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Abstract: The contamination of coastal marine sediments with heavy metals (HMs) is a widespread
phenomenon that requires effective remediation actions. Bioremediation based on the use of bacteria
is an economically and environmentally sustainable effective strategy for reducing HM contamination
and/or toxicity in marine sediments. However, information on the efficiency of marine-derived fungi
for HM decontamination of marine sediments is still largely lacking, despite evidence of the perfor-
mance of terrestrial fungal strains on other contaminated matrixes (e.g., soils, freshwater sediments,
industrial wastes). Here, we carried out for the first time an array of parallel laboratory experiments
by using different combinations of chemical and microbial amendments (including acidophilic au-
totrophic and heterotrophic bacteria, as well as filamentous marine fungi) for the bioremediation of
highly HM-contaminated sediments of the Portman Bay (NW Mediterranean Sea), an area largely
affected by long-term historical discharges of mine tailings. Our results indicate that the bioleaching
performance of metals from the sediment is based on the addition of fungi (Aspergillus niger and
Trichoderma sp.), either alone or in combination with autotrophic bacteria, was higher when com-
pared to other treatments. In particular, fungal addition allowed obtaining bioleaching yields for
As eight times higher than those by chemical treatments and double compared with the addition of
bacteria alone. Moreover, in our study, the fungal addition was the only treatment allowing effective
bioleaching of otherwise not mobile fractions of Zn and Cd, thus overtaking bacterial treatments. We
found that the lower the sediment pH reached by the experimental conditions, as in the case of fungal
addition, the higher the solubilization yield of metals, suggesting that the specific metabolic features
of A. niger and Trichoderma sp. enable lowering sediment pH and enhance HM bioleaching. Overall,
our findings indicate that fungi can be more effective than acidophilic autotrophic and heterotrophic
bacteria in HM bioleaching, and as such, their use can represent a promising and efficient strategy for
the bioremediation of marine sediments highly contaminated with heavy metals.

Keywords: bioremediation; heavy metals; fungi; sediments; contamination

1. Introduction

Heavy metal (HM) contamination of marine sediments is a widespread environmen-
tal problem, particularly frequent in coastal areas subject to high anthropogenic impact
(e.g., industrial practices, ore mining, dumping of elevated metal waste, excessive use of
chemical fertilizers, sewage discharge) and reduced hydrodynamic regimes [1,2]. High
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concentrations of HM accumulate in sediments and can be transferred through the food
web up to the higher trophic levels, with potential negative consequences on ecosystems
and human health [3–5]. Indeed, HMs can determine oxidative stress and interference with
protein folding and physiological functioning in vertebrates and invertebrates, causing
several cellular/tissue disorders [6,7].

In the last decade, different approaches have been developed to reduce HM concentra-
tions and their potential toxicity in the sedimentary matrix, with the purpose of alleviating
marine sediment management costs and environmental impacts [8,9]. Indeed, the identifica-
tion of effective treatments for the decontamination of HM-contaminated marine sediments
can allow the transformation of sediments into a valuable resource to be used for different
applications (e.g., building materials, beach nourishment, agriculture applications; [10–13]).

The main ex-situ approaches for the treatment of contaminated sediments (e.g., af-
ter dredging) include chemical-physical, thermal, and biological treatments [14–21]. The
chemical-physical treatments can be used to (i) promote the solubilization of metals from
the sediments by aqueous solutions containing chemical or chelating agents and by electro-
chemical processes; (ii) reduce the mobility of contaminants through complexation with
stabilizing agents (like lime or cement, [8,22]). Thermal treatments can be used either to
desorb HM from the sediment or to induce their immobilization into the sedimentary
matrix [19,23]. Nevertheless, all these approaches are limited mainly due to high economic
costs, low specificity, and the generation of large amounts of toxic wastes [24–27].

In the last years, biological strategies have received great attention for their major envi-
ronmental compatibility and lower costs [5,28–31]. Two main strategies exist for the bioreme-
diation of HM-contaminated sediments, which involve the use of microorganisms either to
immobilize/stabilize or to mobilize/extract HMs [32,33]. While the first approach can help
reduce HM toxicity by decreasing HM mobility (but leaving HMs within the sediments), the
second approach can be preferred if the final aim is to remove HMs, hence effectively decreas-
ing their concentrations in the sediments [20]. This latter process for HM decontamination
can be achieved through the addition of microbes (especially bacteria and/or fungi) into the
sediments (i.e., bioaugmentation) to promote HM bioleaching/solubilization and thus their
mobilization and final removal from the sediments [10,34,35].

