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Abstract: This study delves into the construction of reduced-order models (ROMs) of a flow field
over a NACA 0012 airfoil at a moderate Reynolds number and an angle of attack of 8◦. Numerical
simulations were computed through the finite-volume solver OpenFOAM. The analysis considers two
different reduction techniques: the standard Galerkin projection method, which involves projecting
the governing equations onto proper orthogonal decomposition modes (POD−ROMs), and the
cluster-based network model (CNM), a fully data-driven nonlinear approach. An analysis of the
topology of the dominant POD modes was conducted, uncovering a traveling wave pattern in
the wake dynamics. We compared the performances of both ROM techniques regarding their
prediction of flow field behavior and integral quantities. The ROM framework facilitates the practical
actuation of control strategies with significantly reduced computational demands compared to the
full-order approach.

Keywords: reduced-order modeling; clustering; airfoils

1. Introduction

The quest to enhance aircraft performance, specifically in terms of drag reduction and im-
proving the lift–drag ratio, is a paramount objective in aircraft design (Couto and Bergada [1]
Chiatto et al. [2]). To achieve these goals, the incorporation of flow control mechanisms,
such as synthetic jets (Ceglia et al. [3], Girfoglio et al. [4], de Luca et al. [5]), has proven
beneficial for delaying separation and managing turbulence transition (Tousi et al. [6,7]).
Through careful optimization of airfoil shapes and control parameters, lift, drag, and virtual
mass can be tailored to meet specific flight envelope requirements (Lahey et al. [8]). How-
ever, this optimization process often necessitates many computational simulations, which
can be both time-consuming and computationally intensive (Li et al. [9], Reumschüssel
et al. [10], Wang et al. [11]).

Modal decomposition techniques have emerged as valuable tools for gaining a deeper
understanding of the key coherent flow structures (Taira et al. [12]) and for designing
effective control strategies (Rowley and Dawson [13]). The recent increase in computational
capabilities has paved the way for the development of various data-driven analytical tools
for different aspects of fluid dynamics, including spectral characterization (Schmid [14]),
system frequency response (Herrmann et al. [15]), and even the study of two-phase flows
(Schmidt and Oberleithner [16]).

Recent research, as highlighted by Stabile et al. [17], emphasizes the relevance of
formulating reduced-order models (ROMs) that retain the key features of full-order models
(FOMs) while significantly reducing computational demands. This step is crucial for simpli-
fying the governing equations’ complexity and enhancing the efficiency of the optimization
process (Noack et al. [18]).
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As a matter of fact, when employing reduced-order models one encounters several draw-
backs, for instance, the introduction of unphysical artifacts and instabilities (Noack et al. [19]),
the loss of fidelity at fine temporal and spatial scales (Taira et al. [20]), and the inability to
accurately predict rare or extreme events due to nonlinear interactions (Racca and Magri [21]).
Cluster-based network modeling (CNM) stands as a robust approach for investigating
complex nonlinear dynamics using data (Fernex et al. [22]). CNM relies on an unsuper-
vised machine learning technique to process a dataset of snapshots, reducing them to a
small set of representative flow states. Subsequently, statistical methods are employed
to construct a reduced-order model that presents a probabilistic representation of the
system dynamics. CNM offers a fully automated framework for understanding system
dynamics (Hou et al. [23], Colanera et al. [24]), estimating parameters, and implementing
model-based control (Wang et al. [25]).

Furthermore, recent advancements in machine learning techniques (Brunton et al. [26])
have demonstrated their effectiveness, even in the prediction of stall behavior (Saetta et al. [27]).

This study aims to develop reduced-order models (ROMs) for analyzing the flow
around a specific airfoil configuration. Two distinct types of low-order models were con-
structed: proper orthogonal decomposition (POD) Galerkin ROMs (Stabile and Rozza [28]),
which involve projecting the governing equations onto selected POD modes and cluster-
based network models (CNMs) (Kaiser et al. [29] and Li et al. [30]). To the authors’ best
knowledge, this paper represents an original application by comparing these two model
approaches for airfoil configurations. This paper constitutes an expanded version of the
conference paper by Di Costanzo et al. [31].

The paper is structured as follows: Section 2 concisely introduces the methodologies
used, including both the full-order model (FOM) and ROMs. In Section 3, the results
obtained are presented, along with a comparative analysis of the different low-order models.

