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Abstract: Photosystem Il is a light-driven water-plastoquinone oxidoreductase present in cyanobacte-
ria, algae and plants. It produces molecular oxygen and protons to drive ATP synthesis, fueling life on
Earth. As a multi-subunit membrane-protein-pigment complex, Photosystem II undergoes a dynamic
cycle of synthesis, damage, and repair known as the Photosystem II lifecycle, to maintain a high
level of photosynthetic activity at the cellular level. Cyanobacteria, oxygenic photosynthetic bacteria,
are frequently used as model organisms to study oxygenic photosynthetic processes due to their
ease of growth and genetic manipulation. The cyanobacterial PSII structure and function have been
well-characterized, but its lifecycle is under active investigation. In this review, advances in studying
the lifecycle of Photosystem II in cyanobacteria will be discussed, with a particular emphasis on new
structural findings enabled by cryo-electron microscopy. These structural findings complement a
rich and growing body of biochemical and molecular biology research into Photosystem II assembly
and repair.

Keywords: Photosystem II; oxygenic photosynthesis; photosynthetic reaction center; cyanobacteria;
cryo-electron microscopy

1. Introduction: Photosystem II and Cyanobacteria

Photosystem II (PSII) is a multi-subunit membrane protein complex located in the
thylakoid membrane of plants, cyanobacteria, and algae. It is the enzyme responsible
for splitting water, providing the oxygen that fuels life on Earth as we recognize it. PSII
performs this demanding photochemical reaction through sequential oxidation of a catalytic
MnyCaOs cluster, which accumulates four oxidizing equivalents, cycling through five so-
called Sy-states of oxidation [1] before oxidizing water in a concerted manner into molecular
oxygen, producing four protons and four electrons in the process.

Cyanobacteria, oxygenic photosynthetic prokaryotes, have frequently been used as
model organisms to study oxygenic photosynthetic processes due to their relatively fast
growth and ease of genetic manipulation as compared with plants. For study of Photo-
system II, three organisms have been widely utilized: Synechocystis sp. PCC 6803 (S6803),
Thermosynechococcus elongatus, and Thermosynechococcus vulcanus. The mesophilic S6803
has been utilized for physiological studies and studies that require genetic manipulation
of photosynthetic proteins, as it is a facultative heterotroph. The ability to grow S6803 on
glucose allows for mutations and deletions to be made in genes necessary for photoau-
totrophic growth. PSII from either T. elongatus or T. vulcanus, thermophilic cyanobacterial
strains, has been utilized for all high-resolution X-ray diffraction structures of PSII. Proteins
from thermophilic organisms are often used for structural studies, as these proteins are
more stable than their mesophilic homologs. Currently, due to these structural studies, our
‘static’ picture of active PSII is quite detailed. Atomic-resolution X-ray diffraction structures
are available from T. elongatus and T. vulcanus [2—4] and X-ray free-electron laser (XFEL)
technology and sample preparations have advanced to allow the structural determination
of each of the Kok’s S-states of the MnsCaOs cluster up to S3 [5]. Recently, cryo-electron
microscopy has enabled elucidation of the structure of active PSII from S6803 as well [6].
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The biogenesis and repair (PSII lifecycle) of this membrane-protein-pigment complex
are under active investigation. The assembly of PSII, a 20+ subunit membrane-protein-
pigment complex, is an intricate process, involving cellular localization of protein subunits,
pigment insertion, subunit assembly and processing, and cofactor assembly. Furthermore,
under normal growth conditions, PSII is routinely damaged by reactive oxygen species
that form within the protein and in its immediate vicinity [7,8]. To maintain a high level
of photosynthetic activity, PSII must be repaired when damage occurs: damaged protein
subunits must be replaced while the undamaged ones remain protected, and the biogenesis
and repair processes must be coordinated within the cell.

In this review, we will discuss what is known about PSII assembly and repair in
cyanobacteria, with an emphasis on new findings since the topic was last reviewed [9-17].
Recently, the field has been greatly advanced by high-resolution cryo-electron microcopy
(cryo-EM). Cryo-EM has enabled several PSII assembly intermediate structures to be
solved, as well as structures from the mesophilic S6803. These advances, in addition to
other progress in the field, warrant a review and discussion.

2. PSII Structure

Active PSII has a modular architecture, consisting of what can be described as four

‘modules’ (Figure 1). These include the membrane-intrinsic reaction center and chlorophyll-

binding antennas, and the membrane-extrinsic thylakoid lumenal proteins. For a thorough
discussion of the PSII structure-function relationship, see Miih et al. [18].

B Reaction Center
B CP47 antenna module

B CP43 antenna module
Cextrinsic proteins

PsbH/L/M/T/X/Y

Figure 1. PSII monomer (PSII forms a dimer in vivo). Modules are colored as indicated.

The PSII reaction center (RC) is localized on the D1 and D2 protein subunits. These
subunits bind the P680 reaction center chlorophyll special pair as well as the primary
electron transfer chain, including plastoquinones Qa and Qp and the catalytic MnysCaOs
water-oxidizing complex (WOC or OEC for oxygen evolving center). The Psbl subunit and
cytochrome b559 (made up of the PsbE and PsbF subunits) complete the reaction center.
This reaction center complex has been isolated independently and is the smallest PSII
sub-complex capable of charge separation [19-21]. It is notable, however, that the CP43
subunit also provides a ligand to the manganese cluster, and so, while capable of charge
separation, the reaction center proteins alone are not sufficient to bind the catalytic metal
center or perform water-oxidizing chemistry.