Chemoautotrophic Fe/S oxidizing bacteria like Acidithiobacillus ferrooxidans, Acidithiobacil-
lus thiooxidans, and Leptospirillum ferrooxidans are well known to promote HM solubilization
in marine sediments by oxidizing sulphur and/or Fe under acidic conditions and using
O2 as a terminal electron acceptor [36–42], with the addition of elemental sulfur triggering
higher HM removal efficiency [43–46]. The ability to solubilize metals from contaminated
marine sediments is also known for acidophilic heterotrophic bacteria belonging to the
genus Acidiphilium (e.g., A. cryptum) [39,41,42,47,48], which co-respire oxygen and ferric
iron (Fe3+) by reducing Fe at low pH to oxidize organic substrates [49–51]. Some studies
have also investigated the metabolic interactions between aerobic acidophilic Fe-reducers
and Fe/S autotrophic oxidizing bacteria, highlighting significant synergies that can further
enhance HM bioleaching efficiency, also in marine sediments [10,52–56].

Besides bacteria, also fungi are known to leach metals (thus enhancing HM removal
from the contaminated matrix) through the production of organic acids (e.g., citric, oxalic,
fumaric, and gluconic acids), which increase HMs solubility by lowering pH and forming
water-soluble complexes with HMs [30,34,57–61]. However, to our knowledge, no studies
exist to date on the use of marine-derived fungi for the removal of HMs from marine
sediments through bioleaching, despite promising evidence on other matrixes such as
contaminated soils or solid wastes [59,62] and freshwater sediments [63–65]. Moreover,
only a few of these studies have contextually compared bacterial versus fungal HM biore-
mediation efficiency or tested the use of mixed consortia of bacteria and fungi [33,63], and
never on marine sediments [41,42].

In the present study, we conducted laboratory experiments to contextually compare for
the first time different treatments for the remediation of marine sediments heavily polluted
by HMs, selecting Portman Bay as a pilot study area [66]. In detail, we investigated
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the solubilization efficiencies of some of the major HMs found in the sediments (Zn,
Cd, and As) by comparing either the additions of chemicals alone or different microbial-
based amendments (i.e., additions of chemo-autotrophic Fe/S oxidizing bacteria, chemo-
heterotrophic bacteria, and fungi, either alone or in combination).

2. Materials and Methods
2.1. Study Area and Sampling

Sediment samples were collected using multiple corers in the Portman Bay (NW
Mediterranean Sea) at a depth of about 43 m (37◦34.070′ N, 0◦50.659′ W). This area has
been subjected for several decades (1957–1990) to the discharge of large quantities of waste
materials (estimated at about 57 million tons) deriving from mining activities, also known
as tailings [66]. After collection, sediment samples were stored in the dark at in situ tem-
perature until further processing for the setup of bioremediation experiments. Additional
aliquots of sediment samples were used for the analysis of heavy metal concentrations and
their repartition in the different geochemical phases.

2.2. Sediment Remediation Experimental Setup, Microbial Strains Used, and pH Determination

Portman Bay sediments were subjected to different experimental treatments, including
the addition of chemicals alone, as well as a combination of different microbial additions
(Table 1). The experimental setup followed the procedures already described in one of
our previous similar experiments [10] with proper modifications (namely, the additional
treatments with fungi and a more complex array of chemical amendments).

Table 1. Description of the different combinations of chemical and microbial amendments
performed in this study. Reported are also the final concentrations for the chemical amend-
ments. +Gluc = glucose addition; +Fe: iron addition; +S: sulphur addition; + Fe/S Bac:
addition of chemo-autotrophic Fe/S oxidizing bacteria (including Acidithiobacillus ferrooxidans,
Acidithiobacillus thiooxidans, and Leptospirillum ferrooxidans); +A.c.: addition of the chemo-
heterotrophic bacteria (Acidiphilium criptum); + Fungi: addition of fungal strains (Aspergillus niger and
Trichoderma sp.).

