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Abstract: Helicobacter pylori is a gastric oncopathogen that infects over half of the world’s human
population. It is a Gram-negative, microaerophilic, helix-shaped bacterium that is equipped with
flagella, which provide high motility. Colonization of the stomach is asymptomatic in up to 90%
of people but is a recognized risk factor for developing various gastric disorders such as gastric
ulcers, gastric cancer and gastritis. Invasion of the human stomach occurs via numerous virulence
factors such as CagA and VacA. Similarly, outer membrane proteins (OMPs) play an important role
in H. pylori pathogenicity as a means to adapt to the epithelial environment and thereby facilitate
infection. While some OMPs are porins, others are adhesins. The epithelial cell receptors SabA, BabA,
AlpA, OipA, HopQ and HopZ have been extensively researched to evaluate their epidemiology,
structure, role and genes. Moreover, numerous studies have been performed to seek to understand
the complex relationship between these factors and gastric diseases. Associations exist between
different H. pylori virulence factors, the co-expression of which appears to boost the pathogenicity of
the bacterium. Improved knowledge of OMPs is a major step towards combatting this global disease.
Here, we provide a current overview of different H. pylori OMPs and discuss their pathogenicity,
epidemiology and correlation with various gastric diseases.
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1. Introduction

Helicobacter pylori is considered an ancient microorganism, the existence of which can
be traced back to before the voyages of Christopher Columbus [1]. Yet, it took until the
early 1980s for the bacterium to be identified by the Australian physicians Barry Marshall
and Robin Warren. For discovering H. pylori as the principal cause of gastritis and peptic
ulcer disease and mucosa-associated lymphoid-tissue (MALT) lymphoma [2,3], they were
awarded the Nobel Prize in Physiology or Medicine in 2005. Chronic H. pylori infection
is a predisposing factor for a range of other health conditions including ischemic stroke,
Alzheimer’s disease, multiple sclerosis, autoimmune neutropenia, vitamin B12 deficiency,
diabetes mellitus, cholelithiasis, idiopathic thrombocytopenic purpura, iron-deficiency
anemia, cardiovascular diseases, hepatobiliary diseases, and biofilm-related infections,
although further research is needed to verify each proposed link [4–15]. It is estimated
that more than half of the world’s population is infected with this microorganism, its
prevalence in developing countries reaching 70–90%, compared to developed nations where
it is between 20% and 30% [16,17]. Typically, a person becomes infected with H. pylori
during childhood through oral–fecal or oral–oral transmission [18]. This Gram-negative,
helical bacterium is a major source of global gastric cancer mortality, so it is considered
as an oncogenic pathogen (oncopathogen) and hence is classified as a class I carcinogen
by the World Health Organization [19]. It is equipped with different virulence factors
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including flagella, lipopolysaccharide (LPS), urease, and outer membrane proteins (OMPs),
which are encoded by many paralogous gene families. It owes its characteristically high
motility to its 4–6 co-located flagella, which facilitate its movement and colonization of the
stomach mucosa layer. Urease production provides ammonia for bacterial protein synthesis
and neutralizes gastric acid, thereby making the stomach a preferred environment for
colonization. This factor can damage host tissue via several mechanisms, which, together
with the inflammatory immune response that this triggers, causes ulceration. Similarly,
the unique structure of LPS promotes bacterial pathogenicity by facilitating attachment to
gastric mucosa, thus supporting persistence of infection [20–23].

It is estimated that only approximately 20% of H. pylori carriers develop symptoms of
disease. Chronic gastritis is a condition ascribed for H. pylori carriers without any clinical
symptoms. At the same time, this pathogen is a risk factor for progression to gastric
problems like a peptic ulcer [24–26]. Chronic gastritis follows colonization of the stomach
by H. pylori, which resists clearance and causes mucosal inflammation and atrophy. Peptic
ulcer formation, a consequence of damaged mucosa through stomach acid activity, is
accelerated by the chronically acidic environment [27]. These sores can develop either into
a lesion inside the stomach, known as a gastric ulcer, or inside the adjoining duodenum
within the small intestine, termed a duodenal ulcer [28]. Importantly, having chronic
gastritis increases a person’s risk of acquiring severe gastric conditions, notably gastric
cancer that most often manifests as stomach adenocarcinoma [29].