The two antenna modules bind chlorophyll to absorb light energy that is funneled
into the reaction center. These modules consist of the CP47 and CP43 proteins and their
associated low molecular weight subunits (which are also referred to as low-molecular
mass or small membrane-intrinsic subunits). PsbH, PsbL, PsbM, PsbT, PsbX, and PsbY
bind to CP47. CP43 is associated with the small transmembrane subunits Psb], PsbK, and
PsbZ and Psb30 (Ycf12). These low-molecular weight subunits can be individually deleted
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without a loss of photosynthetic capacity, but stabilize and optimize PSII photochemistry,
and some may play a regulatory role in the PSII lifecycle.

The last module consists of membrane-extrinsic proteins which bind PSII on the
lumenal side of the thylakoid membrane and contribute to PSII stability and optimal
performance. This module is the site of greatest variability between and among plants,
algae, and cyanobacteria [22-25].

In addition to the active PSII subunits, there are assembly factors and accessory
proteins involved in de novo biogenesis and repair following photodamage that are not
part of the active PSII complex. Knowledge of these is almost certainly not complete, and
they number as many if not more than the protein subunits of the active complex. These
proteins, especially the Psb27 subunit, have been the focus of much recent research effort.

3. PSII Assembly

PSII assembly is thought to follow a highly ordered series of steps. The first step in PSII
assembly is the formation of two pre-complexes, one containing pD1 and Psbl [26-28], and
one containing D2 and cytochrome b559 [27-31] (Figure 2A, cytochrome b559 is composed
of PsbE and PsbF). pD1 is a pre-processed form of D1. It has a 16 amino acid c-terminal
extension that is cleaved by the protease CtpA (see Table 1 for details on bolded proteins)
prior to assembly of the Mn4CaOs cofactor [32,33]. The pre-D1 complex consists of the pD1
subunit and the Psbl subunit, as well as numerous translation and assembly chaperones that
aid in ribosome binding to the psbA (gene coding for D1) transcript, insertion of the nascent
peptide into the membrane, and chlorophyll binding to the newly inserted peptide. One
such protein, PratA, is involved with the insertion of pD1 to the membrane and coordination
of an initial Mn?* ion to D1 [34-36]. It is also thought to be associated with specialized
regions of the thylakoid membrane where PSII is synthesized and repaired [34,37]. The
deletion of PratA was shown to be deficient in c-terminal processing of D1 [36], leading
to the hypothesis that it facilitates access of the c-terminal protease, CtpA, to pD1. The
rubredoxin RubA [21,31,38] also binds to D1 prior to its association with D2 and has been
implicated in protection from photodamage to the reaction center during PSII assembly in
the green alga Chlamydomonas reinhardtii [38].

Knoppova et al. found that Ycf39 and two HLIP family chlorophyll-binding pro-
teins [39], HIiC (ScpB) and HIiD (ScpE), associate with D1 co-translationally [28]. The
HLIP (high light-inducible) family of proteins is a family of chlorophyll-binding proteins
related to the light-harvesting complex family of proteins in eukaryotes. In cyanobacteria,
they are known to bind chlorophyll and stabilize the assembly of chlorophyll-binding
proteins [39,40]. Ycf39, HIiC and HIiD form a complex which contains chlorophyll and
[3-carotene and is necessary for formation of the reaction center. This Ycf39-Hlip complex is
also proposed to be involved in the delivery of recycled chlorophyll to newly synthesized
D1 and protection from photodamage, as it interacts with the YidC/Alb3 membrane inser-
tase complex as well as chlorophyll synthase [41,42]. Pam68, along with Ycf48 and Ycf39,
is implicated in co-translational insertion of chlorophyll to the reaction center proteins D1
and D2 [28,37,43,44]. Ycf48 is a soluble thylakoid membrane-associated protein associated
with the D1 pre-complex and the reaction center complex [21,27,31,45-49], and it contains
a conserved arginine patch that mediates its binding to integral membrane proteins [48].
These findings, in addition to the finding that apo-D1 does not accumulate [29], provide
evidence that chlorophyll is co-translationally inserted into D1 as it is translocated into
the membrane.
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Figure 2. PSII Lifecycle, simplified. Not all accessory assembly chaperones are illustrated.
(A-D) illustrate de novo synthesis, while (D-G) illustrate the repair cycle. (A) The pre-D1 and
pre-D2 complexes come together to form the RC module. (B) RC and pre-CP47 modules come
together to form the RC47 complex. Psb28 binds at this stage. (C) Psb27-PSII forms from pre-CP43
module and RC47. (D) The active PSII monomer is formed in a series of steps, which include pro-
cessing of the D1 C-terminus, photo-assembly of the MnyCaOs cluster, and binding of extrinsic
proteins PsbO, PsbV, PsbU, and PsbQ. The active PSII dimer forms following complete monomer
assembly. (E) Following a photodamage event, the extrinsic proteins dissociate, Psb27 binds, and the
dimer dissociates into monomers. (F) Damaged subunits are removed and proteolytically degraded.
(G) Newly synthesized PSII subunits are inserted into recycled subunits to form a Psb27-PSII complex
and the repair pathway re-joins the de novo synthesis pathway.