Treatment Sample ID Fe
(g/L)

S
(g/L)

Glucose
(g/L)

Incubation of original
sediments

(no additions)
No amendement 0 0 0

Addition of Chemicals Only +Gluc 0 0 0.1
+S 0 10 0

+Fe 4.5 0 0
+Fe+S 4.5 10 0

+Fe+Gluc 4.5 0 0.1

Addition of Bacteria
(autotrophic Fe/S oxidising

bacteria -(Fe/S) Bac-,
and/or heterotrophic

bacteria -A.c.,
Acidiphilium cryptum-)

+(Fe/S) Bac 0 0 0
+Gluc+A.c. 0 0 0.1

+S+(Fe/S) Bac 0 10 0
+Fe+(Fe/S) Bac 4.5 0 0

+Fe+S+(Fe/S) Bac 4.5 10 0
+Fe+Glu+(Fe/S) Bac+A.c. 4.5 0 0.1

Addition of Fungi Gluc+Fungi 0 0 0.1
Addition of Fungi and Fe/S

oxidising bacteria +Fe+Glu+(Fe/S) Bac+Fungi 4.5 0 0.1

The first set of sediment samples (Table 1) was added with different chemicals, includ-
ing treatment with either glucose, elemental S, Fe, or a mix of Fe and elemental S, or of
Fe and glucose. The second set of samples (Table 1) was added with bacteria only (Fe/S
oxidizing chemo-autotrophic bacteria, chemo-heterotrophic bacteria, or a mix of both types
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of bacteria), also testing different types of contextual chemical amendments with S, Fe,
and/or glucose. Finally, the third set of sediment samples (Table 1) was added with fungi
(either alone or in association with Fe/S oxidizing bacteria), also supplementing glucose
(potentially promoting fungal heterotrophic metabolism) and Fe (potentially promoting
Fe/S oxidizing bacteria). A parallel set of sediments was incubated without amendments
and used as controls.

As reported in Table 1, it can be noted that we used the same concentration of glucose
(0.1 g/L) across the different treatments, which we previously tested to be optimal for
the bacterial treatments [10], but can be considered somewhat lower compared to usual
fungal culture media ([41,42] and ref. therein). Nevertheless, such relatively low glucose
concentrations were selected based on several considerations. (i) to exclude possible inhibi-
tion of autotrophic bacteria and related biases due to higher glucose concentrations [67],
(ii) to trigger organic matter priming in sediments [68], leading fungi to consume also other
organic substrates available in sediments, so to enhance fungal-mediated dissolution of
the metals possibly bound to the sedimentary organic fractions, (iii) glucose additions
of 0.1 g/L have been already shown to trigger a relevant increase in fungal biomass in
large-scale bioreactors [69]. (iv) as our fungal strains are of marine origin, we hypothesized
that they could grow well also at glucose concentrations much lower than those used in
laboratory cultures (i.e., in oligotrophic conditions typical of marine ecosystems). So, we
conducted preliminary tests (see Supplementary Materials), which show that all bacterial
and fungal strains can grow well under the test conditions used in our study.

Acidophilic chemo-autotrophic bacteria (A. thiooxidans DSM 504, A. ferrooxidans DSM
14882T, and L. ferrooxidans DSM 2705T) and the acidophilic chemo-heterotrophic bacterial
strain (A. cryptum DSM 2389T) were purchased in pure cultures at DSMZ and cultivated
according to the standard supplier’s instructions (www.dsmz.de; [10]). Culture media
consisted in DSMZ 35 medium for A. thiooxidans (0.10 g/L of NH4Cl, 3.00 g/L of KH2PO4,
0.10 g/L of MgCl2 6H2O, 0.14 g/L of CaCl2 · 2H2O and 10 g/L of S0), DSMZ 882 medium
for A. ferrooxidans and L. ferrooxidans (consisting of 950 mL of solution A: 0.139 g/L of
(NH4)2SO4, 0.056 g/L of MgCl2 6H2O, 0.028 g/L of KH2PO4, 0.155g/L of CaCl2 · 2H2O;
50 mL of solution B: 44.5 g/L of FeSO4 7H2O; and 1 mL of solution C: 0.076 g/L of MnCl2
· 2H2O, 0.068 g/L of ZnCl2, 0.064 g/L of CoCl2 6H2O, 0.031 g/L of H3BO3, 0.010 g/L of
Na2MoO4, 0.067 g/L of CuCl2 · 2H2O), and DSMZ 269 medium for A. cryptum (2.0 g/L of
(NH4)2SO4, 0.1 g/L of KCl, 0.655 g/L of K2HPO4·3H2O, 0.5 g/L of MgSO4·7H2O, 0.3 g/L
of yeast extract, 1.0 g/L of glucose). For bacterial cultivations, all solutions were sterilized
before use, and flasks were incubated at 35 ◦C on a rotary shaker at 150 rpm (Stuart orbital
incubator S510).