An array of contributing factors, such as genetic susceptibility, diet, environmental
variables, smoking and physical activity, are involved in progression to severe stomach
conditions [30]. Studies showed that H. pylori is the leading cause of 63.4% of all stomach
cancer and 75% of non-cardia gastric cancer (that affects the first part of the stomach) [31].
While there is now a decreasing trend in the rate of gastric cancer worldwide, it is still
the second highest cause of cancer mortality [32]. In order to eradicate H. pylori, antibiotic
therapy is suggested for gastric disorders. Currently, antibiotics like clarithromycin, amoxi-
cillin or metronidazole are used in combination with proton pump inhibitors as a standard
treatment [33]. It should also be noted that eradicating this microorganism may provoke
some extra-gastric diseases, in particular iron deficiency, idiopathic thrombocytopenic
purpura, chronic idiopathic urticaria and anemia. Further studies are required to confirm
this correlation [34].

The first step for H. pylori to induce inflammation and cause infection is to colonize and
attach to gastric mucosa. Usually, this happens through OMPs which play a pivotal role in
adherence and pathogenicity. To date, there are approximately 64 members of this family
which are recognized [35–37]. Also, five paralogous genes of OMPs have been identified.
Through analyzing strains of H. pylori, 26,695 and J99, many OMPs were identified. In
one study, five family members of OMP, each with its own sub-family, were recognized.
These families include the major OMPs Hop, Hor, Hof and Hom, iron-regulated OMPs,
FecA/FrpB-like proteins, and efflux pump OMPs (Table 1) [37].

Table 1. Classification of Helicobacter pylori outer membrane proteins.

Protein Family Number of
Sub-Family Sub-Family Genes

Hop 22 hopZ, hopD, hopM, hopA, hopF, hopG, hopJ, hopH, hopE, hopO, hopP, hopC, hopB, hopK, hopI, hopL, hopQ, hopN, hopU
babA, babB

Hor 12 horA, horB, horC, horD, horE, horF, horG, horH, horI, horJ, horK, horL

Hof 8 hofA, hofB, hofC, hofD, hofE, hofF, hofG, hofH

Hom 4 homA, homB, homC, homD

FecA-like 3 fecA-1, fecA-2, fecA-3

FrpB-like 3 frpB-1, frpB-2, frpB-3

Efflux pump 6

hefA, hefD, hefG
flgH
palA
lpp20
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Here, we offer a contemporary perspective on H. pylori OMPs and virulence factors
like VacA and CagA. We discuss their roles in pathogenicity, epidemiology, and correlation
with gastric conditions. Additionally, we delve into therapeutic approaches targeting
H. pylori OMPs and virulence factors, and highlight challenges to vaccine development.

2. Helicobacter pylori Virulence Factors
2.1. Cag A and Vac A

Definition, diversity, classification and their significance: Vacuolating cytotoxin, or
VacA, and Cag (cytotoxin-associated genes) pathogenicity island (PAI), encoding a bacterial
type IV secretory apparatus (T4SSs), are two main factors involved in H. pylori pathogenicity
(Figure 1). CagA is a protein of 116–140 kDa molecular weight that is expressed by almost
70% of strains and which produces a specific cytotoxin [38]. The significant role of this
protein in H. pylori-infected patients has led to the isolates being defined as belonging to
one of two groups, either CagA-positive (type I) or CagA-negative (type II). Epithelial cells
and cells of the immune system are considered as two main targets for VacA, in which is
expressed by all H. pylori strains [39,40]. VacA protein has cytotoxic activity that is due to its
ability to drive intracellular vacuolization [41]. It has been demonstrated that various cell
types are vulnerable to this toxin [40]. It has escape mechanisms to avoid the highly acidic
environment of the stomach [42]. Different receptors are recognized for VacA, yet their
roles and importance are not clear [43]. Similar to CagA, this virulence factor is expressed
only in H. pylori type I [44]. Notably, there are three types of VacA genotype predicated
on their signal sequence, namely s1a, s1b and s2, as well as m1 and m2, which is based
on middle-region alleles of the vacA gene [45]. Regarding vacA allelic diversity, regions
including s-region (signal), m-region (middle), i-region (intermediate), d-region (deletion)
and c-regions are elucidated. Based on the deletion at the 3′ end of the vacA gene, different
types are investigated. The i region exists in three types (i1, i2 and i3), while all other
regions are classified into two types (s1, s2, m1, m2, c1, c2, d1 and d2). More variants within
these regions are proposed, of which K, E and Q-types are conspicuous [46].