The reaction center forms (Figure 2A) [29,30,50,51] when the D1 and D2 pre-complexes
bind together. PsbP (CyanoP), which binds to the D2 pre-complex [52], is thought to be
involved in RC formation [22,53,54]. Recently, an RC complex was isolated from a strain
of 56803 lacking CP47 that contains PsbN as well as the protein products of slr0575 and
slr1470 [21]. This complex is on the de novo synthesis pathway, as active PSII does not form
in this strain. However, a pre-D2 complex was also isolated from this strain which was
associated with the protease FtsH2 /FtsH3. This finding indicates that free-D2 levels are
regulated by FtsH2 /FtsH3.

The CP47 pre-complex contains PsbH, PsbL, PsbT, and possibly PsbM, PsbX, and
PsbY [55,56]. The assembly factor Psb35 also associates with the CP47 pre-complex and
was shown to stabilize it and its association with HliA and HIiB (ScpC and SpcD) [57].
Psb35 itself is a homolog of the cyanobacterial one helix domain/HLIP family of proteins,
but it is unknown whether it binds chlorophyll. Pamé8, in addition to its association with
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the pre-D1 complex, has been shown to be involved with co-translational insertion of
chlorophyll into CP47 prior to PsbH binding [58].

In the next step of PSII assembly, the RC joins together with the CP47 pre-complex to
form the RC47 complex (Figure 2B). RC47 is bound by HIiA /HIiB and Psb28 [56,59-64].
While the deletion mutant of Psb28 is photoautotrophic, it is deficient in recovery from
photodamage at high temperature [63] and in light/dark conditions [64], indicating a role
in stabilizing PSII intermediate assembly and repair complexes. Recent structural studies
are consistent with the role of Psb28 as stabilizing assembly intermediates and protecting
them from photodamage as well (discussed below).

Table 1. PSII assembly factors. Psb subunits are listed alphabetically, followed by additional assembly
factors, listed alphabetically.

Homolog in A.
Name Function 56803 thaliana or Phen(?typ.e of Citations
Locus Tag . .. Inactivation
C. reinhardtii
. Not significant in
PsbN RC formation smr0009 PsbN . [21,49,65]
cyanobacteria
Reduced O,
PsbP (cyanoP) RC formation sl11418 PsbP evolution, severe [22,52,54]
phenotype in
low CaCl,
Defective
Psb27 Binds to CP43 slr1645 Psb27 photoactivation, [45,66-74]
during assembly sensitive to
high light
Binds to
CP47/cytochrome b559
in RC complex and Susceptible to
Psb28 Psb27-PSII complex. sl11398 Psb28 photoinhibition in [46,56,59,60,63,64,71,73]
Alters electron transfer high light
properties to increase
photoprotection
. Impaired growth
Psb29 Accumulation of sll1414 Psb29/Thfl in high light, lower [75,76]
FtsH2/FtsH3 -
PSII efficiency
Sensitive to
? _
Psb32 ? sl11390 TLP18.3 photoinhibition [77-80]
Psb34 Binds to RC47and PSIIT 1, 494 ? N/A [61,62,81]
prior to activation
Lower CP47
) » accumulation,
Psb35 Pre-CP47 ss12148 ? faster bleaching [57]
in dark
C-terminal processin not photosynthetic,
CtpA o 15)1 & s1r0008 CtpA no Mn4CaOs [32,66]
cluster formation
. . Inhibited growth
?
HIiA CP47 formation ss12542 ? in high light [39]
HIiB CP47 formation 5512595 ? Inhibited growth 39]

in high light




Microorganisms 2022, 10, 836

6 of 19

Table 1. Cont.

Homolog in A.

Name Function 56803 thaliana or Phen(?typ.e of Citations
Locus Tag . .. Inactivation
C. reinhardtii
CAB/HLIP/ELIP Inhibited growth
. . . family in high light,
H1iC/ScpB Chlorophyll insertion ssl1633 (counterpart of depleted [21,28,39,40,82]
OHP1/0OHP2) chlorophyll
CAB/HLIP/ELIP Inhibited growth
. . . family in high light,
HIiD/ScpE Chlorophyll insertion ssr1789 (counterpart to depleted [21,28,39-41]
OHP1/0OHP2) chlorophyll
Sensitive to high
Pamé68 ".fransllatlon of CP47 and <110933 PAMG68 light, low [43,44,58]
insertion of chlorophyll temperature,
fluctuating light
Mn?* loading to D1 and abnormal
D1 processing; thylakoid membranes, B
PratA and plasma membrane slr2048 LPAL reduced PSII [34-571
connection accumulation
RubA D1/D2 assembly s1r2033 RBD1, At1¢54500 Reduced PSII level [31,83]
and activity
S1r0144- . slr0144- Slower growth and
?
S1r0152 PSllassembly associated ) 15 ; lower PSII activity [47,84,85]
Ycf39 Pre-D2 stabilization, s1r0399 HCF244 Decrease in [21,28,41,44]
chlorophyll insertion thermotolerance
Insertion of D1, Decrease in D1,
Ycfa8 chlorophyll into D1, s1r2034 HCF136 PSIL, increase in [21,27,31,44,45,54,86]
replacement of damaged susceptibility to
D1, RC formation photoinhibition

RC47 binds to the CP43 pre-complex to form Psb27-PSII (Figure 2C). The CP43 pre-
complex is composed of CP43, the Psb27 assembly protein, PsbK, Psb30, and possibly
PsbZ [55,70,72,87]. At this stage, the Psb27-PSII complex consists of most of the intrinsic
membrane subunits of the PSII monomer. S110606 is involved in RC47 binding to CP43,
and its deletion leads to a loss of photoautotrophy [88]. Psb34 (Ss11498), an HLIP-family
protein with no pigment binding site, is also suggested to be involved in RC47 binding
to CP43 [61,62,81], as it is found in both RC47 and Psb27-PSII. This subunit is suggested
to be involved in later stages of PSII assembly following HLIP dissociation, as it seems
to compete for binding sites on PSII intermediates, and in its deletion strain HIiA /HIiB
increase [81]. It should be noted that, in [89], the subunit name Psb34 is assigned to a
PSII subunit from C. gracilis. However, the sequence of that subunit was unable to be
determined. Therefore, we defer to more recent publications that have assigned Psb34 to a
PSII subunit with a known sequence and gene, Tsl0063 in T. elongatus or Ss11498 in S6803,
which is in a different position in the PSII structure from the unknown subunit.