Fungi belonging to Aspergillus niger and Trichoderma sp. were obtained following
isolation in pure cultures from HM-contaminated marine sediments of the Bagnoli Bay
(Tyrrhenian Sea, Naples, Italy) as previously described [70], by dilution plating technique
with marine agar containing 0.3 mg/mL rifampicin to avoid bacterial growth and incu-
bating at room temperature for 7 days [70]. These marine fungal strains were selected for
our bioleaching experiments as belonging to fungal taxa previously described as able to
decrease pH and enhance HM solubilization in bioleaching experiments in soils, fresh-
water sediments, and other matrices, and hence hypothesized to perform similarly for
the decontamination of the marine sediments collected in the present study [16,71–73].
Indeed, A. niger has been previously exploited for the bioremediation of mine tailings [11],
HM-contaminated freshwater sediments [71], and toxic industrial wastes [72]. Similarly,
Trichoderma sp. has been shown to solubilize metals from soils and plant tissues [60,61,74]
and was also proposed for HM bioremediation of marine environments (even if not di-
rectly tested; [73]).

All sediment remediation experiments were set up at 12.5% w/v (weight of the dry
sediment to final volume) in autoclaved 250 mL Pyrex flasks, with 150 mL final volume.
For the treatments with bacterial and/or fungal additions, bacteria and/or fungi were
inoculated from cultures in exponential growth (15 mL of bacteria at a concentration of

www.dsmz.de
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1.5–2·108 cells mL−1, and/or 10 mg of fungal biomass for each microcosm). All flasks were
kept at a constant temperature of 20 ◦C on a rotary shaker (150 rpm) (Stuart orbital incubator
S510), and all microcosms were set up in triplicate. At the beginning of the experiments,
all microcosms were set at a sediment pH of 2.5, and pH values were checked during the
experiments using an inoLab Multi 720 pH meter (WTW) equipped with a temperature
probe (SenTix 81, WTW). Aliquots were collected from each experimental microcosm
during the experimental incubations to determine HM concentrations, as described below.

2.3. Determination of HM Concentrations and HM Bioremediation Yields

Before starting the experiments, HM contents of the Portman Bay sediment, which
have been used for the remediation experiments, were determined after acid digestion as
previously described [70]. Briefly, sediment sub-samples were heated for 90 min at 150 ◦C
in Teflon boxes, following addition with 5 mL fluoridric acid and 1 mL of HCl:HNO3
(3:1). Then, sediments were amended with 5 mL of 10% boric acid, and the extracts were
assayed by atomic absorption spectrophotometry and by inductively coupled plasma-
atomic emission spectrometry [70].

To assess the fractions of heavy metals associated with the different geochemical phases
of the sediments, we adopted a selective extraction procedure, using specific chemical
reagents to sequentially extract HMs in the following phases: (i) the exchangeable and
carbonate bound fractions (hereafter, exchangeable fraction), extracted utilizing 0.11 M
acetic acid, pH 2.8; (ii) Fe and Mn oxides fractions (reducible fraction), extracted with
0.1 M NH2OH, pH 2; (iii) organic and sulfide fraction (oxidizable fraction), extracted with
hydrogen peroxide 30% and treated with ammonium acetate ((C2H7NO2) at pH 2, and
(iv) the residual fraction, that remains in the residual solid, obtained by difference with
total metal contents [70,75].

It is worth noting that sediments were homogenized before starting the experiments
and before sampling for heavy metal analysis to obtain representative values for the total
volumes of treated sediments.

On the basis of the chemical characterization, As, Cd, and Zn were identified as the
main HMs in the Portman Bay sediments (see results and discussion section), and as such,
we specifically assessed the leaching efficiency of these three elements by comparing their
concentrations at the beginning and at the end of the incubation period following each
different experimental treatment.

2.4. Statistical Analyses

To test for differences in the bioremediation yields obtained by the different experi-
mental treatments, we used analysis of variance following homogeneity of variance checks
by the Cochran’s test. Pair-wise tests were performed in case of significant (p < 0.05)
differences. Statistical analyses were run using Primer 6 + PERMANOVA [76].