The cag PAI is a 40 kb DNA sequence as that encodes type IV secretion system (T4SS)
and CagA protein. This generates a pilus via which the bacterium can inject CagA protein
into a host cell [47,48]. There are twelve recognized components of T4SSs in Gram-negative
bacteria, including VirD4 and VirB1-11. It is organized into three parts: outer membrane
core complex, inner membrane complex, and extracellular pilus [49,50]. Upon delivery
of CagA into the cell and phosphorylation of a C-terminal EPIYA motif, the signaling
pathway is activated via binding of CagA to the SH2 domain. Host cell changes occur
after components interact with both phosphorylated and non-phosphorylated CagA. Of
note are changes in cell junction, elongation, polarity, proliferation and proinflammatory
response [51,52]. Various bacterial proteins such as CagM, CagX, CagY, CagT and Cag3
that form a part of CagPIA are encoded by a 41 nm long core structure. Among these, CagX
and CagY are associated with the T4SS channel [53]. An interaction between CagL on the
T4SS and α5β1 integrin leads to CagA transposition and pilus formation. Consequently,
cells become more irregular as a result of phosphorylation at the 3′ end of CagA gene
(EPIYA), which is located in the PAI [44,54]. CagA is a highly immunogenic protein that
comprises two types, CagAI and CagAII on the right or left segment, respectively [38,44].
This H. pylori type I virulence factor is linked to gastroduodenal disease and its gene may be
acquired horizontally [44,55]. Upon bacterial attachment and infection, CagA will activate
signal factors such as interleukin (IL)-8, which depend on the Cag PAI activity [44,56].
IL-8 and NFκB will pave the way for inflammation and carcinogenesis [54]. Another
gene called cagE, located in the cagI and in proximity to cagA, has similarity with ptlC in
Bordetella pertussis [44]. This gene is considered a better marker of pathogenicity, although
further verification is needed [57]. In addition, there is a correlation among these virulence
factors and other OMPs including IceA, BabA, HopQ, OipA, SabA and HopZ [58].
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Figure 1. Helicobacter pylori type IV secretion system (T4SS) and Cag A pathogenicity. In the intricate
interplay between H. pylori adhesins and epithelial cells, various receptors play a crucial role in
mediating binding. A noteworthy homology has been observed between H. pylori outer membrane
proteins and Vir proteins in Agrobacterium., The cagA pathogenicity island consists of distinct elements
within the multicomponent T4SS complex. Specifically, Cag X, T, and Y contribute to the core complex,
while CagE, W, and V participate in the inner membrane complex. Additionally, CagC, L, and I
are instrumental in pilus formation. Subsequent to the interaction between host cells and binding
proteins, the CagA substrate is delivered through assembled pili. Integrin receptors play a pivotal
role in facilitating this interaction with CagA, Y, L, and I. In the lower section of the diagram, CagE, Z,
α, and β are implicated in generating energy through dephosphorylation of nucleoside triphosphates
(NTP), ultimately leading to translocation of CagA. Notably, Cagγ, situated in the peptidoglycan
layer, assumes responsibility for hydrolyzing peptidoglycan.