2. Methodology

This section provides an overview of full-order modeling for unsteady turbulent flow
analysis. Additionally, it describes two different approaches to reduced-order modeling.
Full-order modeling offers a detailed representation of the flow field but can be computa-
tionally expensive. Reduced-order modeling techniques offer a more efficient alternative
by capturing essential flow features while reducing computational costs.

2.1. Full Order Model

The present study investigates the behavior of NACA0012 airfoil under two-dimensional,
unsteady, and incompressible flow conditions. To tackle this problem, Unsteady Reynolds-
averaged Navier–Stokes (URANS) equations were employed. The numerical simulations
were conducted using the pimpleFoam solver within the open-source software OpenFOAM.
The pimpleFoam employs the PIMPLE algorithm for pressure–velocity coupling, enabling
the modeling of a transient flow within a discretized domain, achieved by solving the
Reynolds-averaged Navier–Stokes equations.

For the representation of turbulence in this analysis, the well-established κ − ω tur-
bulence model was implemented. In this context, the equations system is denoted as a
full-order model (FOM), as detailed in Equations (1) and (2).

∇ · u = 0, (1)

∂u
∂t

+ (u · ∇)u +∇p −∇ ·
(
νeff(∇u + [∇u]T)

)
= 0, (2)

where the time variable, t, kinematic pressure, p, and the velocity vector, u, represented as
u = [u, v, w], are considered. The effective kinematic viscosity is denoted as νeff = ν + νt,
where ν denotes the kinematic viscosity and νt denotes turbulent eddy viscosity. It
is worth noting that in this work any additional effect related to the virtual mass has
not been considered. The Reynolds number under free-stream conditions is defined as
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Re∞ = U∞c/ν = 7000, where U∞ represents the free-stream velocity, and c is the airfoil
chord. The angle of attack, denoted as α, is fixed at α = 8◦ for this investigation.

The simulations based on the FOM are executed until the values of time-averaged
flow variables (such as velocity, drag, lift, and virtual mass when applicable) reach the
periodic behavior. Subsequently, snapshots of flow field variables are stored for later use in
constructing low-order models.

Utilizing the URANS approach and the κ − ω turbulence model, the FOM describes
the unsteady turbulent flow surrounding the NACA0012 airfoil. This forms the basis for
subsequent analyses and the creation of reduced-order models.

2.2. POD–ROM

Adopting the methodology outlined in Hijazi et al. [32], one can employ a systematic
process that combines the POD technique with Galerkin projections to derive reduced-order
models (ROMs) from simulations or experimental data.

Specifically, one can express the truncation of the POD expansions for the discretized
fields of velocity u, pressure p, and eddy viscosity νt, as follows:[

u(xi, yi, t)
v(xi, yi, t)

]
= Φ̃uar,

[
p(xi, yi, t)

]
= Φ̃pbr,

[
νt(xi, yi, t)

]
= Φ̃νt cr, (3)

where Φ̃u, Φ̃p, and Φ̃νt are, respectively, the POD mode matrices of velocity, pressure,
and eddy viscosity. The computation of these mode matrices follows the procedure de-
scribed by Stabile and Rozza [28], utilizing numerical data derived from the FOM.

The momentum equation is subsequently projected onto the modes represented by
Φ̃u, resulting in the following reduced-order system:

dar

dt
= fu(ar, cr, br). (4)

Here, ar, cr, and br denote the coefficients associated with the velocity, eddy viscosity,
and pressure fields, respectively. Additional equations to determine coefficients br and cr
are derived from the pressure Poisson equation and the eddy viscosity model projections.
Initial conditions for ar and cr are set by projecting u(0) and νt(0) onto the POD modes.
To stabilize the pressure, a velocity space supremizer enrichment strategy is employed,
as detailed by Ballarin et al. [33]. The entire procedure is implemented using ITHACA-FV,
a C++ library developed in the OpenFOAM framework [28].

The combination of proper orthogonal decomposition (POD) and Galerkin projections
presents an effective method for constructing reduced-order models. This approach enables
efficient analysis and prediction of flow patterns, substantially lowering computational costs.

2.3. CNM–ROM

The cluster-based network model (CNM) approach depicts the dynamics of a system
through a directed network, wherein the clusters (i.e. the nodes) symbolize coarse-grained
states of the system. The original snapshots are clustered into a few centroids representing
the whole ensemble.