3. Results and Discussion

The analysis of HMs in the sediments of Portman Bay used for the bioremediation
experiments revealed the presence of high HM concentrations, especially for Zn, As, and
Cd (2963, 250, and 4.7 µg/g, respectively; Figure 1A).

Such concentrations exceed national and international sediment quality guidelines [66,77,78]
and are above the ERL-“Effects Range Low” values and, for As and Zn, also above the ERM-
“Effects Range Median” values, indicating possible or highly probable adverse ecotoxicological
effects [79,80]. The sequential extraction procedure highlighted that Zn, As, and Cd were
present in a different proportion associated with the different geochemical fractions of the
sediments (Figure 1B). In particular, the largest fraction of the As was associated with the
residual fraction (80%), whereas Zn was mostly associated with the exchangeable/carbonate
fraction, followed by reducible and oxidizable fractions. Such a different repartition can
influence to a great extent, the solubilization efficiency of the different elements since metals
bound to the residual fraction is difficult to mobilize through bioleaching [1,81,82].
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and hence further selected as targets for our bioremediation tests. Reported are average values
and SDs.

In this study, we found that sediments treated with glucose or S displayed solubi-
lization efficiency of the three target elements very similar to those observed in untreated
sediments (i.e., no-amendment; Figure 2A). Differently, the addition of Fe significantly
increased the solubilization efficiency for all three elements, independently of the con-
comitant addition of S and/or glucose (Figure 2A), possibly due to Fe-induced lowering
of sediment pH and consequent stimulation of the bioleaching ability of autochthonous
microbial assemblages inhabiting the Portman Bay sediments [1,83].

The addition of Fe/S oxidizing bacteria alone had a limited solubilization efficiency,
but their efficiency significantly increased in case of contextual addition of Fe, S, or both (up
to 84.6 ± 2.8%, 66.9 ± 2.7%, and 8.9 ± 1.2% for Zn, Cd, and As, respectively; Figure 2A),
likely due to their metabolic stimulation induced by such compounds [1,10,84,85]. We
could notice that the addition of S stimulated Fe/S oxidizing bacteria less than the addition
of Fe, suggesting a reduced ability of Fe/S bacteria in our experiments to enhance HM
bioleaching by using S to generate sulphuric acid [86]. Our results also highlight the lack of
synergistic effects of the concomitant addition of Fe and S on the bioleaching efficiency of
Fe/S oxidizing bacteria, as previously documented [87]. Overall, the bioleaching yields
obtained in this study confirm the generally good performance of Fe/S oxidizing bacteria
in HM bioleaching from marine sediments, as reported in similar previous works [88,89].

The addition of the chemo-heterotrophic bacterium A. cryptum alone did not deter-
mine significant effects on the solubilization performance of HMs when compared with
the controls (Figure 2A). Similarly, the combined addition of Fe/S oxidizing bacteria and
A. cryptum resulted in similar or even lower bioleaching efficiency than those obtained with
Fe/S oxidizing bacteria alone, further indicating that the A. cryptum was inefficient or even
reduced HM solubilization in Portman Bay sediments. This result disagrees with that previ-
ously reported on sediment samples collected in another contaminated coastal site in which
the combined addition of Fe/S oxidizing bacteria and A. cryptum determined an almost
double bioleaching efficiency compared to that observed by using these two kinds of bacte-
ria alone [10]. As also highlighted in other cases [1], HM solubilization in contaminated
marine sediment and the outcome of bioremediation approaches largely depend on the
specific characteristics of the sediments, which hampers to drawn definitive conclusions on
their effectiveness.
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amendments and controls performed in this study. The left panel (A) shows the solubilization effi-
ciency for Zn, Cd, and As. The right panel (B) shows the increase in solubilization yields induced
by the addition of each different type of microbes (calculated by comparison with the respective
chemical-only treatments without microbial addition). +Gluc: glucose addition; +Fe: iron addition;
+S: sulphur addition; + Fe/S Bac: addition of chemo-autotrophic Fe/S oxidizing bacteria (includ-
ing Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirillum ferrooxidans); +A.c.:
addition of the chemo-heterotrophic bacteria (Acidiphilium criptum); + Fungi: addition of fungal
strains (Aspergillus niger and Trichoderma sp.). Different letters in the bar charts highlight significant
differences among values. In the (B) panel, asterisks highlight significant differences between the
values obtained with the addition of fungi alone, or of fungi and Fe/S bacteria.