Geographical variances and clinical associations: Several studies have investigated
associations between these two antigens and different gastric conditions, yet neither is
considered as an indicator of gastric cancer [59,60]. A high frequency of CagA-positive
isolates in patients with gastric cancer was reported [61]. Different results obtained vary
by geographical region. In one study performed in various countries, s1c-m1, s1b-m1 and
s1a-m1 of vacA were the predominant genotypes in Japan and Korea, US, and Colombia,
respectively. Although cagA genotype was predominant in all nations, no relationships
with clinical outcomes were identified [59]. In Egypt, however, 68.7% of patients with a
gastric ulcer, 50% of gastric carcinoma patients and 33.3% of gastritis cases were positive for
cagA gene expression [62]. On the other hand, in an Australian cohort of H. pylori-infected
individuals, 78% and 85% of cases of duodenal ulcer and gastric cancer, respectively, were
positive for the cagA gene [63]. Another study showed an association between vacA s1a,
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cagE and cagA with gastric cancer and duodenal ulceration [64]. Additionally, a correlation
between d-region and gastric atrophy and neutrophil infiltration was reported. There is
a close relationship between geographical region and distribution of VacA subtypes. It is
apparent that s1/m1 and i1 are predominant genotypes in northeast Asia. Also, a close
relationship between VacA subtypes and gastric disorders is demonstrable. Furthermore,
an association between s1a, s1c and m1 with gastric cancer, peptic ulcer and intestinal
metaplasia was reported [3,65–67].

2.2. H. pylori Outer Membrane Proteins

Hop is the largest family of H. pylori OMPs, with 32 known members, yet they are
collectively encoded by only 4% of the bacterial genome [36,37]. Hop A-E act as porin
proteins as well as a channel through which antimicrobial agents permeate into the cell.
Hence, many of them are potential candidates for development vaccine [68,69]. This group
contains two divisions, Hop and Hor proteins. Interestingly, members of the latter lack
a hop motif but still have an N-terminal motif, as do Hop proteins, and which is greatly
variable in size. The former is divided into two groups based on the C-terminus [37].

Adhesion to host epithelial cells is the very first step for H. pylori colonization and
persistence, which is mostly mediated by OMPs and T4SS [70]. There are three distinct
steps of infection: colonization; attack of the gastric mucosa; and escape from the immune
system. Attachment to mucins depends on several variables including type of mucin,
anatomical site, pH, H. pylori strain and gastritis status. Also, interaction between H. pylori
and host Lewis antigens, Lea,b,x,y, attributed to Hop proteins such as SabA and BabA, is
vital to this process [71,72].

Protected by a mucus layer and composed mostly of MUC5AC and MUC6, the gastric
epithelium is responsible for a glycosylation pattern that varies between gastric disorders.
MUC2 is a type of mucin that does not exist in normal mucosa but instead is found
mostly in intestinal metaplasia in which goblet cells are predominant. Understanding more
about mucin expression patterns is important as H. pylori adhesion is mediated through
interaction between these antigens and virulence factors [73–75].

2.2.1. Hop B and Hop C

HopB and HopC, also known as AlpA and AlpB, are encoded by the alp A/B locus
(OMP 20 and 21, respectively). Homology of AlpA/B among various H. pylori strains is
reported as more than 90%. While the role of these proteins remains to be substantiated, they
are assumed to be involved in adhesion [37,76,77], for which laminin serves as a receptor.
Any interruption to Hop B/C leads to diminished binding of H. pylori to laminin [78].
In addition, these proteins are responsible for producing cytokines such as IL-6, IL-8
and for activating signal transduction [76,79,80]. Gastric damage and modulation of cell
signaling are consequent to AlpA/B adhesion [81]. Both play a key role in H. pylori
colonization, although HopB appears to be more important [82]. New insights into the
molecular mechanism of HopC indicate a function in biofilm formation. As described later,
H. pylori can construct biofilm in human gastric cells, HopC being one of the OMPs with
the capability to contribute to this in outer membrane vesicles (OMVs) [83].

Regarding the pathogenicity of HopB/C, there is insufficient information correlating
their presence with clinical outcomes. Analysis of 200 H. pylori isolates revealed that all
express these proteins, which suggests their important roles [80]. Interestingly, in another
study severe gastric symptoms were associated with some H. pylori virulence factors such as
HopB and VacA, with a high prevalence of HopB in cases of gastric cancer and peptic ulcers
(>80%), implying the importance of this OMP to predictions of infection outcome [67].