In Figure 2D, the Psb27-PSII complex becomes the active PSII monomer. This step is
presumably shared between the assembly and repair stages of the PSII lifecycle and requires
several events to occur, the order of which are still unclear. These include the processing of the
D1 C-terminus by CtpA, assembly of the Mn;CaOs cofactor (photoactivation [90] discussed
further below), dissociation of Psb28, dissociation of Psb27 [66,68,71], and assembly of the
extrinsic proteins PsbO, PsbU, PsbV, and PsbQ (also called cyanoQ) [23,24,91].

It is also unclear at what stage some subunits found in the active PSII complex bind. In
particular, Psb] has not been found in intermediate complexes. Psb] binds near the Qg site
and possibly does not bind until after the formation of Psb27-PSII, when it triggers Psb28
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dissociation. The APsb] mutant retains Psb28 in the active PSII monomer and accumulates
more of a Psb27-and Psb28-bound PSII complex [73,74]. This mutant also has a much longer
lifetime of reduced Qa as compared to the wild type. Therefore, it was proposed that Psb]
plays a role in forward electron flow from reduced Q4 to the plastoquinone pool [92,93].
This observation led to the hypothesis that binding of Psb] is a regulatory step in PSII
formation, only occurring following the release of Psb28.

In addition to the assembly factors described above, several genes have been impli-
cated in PSII assembly and/or maintenance whose specific interactions with PSII have
not been fully elucidated. The operon containing slr0144-slr0152 [47,84,85] is implicated in
optimal PSII function. SIr0151, in particular, is involved in D1 association with CP43 [84].
Its deletion causes lower PSII levels, impaired D1 replacement, and the reordering of the
thylakoid membranes. Psb32 is a transmembrane protein which was shown to minimize
photodamage in cyanobacteria [78], but how it does so is unknown. Psb29 was shown
to contribute to optimal PSII maintenance in both S6803 and Arabidopsis thaliana [75] by
interacting with the FtsH2 /FtsH3 protease, which removes damaged PSII subunits.

Following assembly of the active PSII dimer, higher-level organization of antenna
complexes and photosystems into supercomplexes takes place. In cyanobacteria, this in-
volves phycobilisome docking and PSI-PSII-Phycobilisome supercomplex formation [64,94].
These inter-complex molecular interactions are likely to be important for optimal cellular
metabolism and the highest photosynthetic activity.

4. PSII Repair

The repair cycle of Photosystem Il is less well studied than PSII synthesis due to the
inherently difficult nature of experimentally separating the two spatially and temporally
overlapping processes. Deletion mutants of key photosynthetic proteins have been a crucial
part of the elucidation of de novo PSII synthesis but are halted at certain points in the
assembly of active PSII, and so never form active PSII to be damaged and subsequently
repaired. What is well-established is that the lifetimes of PSII subunits are not all the
same [40,95,96]. Experiments done by Vermaas and coworkers used the stable isotope >N
to determine the average lifetimes PSII subunits. They labeled cells with 1°N for varying
lengths of time to determine the rate of incorporation into various PSII subunits using
bottom-up mass spectrometry. Subunits with a high rate of turnover had the highest rate of
15N incorporation. They found that the D1 subunit is turned over most frequently, with
a half-life of less than an hour in cyanobacteria. This is followed by D2 with a half-life
of about 3 h, CP43 at 6.5 h and CP47 around 11 h. Other proteins, such as Photosystem I
subunits, are much more stable under normal conditions. Importantly, a similar labeling
experiment was performed with >N incorporation into chlorophyll, and it was found that it
has a lifetime of 300 h in WT S6803 [96]. The high turnover rate of D1, and the stark contrast
in lifetime between the PSII subunits, is of considerable interest, as it implicates that D1 is
removed selectively from PSII and replaced, while other PSII proteins remain stably bound
together. Additionally, chlorophyll is apparently recycled repeatedly among PSII and PSI
complexes. Complementary experiments by Rogner and coworkers found that Psb27 is
associated with both PSII assembly and repair intermediates using a similar strategy [67].
How the cell signals that certain subunits are damaged and selectively replaced, or if certain
subunits are constitutively replaced at different rates, is not known.

As for how the damaged protein subunits are selectively replaced, the assumption
has been, due to the loose(r) association of the CP43 module and the existence of the RC47
complex, that the CP43 module dissociates, allowing for proteolytic degradation of D1
and re-synthesis and insertion at the RC47 level [51,97]. It is then assumed that, following
re-insertion of D1 (and D2), that repair follows the same series of steps as de novo synthesis
(Figure 2C,D). However, whether D1 insertion takes place at the dimer or monomer level
has yet to be determined. A dimeric Psb27-PSII intermediate has been identified [69,74],
and dimeric RC47 has been identified in a ACP43 mutant of S6803 [72], indicating that
replacement of D1 may happen on the level of an RC47 dimer.
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Recently, a complex that was a combination of the CP47 module and CP43 modules,
called NRC (for No Reaction Center) [98], was isolated. Its abundance increased in the
absence of protein synthesis and in high light, conditions that enhance PSII repair. This
complex was hypothesized to be part of the repair cycle. Whether the CP47 and CP43
pre-complexes form a stable complex is disputed [99], but this is a topic that warrants
further investigation.