The addition of fungi, either alone or in combination with bacteria, determined a signif-
icant increase in bioleaching efficiency compared to the controls, reaching values similar to
(for Zn and Cd) or even higher than (for As) that were obtained when using Fe/S oxidizing
bacteria (Figure 2A). The calculation of the microbial-induced increase in solubilization
yield (i.e., by comparing each microbial-based treatment with the respective chemical-only
treatment) allowed further highlighting the overall better performance of the fungal-based
treatments compared to the addition of bacteria, especially for Zn and As (Figure 2B). In
particular, the highest microbial-induced increase in solubilization yield was reached by
the treatment with fungi alone (with significantly higher peaks for Zn and As) (Figure 2B).
These results indicate that in the case of the Portman Bay sediments, the addition of selected
fungal strains, especially without contextual bacterial addition, can represent the most
promising strategy to enhance HM bioremediation efficiency. A similar study conducted
on freshwater sediments [33] highlighted that the co-addition of fungi, able to consume
organic compounds which would otherwise be toxic for autotrophic Fe/S oxidizing bac-
teria, could increase the bacterial bioleaching efficiency in HM-contaminated sediments.
Our study thus extends the relevance of fungi beyond this proposed role of facilitators for
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bioremediating bacteria, as we show that the addition of fungi alone, without bacterial
additions, can reach similar or even higher HM bioremediation efficiencies.

To our knowledge, only one study has investigated the use of marine-derived fungi
for the removal of HMs from marine sediments so far [90]. However, this approach is very
different compared with ours, as not based on fungal bioleaching processes. Rather, Cecchi
et al.ii used a membrane enriched with marine fungi that bioaccumulate metals to be put
in contact with the HM-contaminated sediments to be treated [90]. As such, the possibility
of properly comparing results from the two approaches is limited. Indeed, applying Cecchi
et al. system, only sediments that are proximal to the membrane can be treated, and
the materials used need then to be collected and disposed of as special wastes after HM
accumulation [90]. So, the two approaches can have different advantages or limits, and
their application should be based on the final aim of each specific decontamination context.

Despite the lack of similar studies on marine sediments on the use of marine-derived
fungi for the removal of HMs through bioleaching, our results can be compared with
analogous experiments conducted on other matrices (e.g., river sediments, soils, solid
wastes). For example, the overall bioleaching yields for Cd and Zn obtained by adding
fungi on Portman Bay sediments are either higher or lower than what was previously
reported by similar bioremediation experiments on freshwater sediments (i.e., only 2% [71]
and up to >99% [64] for Cd, while 44% [71] and up to >80% for Zn [33]), and similarly for As
(i.e., from 3% to 62% based on a study on mine tailings [91]). However, such comparisons
should be viewed with caution. Indeed, differences in fungi-mediated bioleaching can
depend on a wide array of factors, including the matrix type and geochemistry, the specific
fungal strains utilized, the microbial interactions between autochthonous and inoculated
microbes, and different susceptibility of the added microbes to the toxic contaminants
present in the treated matrix [1,35,70,92]. Indeed, different studies have reported that
different fungal strains have a different ability to thrive at high concentrations of heavy
metals, which thus can result in a different bioleaching potential [34,58,93]. Our results
based on multiple bioleaching experiments conducted in parallel provide further support
that bioaugmentation approaches with fungi could be effective to the same extent or even
more than those based on bacterial additions [64,94]. These results thus contribute to
pointing out the rising role of fungi as efficient microbial taxa for HM bioremediation and
also for marine sediments [41,42]. Notably, the normalization of the HM solubilization
efficiency values to the HM extractable fraction (that is, to the overall HM mass, except the
residual fraction; Figure 3) highlights that fungal addition was the only biotreatment able
to overcome 100% solubilization yield for Zn and Cd (with values up to 106% and 126% for
Zn and Cd, respectively). This implies that the treatment with fungi was the only one able
to solubilize also a fraction of Zn and Cd bound to the residual fraction. Considering the
relatively short time span of our experiments (14 days), these results led us to hypothesize
a potentially even higher bioleaching yield over a longer period. Nevertheless, further
studies are needed to assess the potential of the fungal strains tested in our experiments on
the solubilization of the less mobile fraction of HMs bound to the residual fraction [1,95].

