific, Waltham, MA, USA). This method indicated that there may be a change
in the pHi caused by the presence of pHluorin (Figure 7A,B), but the pHi values obtained
using pHrodo® green were measured at about 45 min after sampling due to the required
staining period and this likely affected the readings. It is known from live cell imaging that
pHi changes are observable in the order of a few minutes in metabolically active cells [41].
Nevertheless, the pHrodo® green method indicated that the pHi was maintained at near-
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normal conditions. Alternative non-invasive methods to study pHi are yet to be tested and
require further investigation for verification of pHi in the strains without the biosensors.

The intracellular ATP levels on xylose (Figure 7C) were higher in the vacuolar mem-
brane H+-PPase strain with mQueen (TMB_KS_S07) than that of the parent strain with
mQueen (TMB_KS_S05), (Figure 7C). This did not correspond to an increased growth rate
or an elongated exponential growth phase. This could be due to the burden of expression
for mQueen-2m being higher than pHluorin or the ability of mQueen-2m to bind and dis-
sociate with ATP, thereby removing ATP from the catalytic pool. The variations in growth
characteristics between the strains with and without biosensors most likely implies that the
energy metabolism was different in the various strains. The measurements of intracellular
ATP were also affected by the increasing auto-fluorescence after 47 h. Various literature
identified that the ATP levels vary based on the quantity and type of carbon source supplied
(e.g., glucose, glycerol, galactose) [73,74]. This is compounded by the evidence for the en-
ergy and redox ratio controlling glycolytic flux [75,76]. This, coupled with the reduced ATP
formation flux, lack of negative feedback for xylose uptake, and other factors (sugar uptake,
sugar signaling, etc.) could lead to a very complex metabolic phenomenon [24,25,30,32].
Thus, to further elucidate the mechanisms involved in the observed increase in ATP levels
will require an investigation of the total energy state of the cells.

From the various results it is seen that the heterologous expression of pHluorin in ad-
dition to the vacuolar membrane H+-PPase strain led to an improvement in the growth rate
(11.4%), volumetric ethanol productivity (25%), the total duration of logarithmic growth,
and reduced fermentation duration (20%). However, it is noted that the protein expression
burden usually has a negative impact on growth rate [64,77,78]; therefore, additional tests
for the type and/or quantity of burden, or additional factors that are as of yet unknown,
are required. Other reports also show that the adenylate energy charge (ATP/AMP) of
the cell is strictly regulated and sustained even during xylose fermentation, but only the
guanylate energy charge shows variations [79]. This requires further investigation as nei-
ther the total ADP and AMP nor the guanylate charge were measured but the total ATP
concentration is elevated in the vacuolar H+-PPase strain. These determinations are called
for, as a comprehensive study of the pH homeostasis mechanism on yeast engineered
for xylose utilization has not been conducted. However, the proteins involved in this
function constitute a large portion of the proteome and is considered to be the highest
energy utilizing mechanism [11,23,53,80]. This study presents potential beneficial effects
for vacuolar H+-PPase expression on valorization of lignocellulosic biomass to value-added
products as well as heterologous protein production.

3.4. Cell Morphology Is Influenced by Biosensor Expression on Xylose

Regular microscopic evaluations of the cultures in the bioreactors growing on glu-
cose or xylose were carried out during early logarithmic growth and the stationary phase.
It demonstrated that in the xylose fermentations, different degrees of aggregation were
observed in the parent strains with biosensors (TMB_KS_S04 and TMB_KS_S05) and the cell
membrane H+-PPase strains with biosensors (TMB_KS_S08) (Supplementary Figure S11).
This was completely absent in the glucose-growing cultures, as well as the strain without
biosensors grown on xylose. Of note is that no aggregation was seen on the vacuolar mem-
brane H+-PPase strains and its derivatives with biosensors (TMB_KS_S02, TMB_KS_S06
and TMB_KS_S07).