The clusters Ck are computed using the standard k-means++ algorithm (MacQueen [34];
Lloyd [35]), which minimizes the inner-cluster variance. Consequently, the cost function J
is defined as follows:

J(C1, . . . , CK) =
1
M

M

∑
m=1

∥qm − Ck(m)∥2
Ω, (5)

where M represents the number of snapshots used for the analysis, qm denotes the m-th snap-
shot of velocity components, and Ck(m) denotes the cluster to which qm belongs. The cluster-
affiliation function k(m) associates a snapshot qm with the index of its nearest centroid:

k(m) = arg min
i

∥qm − Ci∥Ω, (6)
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where ∥ · ∥Ω denotes a spatial norm. The optimal centroids, C⋆
k , are those that minimize J:

(C⋆
1 , . . . , C⋆

K) = arg min J(C1, . . . , CK). (7)

After the snapshots are coarse-grained into K clusters, each cluster can be seen as a
representative state of the system dynamics. The network nodes are identified as centroids,
Ck, of these clusters, calculated as the state averages within each cluster. The transition
characteristics between such clusters rely on high-order direct transition probabilities
identified from the data [22].

As sketched in Figure 1, CNM utilizes the direct transition matrix Q, which considers
only intercluster transitions and ignores the inner-cluster residence probability.

1

23

45

Q12, T12Q13, T13

Q24, T24

Q21, T21

Q35, T35

Q31, T31

Q41, T41

Q45, T45

Q54, T54

Figure 1. Sketch of a directed network of clusters. The nodes denote cluster centroids, while arrows
represent transition directions. Each transition includes a transition probability Qij and time Tij.

The direct transition probability is inferred from the data as follows:

Qk,j =
nk,j

nj
, (8)

where Qk,j represents the probability of transitioning from cluster Cj to Ck, and nk,j denotes
the number of such transitions, with nj being the total number of transitions departing from
cluster j. Figure 1 shows an example of a directed network of clusters. For a generalized
L-order model, the direct transition probability is expressed as Pr(Ki = j|Ki−1, ...,Ki−L) (L
being the model order), which is equivalent to using time-delay coordinates. Note that in
the CNM framework, ni,i = Qi,i = 0.

The residence time τn = tn+1 − tn corresponds to the duration of the transit in a cluster
Ck, where tn and tn+1 denote the time of the first and last snapshots to enter and leave Ck.
The individual transition time from cluster j to cluster k is defined as half the residence
time of both clusters:

τn
k,j =

τn−1 + τn

2
=

tn−1 + tn

2
. (9)

By averaging all nk,j individual transition times from cluster Cj to Ck, the transition time

Tk,j = 1/nk,j ∑
nk,j
n=1 τnk,j is estimated.

Once the probabilistic model is determined through matrices Q and T, a sequence of
centroids, denoted as K0,K1,K2, . . ., can be determined together with with the following
time instance:

t0 = 0, t1 = TK1K0 , t2 = t1 + TK2K1 . . . (10)
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In this framework, a smooth motion between these discrete jumps is obtained by a linear in-
terpolation.

Within the CNM framework, the N-dimensional state of the system can be represented
by various options, including the flow field variables themselves or any other observ-
ables. In this study, we consider the POD temporal coefficients as state vector components.
Transition probabilities from one cluster centroid to another are estimated based on the
training dataset. This estimation enables the computation and reconstruction of the tem-
poral evolution of the reduced state. For further details, the reader is referred to Fernex
et al. [22] and Kaiser et al. [29]. In this work, MATLAB (R2020b) was employed for the CNM
implementation and test.

3. Results

The methodologies outlined earlier were employed in analyzing 2D numerical data
of an unsteady, incompressible flow around an NACA0012 airfoil. These datasets have
yielded valuable insights into the flow dynamics and effectiveness of the ROMs. In both the
POD-based and CNM−ROM approaches, 400 snapshots were utilized during the training
phase, with a sampling time interval of ∆t = 0.025 s.

Figure 2 showcases a time-delay representation of the lift (Cl) and drag (Cd) coefficients
with a time-delay parameter of τ = 6∆t.

Figure 2. Time-delay representation of the lift/drag coefficients with a τ = 6∆t.

It is possible to determine the lift and drag coefficients from the axial (Cx) and the
transversal (Cy) force coefficients using the following relationship:

Cd = Cx cos(α) + Cy sin(α),

Cl = Cx sin(α)− Cy cos(α),
(11)

where α is the angle of attack. From the inspection of Figure 2, it is possible to recognize
the limit cycle behavior of the flow dynamics.