Preliminary tests we conducted to optimize the growth of the tested bacterial and
fungal strains under our laboratory conditions indicated that the marine-derived fungal
strains A. niger and Trichoderma sp. show higher biomass yields and hence possibly perform
even better in terms of bioremediation efficiency using glucose concentrations higher than
0.1 g/L (Supplementary Figure S1). Despite this, the use of low glucose concentrations
can be a valuable compromise to promote HM solubilization by minimizing possible
glucose-induced inhibition of autotrophic bacteria in co-culture with fungi [96], as well
as by reducing the overall carbon footprint [97,98]. We thus suggest that future tests
should be carried out to assess the minimum glucose concentration to effectively sustain
microbial growth rates and HM bioleaching efficiency in order to improve the overall
eco-sustainability of the bioremediation process.



Microorganisms 2022, 10, 993 9 of 15

Microorganisms 2022, 10, 993 9 of 16 
 

 

conducted in parallel provide further support that bioaugmentation approaches with 
fungi could be effective to the same extent or even more than those based on bacterial 
additions [64,94]. These results thus contribute to pointing out the rising role of fungi as 
efficient microbial taxa for HM bioremediation and also for marine sediments [41,42]. 
Notably, the normalization of the HM solubilization efficiency values to the HM 
extractable fraction (that is, to the overall HM mass, except the residual fraction; Figure 3) 
highlights that fungal addition was the only biotreatment able to overcome 100% 
solubilization yield for Zn and Cd (with values up to 106% and 126% for Zn and Cd, 
respectively). This implies that the treatment with fungi was the only one able to solubilize 
also a fraction of Zn and Cd bound to the residual fraction. Considering the relatively 
short time span of our experiments (14 days), these results led us to hypothesize a 
potentially even higher bioleaching yield over a longer period. Nevertheless, further 
studies are needed to assess the potential of the fungal strains tested in our experiments 
on the solubilization of the less mobile fraction of HMs bound to the residual fraction 
[1,95]. 

Preliminary tests we conducted to optimize the growth of the tested bacterial and 
fungal strains under our laboratory conditions indicated that the marine-derived fungal 
strains A. niger and Trichoderma sp. show higher biomass yields and hence possibly 
perform even better in terms of bioremediation efficiency using glucose concentrations 
higher than 0.1 g/L (Supplementary Figure S1). Despite this, the use of low glucose 
concentrations can be a valuable compromise to promote HM solubilization by 
minimizing possible glucose-induced inhibition of autotrophic bacteria in co-culture with 
fungi [96], as well as by reducing the overall carbon footprint [97,98]. We thus suggest that 
future tests should be carried out to assess the minimum glucose concentration to 
effectively sustain microbial growth rates and HM bioleaching efficiency in order to 
improve the overall eco-sustainability of the bioremediation process. 

 
Figure 3. Solubilization efficiency normalized to the extractable fraction of Zn, Cd, and As. Reported 
are the solubilization efficiency values obtained by the four main different conditions used in this 
study: chemicals only, bacteria, fungi, and the mix of bacteria and fungi. Different letters in the bar 
charts highlight significant differences among values. 

Figure 3. Solubilization efficiency normalized to the extractable fraction of Zn, Cd, and As. Reported
are the solubilization efficiency values obtained by the four main different conditions used in this
study: chemicals only, bacteria, fungi, and the mix of bacteria and fungi. Different letters in the bar
charts highlight significant differences among values.

The analysis of sediment pH in each of the experimental microcosms at the end of
the incubation period (Figure 4) highlighted significant differences among treatments
and among treatments and the initial pH value of 2.5 of the sediment (which had been
standardized across all microcosms at the beginning of the experiments, see methods
section). In particular, the controls (without any amendment) were characterized by the
highest pH values, which were similar to those observed in the case of the addition of
glucose, sulfur, Fe/S oxidizing bacteria, or glucose + A. cryptum (overall pH values ranging
from 4.0 ± 0.2 to 4.9 ± 0.4). The chemical-based treatments, as well as the treatment based
on the addition of Fe/S bacteria without Fe or with A. cryptum, displayed at the end of
the experiments pH values similar to those measured at the beginning (i.e., ranging from
2.5 to 3.1). In these microcosms, we can hypothesize that the addition of Fe contributes
to keeping lower pH values over time, possibly via the thiosulfate and/or polysulfide
pathways or similar Fe-dependent mechanisms able to generate protons [1,83]. Conversely,
the microcosms with the addition of Fe/S bacteria and Fe, as well as those with the addition
of fungi, were characterized by the lowest sediment pH values (ranging from 1.7 to 2.2),
significantly lower even when compared to the pH determined at the beginning of the
experiments (2.5).