5. Structural Advances in PSII Research

Cryo-electron microscopy (cryo-EM) has brought forth some of the most significant
advances in our understanding of PSII assembly and function in recent years. An area
of intense research focus and progress has been the elucidation of PSII structures from
56803 and also intermediate PSII complexes. Cryo-EM has provided an excellent means
of studying such membrane protein complexes, as the technique does not require protein
crystallization and allows for greater heterogeneity within samples.

Protein crystals of PSII from thermophilic cyanobacteria have been extensively charac-
terized by X-ray crystallography. However, the structure of PSII from the mesophilic 56803,
on which many physiological and biophysical studies have been performed, had been
elusive. Gisriel et al. [6] solved the cryo-EM structure of a dimeric, active PSII from S6803 to
1.93 A. This structure is an important step in our understanding of PSII function, as many
studies that model PSII based on biophysical data from 56803 assume that the structure
and function is conserved between cyanobacterial species. However, as the authors note,
there are significant differences in sequence between PSII from 56803 and the thermophilic
organisms, and membrane proteins generally have different intermolecular interactions in
mesophilic and thermophilic organisms. Importantly, this structure definitively shows the
binding site of PsbQ, which was known to associate with active PSII in 56803 [77,91], but
had not been captured in any cyanobacterial structure. PsbQ is found associated with the
most highly active isolated PSII complexes [91]. However, the authors found that PsbQ
binding does not affect the conformation of PSII when bound, hypothesizing that PsbQ
stabilizes interactions of other membrane-extrinsic proteins with the PSII core, contributing
to high activity in isolated complexes. This structure will certainly be of great value as a
basis for computational studies to interpret the mechanism of PSII water-splitting, and the
impact of point mutants in S6803.

Many intermediate PSII complexes have been isolated and characterized, but until
recently, structural details of these complexes and their implications for PSII function were
unknown. To better understand the role of Psb27 in the PSII lifecycle, Huang et al. [74]
isolated a dimeric Psb27-PSII complex from T. vulcanus and determined the cryo-EM struc-
ture to 3.78 A. The complex was isolated from a deletion mutant of the PsbV subunit, as
increased assembly and repair intermediates are present in that strain. This dimeric Psb27-
PSII does not have extrinsic proteins bound and it does not have an assembled Mn4CaOs
cluster. Psb27 binds to the E-loop of CP43, as evidenced previously by mass-spectrometry
cross-linking data [70,72,87]. The authors found that there are limited molecular interac-
tions between Psb27 and CP43, indicating relatively weak binding of the assembly factor.
They demonstrate that Psb27 prevents binding of PsbO and PsbV by sterically hindering
their association sites, which is consistent with data that report that Psb27 binds to PSII in
Psb27-PSII to allow photoassembly of the MnyCaOs cluster to occur by preventing binding
of extrinsic subunits [68]. Additionally, the authors did not find electron density corre-
sponding to PsbY or Psb]. PsbY has frequently been absent in PSII structures, which has
been explained by the fact that it may easily dissociate due to its location on the periphery
of PSII. Psb] has been found to be absent in assembly intermediates that include Psb27.
The authors suggest that structural perturbations from active PSII amongst subunits in
Psb27-PSII may cause dissociation or prevent the association of Psb].

The dimeric Psb27-PSII in [74] may be the same species previously described by Grasse
et al. [69] that was isolated from cyanobacteria grown at low temperature and high light.
Because that dimeric Psb27-PSII was proposed to be part of the PSII repair cycle [69],
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and because the C-terminus of the D1 protein was unable to be modeled beyond Arg334
(the final residue in the mature peptide is Ala344) in the cryo-EM structure, the authors
hypothesized that D1 in their sample may be partially proteolytically degraded as part of
the first step of PSII repair. To test this hypothesis, they analyzed D1 c-terminal peptides
from their sample through mass spectrometry and found that about 1% are proteolytically
cleaved prior to the c-terminal Alanine 344 of the mature peptide. This finding confirms
that the invisibility of the D1 C-terminus in their structure is due to its flexibility in the
absence of a bound manganese cluster and extrinsic proteins, and not because it is degraded.
However, the small amount of proteolytically cleaved D1 subunits does not preclude the
possibility that this complex is part of the repair cycle, consisting of damaged PSII that has
been partially disassembled. Interestingly, Zabret et al. [61] found that the D1 C-terminus
of their monomeric Psb27-PSII structure (detailed below) can be modeled and is bound
more closely to CP43 than in mature PSII. This difference may be due to a higher overall
resolution of the structure, or to different stages of the complexes in the PSII lifecycle.