In Figure 3, panels (a) and (b) depict the contours of the time-averaged streamwise
velocity component u and the transversal velocity component v.
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(a) u mean (b) v mean

(c) 1st POD u mode (d) 1st POD v mode

(e) 2nd POD u mode (f) 2nd POD v mode

Figure 3. Mean velocity fields and leading POD modes for a NACA 0012 at Re∞ = 7000 and α = 8◦.
All field variables were normalized concerning their maximum.

These contour plots offer a visual representation of the mean flow characteristics.
Panels (c) to (f) showcase the leading velocity modes within the POD framework. The first
two modes, in particular, capture the most significant fluctuations in the flow field. It is
important to note that the spatial shift in the direction of advection of the POD modes
corresponds to the traveling pattern of the emitted eddies.

In Figure 4, velocity contour plots from three methods are compared: the FOM,
POD−ROM with 10 velocity modes and 12 pressure and viscosity modes, and CNM−ROM
using 10 clusters with a 4th-order model.

This comparison is made at a specific time instant, t = 1 second. This analysis allows
us to assess the accuracy and fidelity of both the reduced-order models in capturing the
flow features. The constructed flow fields obtained from the POD−ROM and CNM−ROM
agree with the original FOM results, indicating the effectiveness of the reduced-order
models in capturing the essential flow dynamics.

Figure 5 provides a comprehensive comparison of the axial and transversal force
coefficients (Cx and Cy) obtained from the FOM, the POD−ROM, and the CNM−ROM at
various ROM parameters.

This comparison allows us to evaluate the accuracy and predictive capability of the
reduced-order models in capturing the aerodynamic forces acting on the airfoil. The black
lines represent the Cx and Cy coefficients obtained from the FOM simulations. In panels (a,b),
the blue lines correspond to the Cx and Cy coefficients obtained from the POD−ROM,
utilizing 10 velocity modes and 12 pressure and viscosity modes. In panels (c,d), the red
lines correspond to the coefficients obtained from a first-order CNM−ROM, while the blue
lines correspond to a fourth-order CNM−ROM. The figure demonstrates the capabilities of
the CNM−ROM technique in accurately predicting the lift and drag coefficients, surpassing
the performance of the POD−ROM. Therefore, the CNM−ROM approach (with a higher
order) captures the complex flow phenomena more effectively, resulting in improved
predictive accuracy of the aerodynamic forces.



Actuators 2024, 13, 88 7 of 11

(a) u snapshot from FOM (b) v snapshot from FOM

(c) POD−ROM u snapshot (d) POD−ROM v snapshot

(e) CNM−ROM u snapshot (f) CNM−ROM v snapshot

Figure 4. Snapshots computed by FOM (first line), POD−ROM (second line), and CNM−ROM (third
line). All field variables were normalized to their maximum.

(a) Cy POD−ROM (b) Cx POD−ROM (c) Cy CNM−ROM (d) Cx CNM−ROM

Figure 5. Force coefficients computed with FOM, POD−ROM, and CNM−ROM . In all the panels,
the black lines refer to the FOM force coefficients. In panels (a,b), the blue lines correspond to the
POD−ROM with 10 velocity modes and 12 pressure and viscosity modes; in panels (c,d), the red
lines correspond to a first-order CNM−ROM, while the blue ones correspond to CNM−ROM with
L = 4.

To further analyze the statistical properties of the flow, the unbiased autocorrelation
function R(τ) between the FOM, POD−ROM, and CNM−ROM approaches is shown
in Figure 6. The unbiased autocorrelation function (Protas et al. [36], Deng et al. [37]) is
defined as follows:

R(τ) =
1

T − τ

∫ T

τ
u(t − τ)Tu(t)dt, τ ∈ [0, T), (12)

where T is the simulation time and τ denotes the time delay, providing insights into the
temporal correlation and persistence of flow features.

Figure 6 demonstrates that the ROM approaches perform quite well in capturing the
flow statistical properties and temporal correlations. However, the CNM−ROM exhibits a
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closer match to the autocorrelation function obtained from the FOM data, indicating its
superior capability in reproducing the flow statistics.

Figure 6. Comparison of the autocorrelation function R between the FOM, POD−ROM,
and CNM−ROM. The black line represents the FOM, the red line represents the POD−ROM, and the
blue dashed line corresponds to the CNM−ROM.