Notably, we found significant and positive relationships (Figure 4) between the solubi-
lization efficiency of all HM analyzed and sediment pH (that is, the lower the sediment pH
reached by the experimental treatment, the higher the Zn, Cd, and As solubilization yields
obtained). From these relationships, we can observe that, at similar low pH values (<2.5),
the addition of fungi provides a better bioleaching performance for As compared to the
addition of Fe/S oxidizing bacteria (Figure 4), suggesting that specific metabolic features
of A. niger and Trichoderma sp. fungal strains could lower sediment pH and enhance As
bioleaching. Indeed, even in the absence of Fe addition, fungi were able to keep the lowest
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pH values over time, hence suggesting a Fe-independent mechanism able to keep acid
pH [1,83]. Our results agree with previous studies reporting a marked increase in HM
solubilization efficiency under more acidic conditions [99–101]. Indeed, low pH values not
only directly enhance chemical solubilization but also boost metabolic and overall growth
rates of acidophilic microbes [99–101]. Moreover, acidophilic microbes, including the Fe/S
oxidizing bacterial and fungal strains tested in our experiments, are known to contribute to
sediment acidification by producing H2SO4 and Fe3+ [46,102] and/or organic acids such as
tartaric, oxalic, citric, and malic acids [64,102–106]. Even if not specifically investigated in
this study, such microbial processes and secondary metabolites may be involved in explain-
ing the high bioremediation yields we observed. However, further studies are needed to
unveil which specific metabolic features could contribute to sediment acidification in our
treatments (e.g., which kind of organic acids can be produced by the tested fungal strains).
In addition, as we only assayed the use of a mix of the two different fungal strains in our
tests, further tests with A. niger or Trichoderma sp. alone could disentangle their relative
role in the bioremediation potential observed in our study.
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tion period and their correlation with HM solubilization efficiency. In the upper panel, reported are
average sediment pH values and SDs. In the lower panel, reported are the relationships between the
Zn, Cd, or As solubilization efficiency and sediment pH, with the white dots indicating overall treat-
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4. Conclusions

In our study, we compared different approaches for the remediation of marine sed-
iments highly contaminated by HMs, based on chemical treatments and/or different
microbial-based amendments with bacteria and/or fungi. We show that fungal additions
can result in HM bioleaching yields similar, or significantly higher, than those obtained
by chemical or bacterial treatments. Moreover, we show that fungi could outperform
bacteria in the bioleaching of the less mobile HM fraction. Overall, our findings indicate
that fungi can be more effective than acidophilic autotrophic and heterotrophic bacteria
in HM bioleaching, and as such, their use can represent an alternative strategy for the
bioremediation of marine sediments highly contaminated with heavy metals.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/microorganisms10050993/s1, Figure S1: Bacterial and fungal abun-
dance in preliminary tests. Reported are the values of fungal biomass (primary y axis) and of bacterial
cell counts (secondary y axis) over time in the preliminary experimental systems set up before start-
ing the bioremediation study, to test microbial growth under the test conditions used in this work.
Incubation tests were set up at 12.5% w/v (weight of the dry sediment to final volume) in autoclaved
250 mL Pyrex flasks, with 150 mL final volume. For bacterial tests, 15 mL of chemo-autotrophic
Fe/S oxidizing bacteria and chemo-heterotrophic bacteria at a concentration of 1.5–2 × 108 cells
mL−1 were inoculated at T0 days. For fungal tests, 10 mg of fungal biomass was added to each
microcosm at T0 days, comparing two different glucose concentrations (1 or 0.1 g L−1) in order to
assess the growth of the tested marine fungal strains under the more oligotrophic conditions optimal
for bacterial growth. For bacteria, the standard glucose concentration of 0.1 g L−1 was always used,
as previously optimized [10]. All flasks for these preliminary tests were set up in duplicate and
kept at constant temperature of 20 ◦C on a rotary shaker (150 rpm) (Stuart orbital incubator S510).
References [107–110] cited in Supplementary Materials.
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