At this stage, it remains unknown how far this diversity in morphology has influenced
the OD measurements, and therefore, also the dry weights that were estimated from the
OD values. The difference in calibration slopes of OD versus dry weight (Section 2.8) might
reflect this influence. However, the carbon and redox balances did not show deviations
due to the aggregation (Supplementary Table S2).

The aggregating behavior raises new questions that merit specific attention, such as
what initiates the aggregation, what type of aggregation it is, and if the expression of the
biosensors is involved in this process.
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4. Conclusions

S. cerevisiae is an important species for industrial bioprocesses as it is easy to genetically
engineer and is relatively resistant to harsh conditions. Herein, we demonstrate that the
possession of the vacuolar membrane H+-PPase can broaden this resistance for several
such conditions. In this study, it has been demonstrated that by the addition of a vacuolar
membrane H+-PPase, there is a positive impact on growth rates, as well as a reduction in
the lag phase when the strains are grown at a low pH with acetic acid as an inhibitor.

Additionally, the anaerobic xylose metabolism of the S. cerevisiae strains used herein
are compromised due to a redox burden together with an inadequate ATP formation
flux. On top of that, high expression levels of the biosensors were required to have a
significant fluorescent signal distinguishable from auto-fluorescens. Therefore, it was no
surprise that the biosensors implemented in these strains demanded even more energy.
However, the vacuolar membrane H+-PPase expression with pHluorin unexpectedly lifted
this burden, thus restoring anaerobic xylose metabolism. Additionally, there is a 20%
reduction in the fermentation duration when the vacuolar membrane H+-PPase is expressed
with pHluorin compared to the parent strain used. The mechanistic function of this H+-
PPase is more complex than was anticipated, and merits further dedicated investigation.

Overall, this study identifies a new potential avenue for improving the production
of high-value compounds that are limited by ATP levels. Implementing the H+-PPase
of A. thaliana in yeast may provide several advantages due to the bidirectional and the
substrate-independent nature of the proton pumps. This may contribute to a more flexible
way for the cell to maintain its pHi homeostasis, and thus, secure and maintain metabolic
performance under industrially challenging conditions, which is of future interest.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms12030625/s1, Supplementary Table S1: Primers
used for cloning and sequencing in this study. Supplementary Figure S1: Gating strategy for cells
stained with pHrodo® green. Supplementary Figure S2: Growth curves of the parent strain, vacuolar
membrane H+-PPase strain, and the cell membrane strain in mineral media at pH 5 and 0, 3 and
6 g·L−1 of acetic acid. Supplementary Figure S3: Growth curves of the parent strain, vacuolar
membrane H+-PPase strain and the cell membrane strain in mineral media at pH 3.7 and 0, 3, and
6 g·L−1 of acetic acid. Supplementary Figure S4: Estimated total cell count per mL of the strains grown
at various concentrations of acetic acid at two different pH values. Supplementary Figure S5: Specific
productivity (q), volumetric productivity (Q), and yields (Y) of the strains grown on 20 g·L−1 of
glucose. Supplementary Figure S6: Metabolic profiles of the strains grown anaerobically on 20 g·L−1

of glucose. Supplementary Table S2: Carbon and redox balances of the fermentations performed in
bioreactors. Supplementary Figure S7: Metabolic profiles of the parent strain, vacuolar membrane
H+-PPase strain and the cell membrane H+-PPase strain grown anaerobically on 50 g·L−1 of xylose.
Supplementary Figure S8: Metabolic profiles of the pHluorin-expressing versions of the parent strain,
vacuolar membrane H+-PPase strain, and the cell membrane H+-PPase strain grown anaerobically
on 50 g·L−1 of xylose. Supplementary Figure S9: Metabolic profiles of the mQueen-2m-expressing
versions of the parent strain, vacuolar membrane H+-PPase strain and the cell membrane H+-Ppase
strain grown anaerobically on 50 g·L−1 of xylose. Supplementary Figure S10: Time course of each of
the fermentations on 20 g·L−1 glucose. Supplementary Figure S11: Phase contrast micrographs of the
clumping behavior of the strains at 40× magnification.
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