When considering the first-order CNM, the direct transition probability matrix Qij and
the direct transition times matrix Tij can be examined to describe the dynamics patterns.
These matrices provide insights into how frequently and swiftly the system transitions
between its various states or clusters. Figure 7 visually represents these matrices in panels
(a) and (b), showcasing the direct transition probabilities (Qij) and times (Tij) of the CNM.

1 2 3 4 5 6 7 8 9 10
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(a) Qij

1 2 3 4 5 6 7 8 9 10

1
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3

4

5

6

7

8

9

10
0

0.5

1

1.5

2

2.5

3

3.5

(b) Tij

Figure 7. The matrices for CNM direct transition probabilities (Qij) and times (Tij).

Notably, the most likely transitions align with the subsequent clusters in the sequence,
confirming the presence of a limit cycle in the system dynamics. Furthermore, by exam-
ining the transition times matrix, it is possible to estimate the dominant frequency by
the following:

flead ≈ 1
T2,1 + T3,2 + . . . + T1,10

≈ 1.4 Hz. (13)

The versatility of the CNM−ROM approach becomes evident as it enables predictions
of system behavior under various parameter and control configurations. In Figure 8,
panel (a) illustrates the predictions for Cy, while panel (b) depicts the predictions for Cx
when α = 6◦. These predictions are generated by training the CNM−ROM with snapshots
from different α values, excluding α = 6◦. This demonstrates the CNM−ROM’s ability to
generalize the learned dynamics to unobserved parameter settings.
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Within Figure 8, the blue and red lines correspond to α = 5◦ and α = 7◦, respec-
tively. The black dashed lines represent the Cx and Cy coefficients obtained from the FOM
simulations, and the black solid lines represent the predictions made by the CNM−ROM.
Remarkably, the CNM−ROM accurately captures the amplitude and frequency of the
force coefficients for varying α values, including the unseen α = 6◦. This showcases the
robustness and generalization capability of the CNM−ROM, as it effectively predicts the
aerodynamic forces even for parameter values that were not included in its training data.

(a) Cy prediction (b) Cx prediction

Figure 8. Prediction of the effect of α using CNM−ROM. The blue and red lines correspond to α = 5◦

and α = 7◦, respectively. The black dashed lines represent the FOM simulations, while the black solid
lines represent the CNM−ROM predictions.

Overall, the results presented in this section validate the effectiveness of the POD−ROM
and CNM−ROM approaches in accurately capturing the flow dynamics, reproducing the
flow fields, predicting force coefficients, and capturing the statistical properties of the flow.
These findings highlight the potential of reduced-order modeling techniques in enhancing
computational efficiency and enabling rapid design iterations for airfoil configurations.

4. Conclusions

This study employs two distinct methodologies for analyzing the flow field over a
NACA0012 airfoil at a moderate Reynolds number. The first methodology, the POD−ROM,
involves truncating POD expansions for the velocity, pressure, and eddy viscosity fields to
a reduced number of modes. The second methodology, the CNM−ROM, utilizes a directed
network model, where coarse-grained states are represented as nodes. These reduced-order
modeling frameworks offer the potential to design control strategies with significantly
reduced computational demands compared to the full-order approach.

Numerical simulations for the full-order model were carried out using the OpenFOAM
finite-volume solver. The proper orthogonal decomposition reduced-order model was
implemented through the ITHACA-FV library within the OpenFOAM framework.

The comparative analysis of POD−ROM and CNM−ROM methodologies has re-
vealed the superior effectiveness of CNM−ROM in accurately capturing flow dynamics and
statistical characteristics while demanding fewer computational resources. The CNM−ROM
approach, relying on direct transition matrices and cluster analysis, demonstrated its ability
to provide precise flow field predictions and aerodynamic forces.

Furthermore, the CNM−ROM model showcased its versatility by successfully pre-
dicting the effect of varying flow parameters, such as the angle of attack. Training the
CNM−ROM with snapshots from different angles of attack settings accurately captured the
amplitude and frequency of the lift and drag coefficients for unseen angles of attack values.
This demonstrates the robustness and generalization ability of the CNM−ROM approach.

The promising results obtained from both the POD−ROM and CNM−ROM method-
ologies underscore their potential applicability in determining optimal flow control con-
figurations within the reduced-order modeling framework. These methodologies provide
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efficient alternatives for analyzing complex flow fields and have the potential to signifi-
cantly reduce computational costs in aerodynamic design and optimization processes.
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