Zabret et al. [61] purified a PSII assembly intermediate containing Psb27, Psb28, and
Psb34 from the APsb] mutant of T. elongatus, based on the observation from [73] that this
mutant contains an increased amount of this intermediate sub-complex. They solved the
cryo-EM structure of this complex, which they term PSII-I, to 2.9A. In the structure, they
found that the C-terminus of mature D1 is bound more closely to CP43 than in the active
structure. They propose that this is to hold the D1 C-terminus in a conformation that favors
photoassembly of the OEC. One cation was modeled at the OEC site, which could either
be a Mn?* or a Ca®* cation. In addition to the difference in the D1 C-terminus described
above, there is a slight discrepancy with the finding in the Huang Psb27-PSII structure in
that they do not find a direct steric conflict with PsbO binding. PsbO has been found to be
associated with Psb27-PSII in [70], so perhaps this also a difference between the dimeric,
repair intermediate and the monomeric, Psb28-bound complex which may be the state
of PSII just prior to photoactivation on the assembly pathway. On the acceptor side of
PSII, they find that the D1 DE loop interaction with CP47 in active PSII is disturbed by
Psb28 binding and that the CP47 C-terminus forms a (3-sheet with Psb28. In addition,
the Qp binding site and the non-heme iron hydrogen bond network are altered from
the active PSII structure, resulting in the absence of the bicarbonate ion and Qg. They
found that these changes lead to changes in the PSII electron transfer pathway that reduce
singlet O, formation (discussed below). These findings suggest that Psb28 binds to PSII
during its assembly to protect PSII from photodamage. Interestingly, Eaton-Rye found
that PsbT interacts with the D1 DE loop in active PSII, and PsbT deletion causes increased
photodamage [100-102], indicating a regulatory role of this loop in the repair cycle.

Xiao et al. also solved the structure of a Psb28 bound-PSII, as well as a Psb28-bound
RC47 [62], to 3.14 A resolution. They used a His-tagged Psb28 to isolate PSII intermediate
complexes from both a APsbV mutant and WT strain of T. vulcanus. Both the 28-PSII and
the RC47 structure have Psb28, Psb34, and an unknown subunit bound that they were
not able to model. This additional subunit was not found in the similar PSII-I structure
in [61], but may be a second Psb34 copy. The authors found that Psb28 and Psb34 associate
similarly to in the PSII-I structure, and consistent with the Zabret paper, there are changes
in the quinone binding sites and H-bond network around the non-heme iron, with absence
of the bicarbonate. They also observed a similar shift of the D1 C-terminus and increased
flexibility. CP43, and the CP43 module as a whole is also shifted relative to its position
in active PSII, consistent with [61,103], which the authors describe as a looser attachment.
Additionally, alpha helices in D1, D2, and CP47 are changed to loops near the Psb28 binding
on the cytoplasmic side. Overall, the PSII-I and Psb28-PSII structures are consistent with the
binding position of Psb28 determined by Weisz et al. [59], although the precise attachment
is slightly altered (see below). Intriguingly, the WT Psb28-PSII structure has Psb27 bound,
but APsbV does not. This finding led the authors to propose that Psb27 associates following
Psb28 dissociation. However, it is not consistent with multiple findings that CP43 and
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Psb27 associate with one another prior to joining with RC47. Psb] and PsbY were not found
in either structure.

Xiao [62] and Zabret [61] both observed a distorted Qp binding pocket and bicarbonate
and heme iron binding site in the Psb28-bound PSII. These structures are consistent with the
position of Psb28 that was identified by [59], and they find that, as proposed by Weisz et al.,
the donor side of PSII is perturbed by the presence of Psb28. Discrepancies between the
crosslinking data and the structure could also have resulted from the fact that the location in
the crosslinking paper was modeled off the active structure, while it was found that Psb28
binding causes significant structural changes in the acceptor (cytoplasmic) side of PSII.
These structural alterations may slow electron transfer to the plastoquinone pool and change
the midpoint redox potential of Q5 /Qa ™*, as proposed by Brinkert et al. [104], who showed
that bicarbonate loss alters the Em of Qa/Qa~° to a more positive value. This positive
shift is predicted to increase the potential between Pggo*® /Qa ~* and Pegp™® /Pheo™*, which
may favor direct recombination between Pggp*® /Qa~* decrease back-reactions through
Pggp™® /Pheo™* recombination, reducing the probability of the formation of an RC triplet
state [7,105-107]. Overall, this may lead to a decrease in the production of singlet O,
consistent with the findings in Zabret et al. Additionally, photoactivation is also thought
to decrease the potential of Q4 /Qa~° [108], so intermediate complexes such as the Psb28-
bound PSII structures lacking OEC would also be protected by a similar mechanism.

Higher levels of Psb27-PSII are also associated with higher NPQ [109]. This finding
would be consistent with an overall model where Psb27 and Psb28 binding to PSII inter-
mediates induces structural perturbations that protect the not-fully-assembled PSII from
photodamage. An unanswered question in the role of Psb27 is that of Psb27 N-terminal
lipidation and how it relates to the interaction between PSII and Psb27. Nowaczyk and
coworkers initially suggested that Psb27 had an n-terminal lipid modification based on
the presence of a lipobox motif next to the N-terminal cysteine of the mature peptide and
confirmed a lipid attachment through mass spectrometry [67]. Recently, more focused mass
spectrometry has provided a more detailed picture of the lipid attachment [110]. However,
this lipid attachment was not resolved in the recent structures of Psb27-PSII, so how it
mediates attachment of Psb27 to the thylakoid membrane and/or to PSII remains unclear.

6. Advances in Photoactivation

Assembly of the MnyCaOs cluster takes place through sequential binding and oxida-
tion of Mn?* ions, as well as the binding of Ca?* and the deprotonation of water, using
the same photochemical machinery for charge separation as active PSII. Photoactivation
must take place during both de novo PSII assembly and repair, when the D1 subunit is
replaced. This phenomenon has long been known and studied [12,90,108,111-114], but its
exact mechanism is unclear. Recent PSII structures and studies have begun to describe this
process in greater detail.