2.2.2. Hop H, a Phase-Variable Protein

HopH, originally identified as outer inflammatory protein or Oip A (Hpo638), is a
phase-variable protein, the alleles of which are present in almost all H. pylori strains. A
high rate of diversity within CT dinucleotide repeats occurs in the oipA gene. Similar to
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other OMPs, it is assumed that HopH is involved in epithelial cell adhesion, although there
are discrepancies arising from diversity between strains. This protein can also induce IL-8
production, cell-signaling and toxic events, as well as apoptosis [84–86]. These properties
are independent of Cag PIA activity. This means that those strains which contain both
virulence factors are capable of producing, for instance, higher levels of IL-8 [87]. Both
functional and non-functional types of OipA are known [87,88]. Interestingly, an association
between this protein and other virulence factors such as CagA, VacAs1 and BabA has been
demonstrated [58,89,90].

Hop H association with clinical outcomes: A correlation between the presence of
HopH and gastric disorders such as gastric cancer and peptic ulceration has been estab-
lished. A study in which several virulence factors were examined together showed that
gene expression could be a useful predictor of progression to gastric cancer in patients with
precancerous gastric lesions, although paradoxical findings have raised doubts [78,91–93].
An investigation of hopH gene polymorphism led to two proposals for its pathogenicity, en-
hanced bacterial adhesion and correlation with the presence of other virulence factors [94].
In another study performed on gastritis and peptic ulcers, a high prevalence of the oipA
gene was reported, which could imply a relationship between this gene and disease pro-
gression [95]. Similarly, a study performed on patients with gastritis, gastric carcinoma or
duodenal ulcers showed an association with virulence factors such as CagA, VacA, IceA,
BabA and OipA. However, only OipA was recognized as a distinctive factor for clinical
outcomes. Nonetheless, as this factor is common among patients, it should be applied as
a predictor only in combination with other virulence factors [88]. Several trials reported
a connection between CagA and OipA expression in which slipped strand mispairing of
complementary bases during DNA replication enhances bacterial adaptability. Conversely,
OipA was reported as a non-significant marker in one study which used PCR to detect and
differentiate H. pylori virulence factors and to predict clinical outcomes [67].

2.2.3. Hop P

This protein is also known as sialic acid-binding adhesin or SabA. for which the human
Lewis (Le) histo-blood group antigens Lex and Lea are the main receptors. Sialyl-dimeric-
Lewis x glycosphingolipid, defined as H. pylori receptor, is overexpressed in the stomach
of infected people as sLex and sLea gene expression is upregulated during inflammation.
In contrast, in the gastric mucosa of healthy people sialylated glycoconjugates are not
abundant [96–100]. Other receptors for SabA have been identified. It can bind to α2-3-linked
sialic acids and other sialic acid receptors [101], while laminin in the extracellular matrix
also serves as a receptor [102]. H. pylori can bind specifically to glycosylated mucins, located
in the proximity of epithelial cells, which helps it to maintain long-term infection [103].
Additionally, the polymorphic nature of H. pylori is attributed to SabA binding to sialylated
carbohydrates. This is a unique strategy of adaptation for H. pylori [104], which tends to
colonize those stomach areas with low acidity and high levels of HopP receptors [105].

SabA is classified as a protein that is regulated by phase variation. This means that
H. pylori can switch expression of the gene on or off depending on circumstances [106].
Interestingly, sabA also undergoes gene conversion, which plays a key function in regulating
SabA levels. Adhesion is affected by emerging subpopulations of H. pylori with variable
expression of the protein, which is a consequence of having recombination amongst sab A,
sab B and omp27 genes [107]. SabA also contributes significantly to spasmolytic polypeptide-
expressing metaplasia (SPEM), which succeeds chronic atrophy and is a strategy for the
stomach to reform its normal structural units following injury. It is thought that H. pylori
can help SPEM progression, in which SabA adhesion to sLex plays a pivotal role [108].

Hop P and gastric disorders: Numerous studies have investigated an association
between SabA and clinical outcomes. It appears that SabA is responsible for inflammation
and its presence is correlated with clinical outcomes [109,110]. Also, a close relationship
between this protein and gastric cancer has been found. In one study, 66% of H. pylori
strains in patients with gastritis were SabA-positive, 44% were positive in individuals with
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duodenal ulcers and 70% in cases of gastric cancer [111]. Other studies that examined
the frequency of SabA reported 93%, 86%, 80% and 23% detection in H. pylori strains in
the Netherlands, France, Taiwan and Iran, respectively [58,112–114]. Recently, a Brazilian
report revealed that SabA can accelerate gastric cancer in infected people [115].

2.2.4. Hop Q

Otherwise known as Omp27, HopQ is classified into two families, HopQI and
HopQII [36,116]. Both 3′ and 5′ ends of hopQ alleles are highly conserved in H. pylori,
but divergence occurs in the 1.1 kb mid-region, with a 75–80% similarity of nucleotide
sequence. However, they are different in terms of geographical distribution, HopQI being
isolated mostly in East Asia and HopQII commonly present in western countries [117,118].
Similar to other OMPs, these proteins mediate adherence to the gastric mucosa. It seems that
there is a correlation between HopQ and other virulence factors like CagA and VacA [119].
Prevalence of this protein is common in those H. pylori strains with cag PAI, which is
responsible for encoding CagA and a type IV secretion system [47].

A family of receptors defined as carcinoembryonic antigen-related cell adhesion
molecules (CEACAMs) is recognized for HopQ and HopQ. CEACAM activation interferes
with immune functions of T and NK cells [120,121]. Moreover, CEACAMs mediates various
cell functions such as adhesion, proliferation, immune response and motility. CEACAM1, 5
and 6 are expressed by gastric epithelial cells. CEACAM1, 3 and 4 have both cytoplasmic
and transmembrane domains, while CEACAM5, 6, 7 and 8 have glycosylphosphatidylinos-
itol linkage to the host cell membrane. A strong connection between HopQ and CEACAM1,
3, 5 and 6 N-terminal domains facilitates H. pylori adhesion to gastric epithelial cells. Inter-
estingly, CEACAM1, 5 and 6 are found in multiple organs. Binding between HopQ and
CEACAMs plays a crucial role in CagA delivery into host cells [121–123].

The relationship between HopQ and CagA modulation is a focus of research
interest [124]. It has been shown that inflammatory reactions follow T4SS activation and
transfer of CagA oncoprotein via HopQ-CEACAMs interaction. The inflammatory response
ultimately leads to gastric cancer, which supports the idea of therapeutic approaches target-
ing HopQ-CEACAMs [125,126]. This interaction affects human CEACAMs, responsible
for CagA activation and phosphorylation in polymorphonuclear neutrophils (PMNs) but
not dendritic cells and macrophages. In PMNs it lessens CagA translocation and alters
expression of CEACAM receptors. Also, the presence of human CEACAMs on PMNs
increases bacterial survival within phagosome, thus resisting phagocytosis [127].

Hop Q and clinical disorders: The correlation between both types of HopQ and
gastric cancer is established [128,129]. Also, a high incidence of gastric cancer has been
reported in patients with hopQI and vacA s1m1, or with hopQII and vacA S2 genotypes [130].
In two studies, in specific geographical regions in Iran, the rate of hopQII was higher than
that of hopQI and a correlation between these OMPs and clinical outcomes was observed.
However, another study showed the inverse result by which HopQI prevalence was higher
with no association with gastrointestinal disorders [131,132]. Although its correlation
with gastric diseases was demonstrated in several investigations, paradoxically HopQ
could even be used therapeutically, as trials have shown good efficacies against melanoma
metastasis [133].

2.2.5. Hop S, Hop T and Hop U

HopS, HopT and HopU were first identified as blood group antigen-binding adhesin
A (BabA) or OMP 28 (~80 kDa), BabB or OMP 19, and BabC or OMP 9, respectively. They
each mediate attachment of H. pylori to histo-blood group antigens on gastric epithelial
cells except for BabC, the function of which is not yet clear. Notably, there is extensive
homology at the 3′ and 5′ segments of babA and babB [134]. There are two types of babA,
namely babA1 and babA2, with the latter divided into two subtypes with high and low
protein production (Bab A-H and Bab A-L) [135,136]. An evaluation of glycosphingolipids
as a receptor reported that H. pylori varies in its attachment to different blood groups
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including A Rh+/− and O Rh−. Moreover, H. pylori could not adhere to glycosphingolipids
in people with blood group O but could bind extremely well in A Rh+/− individuals. In
this study, Leb hexaosyceramide, pentaosylceramide, heptaosylceramide, lactosylceramide,
lactotetraosylceramide, neolactohexaosylceramide and pentaosylceramide were reported
as BabA receptors [137]. In addition to Leb, fucosylated blood group A, B and O antigens
are noteworthy receptors [138]. Depending on the mid region and ability to bind ABO
antigens, there are two classifications of BabA, specialist and generalist. The former refers
to those H. pylori strains that can attach to ALeb (A-Lewis a), whereas the latter refers to
those that bind to ALeb, BLeb (B-Lewis b) and Leb [139]. Also, analysis of variation in
babA and babB revealed that there are five and three groups of alleles, including AD1-5 and
BD1-3, for BabA and BabB, respectively [136].