In one such structural study, Zhang et al. [115] solved the structure of apo-PSII (PSII
without an intact MnyCaOs cluster) from T. elongatus using X-ray crystallography and
found that it aligned closely to the active PSII structure, but without electron density
corresponding to the OEC. The authors in this study intentionally removed the Mn4CaOs
cluster by treating crystals with hydroxylamine and EDTA, but the extrinsic PSII subunits
were maintained. They propose that the lack of structural alteration of the OEC ligands in
its absence means that the protein scaffold is already ‘pre-organized’ prior to MnyCaOs
cluster assembly, and significant rearrangement does not need to take place for it to form.
However, in another study, Gisriel et al. solved a structure of apo-PSII from S6803 [116]
using cryo-EM and did find structural differences in the soluble domain of CP43 and the D1
C-terminus between their structure and that of active PSIL. It is likely that this structure from
56803 lost the Mn,CaOs cluster during sample preparation, unlike the Psb28-and Psb27-
PSII structures described above, which are most likely assembly complexes. However, the
study does provide insight into photoactivation, as the 56803 apo-PSII lacks the OEC and
extrinsic PSII subunits and CP43 is shifted, as in [61,62,74]. These features suggest that the
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donor side of PSII does have some structural flexibility prior to photoactivation, and that
rearrangement needs to take place during the assembly of the OEC. The S6803 apo-PSII
structure is also lacking PsbY, Psb], and PsbZ, although whether they were lost in sample
preparation is unknown. It is possible that the flexibility observed in the S6803 apo-PSII is
not observed in the apo-PSII crystal structure due to the constraints of the crystals, as the
OEC was removed after crystallization.

Computational modeling can complement structural studies and provide insight
into structural perturbations and dynamics. Narzi et al. used a molecular dynamics
simulation to find that structural rearrangements do need to occur after the first Mn?*
oxidation [117] for the manganese binding sites to form in apo-PSII. Their results are in
agreement with the flexible nature of the D1 C-terminus found in [61,74,116], and they
propose that alternate protonation of OEC-liganding residues contributes to flexibility in
the D1 C-terminus as well. These results, together with Gisriel et al., also suggest that the
structure solved by Zhang et al. was constrained by crystal contacts and does not represent
the native structure of PSII prior to photoactivation. This study also agrees with a wealth
of biophysical data that suggests a structural rearrangement of OEC ligands takes place
during photoactivation [90,108,111-114,118].

The conditions necessary for optimal photoassembly, or photoactivation, of the man-
ganese cluster have been the focus of recent work [118-120]. Photoactivation requires
Ca?* and is known to have a much lower quantum efficiency than photochemistry in
active PSII leading to O, evolution. Low quantum efficiency of photoactivation has been
explained by the need for rearrangement of the ligand shell after the first Mn?* oxidation,
but also the need for acceptor side rearrangement to downshift Q4 /Qa ~° potential [108].
CI' is necessary for photoactivation as well. Vinyard and coworkers found, by tracking
photoactivation using EPR, that it tunes the pK; of residues around the OEC site, allowing
for the necessary deprotonation [119]. In another recent study, Avramov et al. examined an
over-expression strain of the Psb27 protein (OE27), as well as a deletion mutant of the PsbO
protein for photoactivation. They found that, while both the APsbO and OE27 strains had
an increased optimal ratio of Ca?* /Mn?*, the quantum efficiency of photoactivation also
increased in OE27, implicating a role for Psb27 beyond just blocking binding of extrinsic
proteins as previously proposed [68]. The authors suggest Psb27 has a role in maintaining
an optimal ligand configuration for photoassembly, in agreement with the altered CP43/D1
c-terminal conformation in [61,62]. How these results relate to the findings that Psb28- and
Psb27- bound PSII have altered photochemistry, and when these subunits dissociate during
the process, is yet to be determined.

7. Use of CRISPR and CRISPR Interference for Study of Photosynthetic
Protein Complexes

CRISPR and its associated techniques have emerged as powerful tools to manipulate
genes and gene expression in cyanobacteria [121-125]. Specifically in cyanobacteria, the
nucleases Cas9 and Cas12a (Cpfl), and their DNase-dead counterparts have been used to
great effect to efficiently make modifications. While these techniques are of great interest for
metabolic engineering of cyanobacteria, they also have the potential to expedite and enable
basic photosynthesis research. One advantage of CRISPR editing over more traditional
genetic manipulation is that it is markerless, enabling successive mutations to be made
without the need for multiple antibiotic resistance cassettes to be stacked or cells to be
maintained on multiple antibiotics. Additionally, CRISPR editing allows for an expedited
segregation process, which is an important consideration in an organism that has multiple
genome copies.

Of recent interest in terms of Photosystem Il research is CRISPR-interference, whereby
a DNase-dead CRISPR-associated protein is targeted to a specific genomic locus (or loci)
to block transcription. CRISPRi has emerged as a strategy to selectively inhibit photo-
synthetic genes. CRISPRi enables a particularly intriguing strategy for manipulation of
photosynthetic proteins due to its reversibility and its potential to multiplex targets through
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incorporation of multiple guide RNAs [126,127]. In one example of this type of strategy,
DNase-dead Cpfl was introduced into S. elongatus UTEX 2973 as part of a CRISPRi system
to target Photosystem I for inhibition [128]. Additionally, a plasmid-based CRISPRi system
was introduced into S6803 [129] to inhibit the expression of the D1 protein of photosys-
tem II, and Liu et al. [130] introduced a reversible CRISPRi system into S6803 by using
a Rhamnose-theophylline inducible promoter system. This CRISPRi system was able to
almost completely knock out PSII by targeting the D2 (psbD gene) protein, and it was fully
reversible. These inhibition strategies introduce a new paradigm for the study of membrane
protein complexes, in particular PSII, whereby its assembly can be reversibly halted at
varying stages, depending on the gene targeted for inhibition.

8. Conclusions and Future Perspectives

A common point that has been further emphasized in recent studies is that subtle
perturbations in PSII structure by either assembly factors or low-molecular-weight pe-
ripheral subunits have a significant impact on photochemistry. These perturbations can
lead to overall efficiencies on a cellular level by protecting assembly intermediates from
photodamage when necessary and optimizing photochemistry in active PSIL. Along that
theme, the impact of detergent solubilization on our current understanding of PSII function
is not well described. A few alternate solubilization techniques that may preserve a more
native membrane lipid arrangement, including lipid/protein nanodiscs [131-133] and
SMALDPs [134,135] have been explored, but it is an area that warrants more attention.

A more complete structural and functional picture of the lifecycle of PSII is coming
into focus, but there are most likely PSII assembly and repair factors that have not yet been
identified. Open questions remain about several aspects of the lifecycle. These aspects
include the mechanism of cofactor insertion into nascent PSII subunits and what signals
that PSII is damaged and should be repaired [136,137]. Additionally, some PSII assembly
factors have been identified whose function has yet to be fully determined. The study
of these questions will lend insight into PSII functions and membrane protein complex
assembly more broadly.

While knowledge about structures of isolated PSII intermediates has been expanded
in recent studies, an open area of investigation is the cellular localization of PSII biogenesis
and repair in cyanobacteria. The topic of localization of PSII biogenesis and repair is related
to the question of the structure of the cyanobacterial membrane system. Liberton et al. [138]
found through serial sectioning and electron tomography that the thylakoids form a com-
pletely independent membrane system from the plasma membrane. However, the thy-
lakoid sheets do converge at certain cellular locations near the plasma membrane [139-142].
Whether these convergence zones are connected to the plasma membrane is debated, but
they have been proposed to be the site of PSII biogenesis and/or repair [34]. An earlier
study determined that reaction center proteins were localized to the plasma membrane of
cyanobacteria, indicating that certain PSII proteins are inserted to the plasma membrane
and then trafficked to the thylakoid to regulate PSII assembly, but that has since been
disputed [143,144]. In plants, damaged PSII migrates to the thylakoid stroma lamellae from
the grana stacks to be repaired [13], and the ‘thylakoid convergence zones’ are thought to be
the location of an analogous process. Supporting this hypothesis is the fact that ribosomes
are found at these sites, while phycobilisomes are not [142]. PratA, which binds to pD1,
is found to be associated with an intermediate density membrane fraction between the
plasma membrane and the thylakoid membrane [34-37]. The membrane fraction which
contains PratA was proposed to be the site of the ‘thylakoid convergence zones’ (also called
variously biogenesis centers, thylakoid centers, or thylapses [142]), as it also contained
other PSII and chlorophyll biogenesis proteins. These studies were performed by sepa-
rating membrane fractions by density, but an alternative approach was recently taken by
Dahlgren et al. [145], which is a promising avenue for this type of investigation. The authors
of that study utilized a proximity-based proteomics approach to identify components of
different intracellular compartments. In this case, they used the APEX2 protein, a modified
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ascorbate peroxidase that catalyzes a reaction between biotin-phenol (BP) and hydrogen
peroxide (HyO;) to create a BP radical that covalently attaches to proteins, fused to a known
thylakoid lumen protein, PsbU, to selectively biotinylate proteins localized in the thylakoid
lumen of Synechococcus sp. PCC 7002. Approaches such as this have great potential for
answering questions of cellular localization and reinforcing findings by other methods.

Atomic force microscopy and hyperspectral confocal [146] studies of thylakoid frag-
ments from Thermosynechococcus elongatus, Synechococcus sp. PCC 7002, and Synechocystis
sp. PCC 6803 suggest that there are defined regions of the thylakoids that are differentiated
by the arrangement of photosynthetic and respiratory complexes in cyanobacteria. This
finding is corroborated by Casella et al. [147] in Synechococcus elongatus PCC 7942. The pur-
pose of these differentiated membrane regions is yet to be determined, but the arrangement
certainly has an impact on the diffusion of photosynthetic reactants and intermediates, such
as quinones, as well as the spatial organization of PSII biogenesis and repair. However, it
should also be noted that thylakoid arrangement varies drastically among cyanobacterial
species [148], and so if and how these findings apply generally to other cyanobacteria is
also unclear. Understanding the relative mobility of protein complexes and supercom-
plexes and assembly intermediates and their coordination will be key to understanding the
purpose of these processes. Further advances in imaging, specifically electron microscopy
correlated with light microscopy, and cryo-electron tomography or cryo-TEM on sections
of cells, will shed light on this issue. One example of the potential of this kind of study
is the in situ structure of a phycobilisome-PSII supercomplex from red algae [149]. New
technologies, and new applications of technologies, will shed insight into our knowledge
of PSII assembly, the process of membrane protein complex assembly more generally, and
photosynthetic organisms on a systems level.
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