Helicobacter pylori is able to achieve compatibility with the variable gastric acidic
environment through recombination and mutation in babA genes. This enables mediated
attachment via this protein, which is responsible for this phenomenon, thereby increasing
the risk of progression to gastric cancer [140]. BabA is an antigen that is commonly
expressed by H. pylori and which is related to specific clinical outcomes including peptic
ulcers and gastric cancer. Also, colonization occurs predominantly in the lowermost
antrum of the stomach [141,142]. Based on recent studies, recombination between the
three bab genes frequently happens [143]. BabA undergoes genetic regulation through phase
variation, which modulates its role in adherence. Also, it can be affected by recombination
between babA and babB genes [144]. This genetic regulation is beneficial for H. pylori
adaptation to its gastric environment in which the bacterium is exposed to a high level of
physiological stress [145].

Correlation with gastric disorders: Several studies have investigated a correlation
between babA gene expression and gastric disorders such as peptic ulcers and gastric cancer.
Reportedly, inflammation induced by BabA adhesion results in gastric conditions such
as precancerous transformations and intestinal metaplasia [146–148]. Also, a correlation
between Leb and low binding activity and risk of duodenal ulcers was found [149]. Notably,
undertaken the correlation between this genotype and gastric cancer was demonstrated
separately in Germany, Portugal, Japan, Taiwan, China, USA and Brazil [91,150–154].
Similarly, babA2 gene was recently found at high frequency in patients with gastric cancer
or peptic ulcers, although discrepancies arise regarding whether or not development to the
severe gastric condition is associated with this genotype. A possible reason for this could
be a lack of expression of BabA protein despite the presence of the gene [67]. This agrees
with a meta-analysis of twenty studies that indicated a strong association between BabA2
and increased risk of gastric cancer in Asian populations compared to South American
ones, suggesting a significant role of this virulence factor in pathogenicity [155].

2.2.6. Hop Z

This protein, also known as HP9, has a role in adherence to gastric epithelial cells,
although its receptor is not yet recognized [72]. The hopZ gene undergoes slipped-strand
mispairing and is regulated by a phase-variable CT repeat, which means whether it is
switched on or off depends on the prevailing in vivo situation. There are two types, HopZI
and HopZII. This differentiation dates to the era in prehistory before migration of humans
from Africa [69,156]. Its relationship with infection is suggested by some findings [157,158].
In one investigation, an association between this protein and gastric cancer was reported,
but a correlation between HopZ and chronic atrophic gastritis has yet to be found [72,156].

2.2.7. Hop V, Hop W and other OMPs

These porin members belong to the Hop A/E family. This is due to homologous
N-terminal and C-terminus regions. In terms of their pore size, HopV and HopW are
similar to E. coli OmpF porin. Among H. pylori isolates, their expression is relatively less.
Hop X/Y have been identified as porins similar to Hop A-D [37,159–161]. Colonization
attributed to OMPs is mediated by H. pylori OMP 18 [162].



Pathogens 2024, 13, 392 9 of 25

In the Helicobacter outer membrane (Hom) family, four members (HomA, B, C and D)
are recognized, of which HomB is the most studied. Hom A/B exhibit variation in regard to
genes copies and genomic localization in different geographical areas. The rate of homology
between homA/B genomes is estimated at 90%, with only a 300 bp difference. Similar to
other OMPs, recombination and phase variation are involved in gene duplication [37].
HomA/B are known for their significant roles in adherence, antibiotic resistance, biofilm
formation and gastric malignancies [163]. Two important functions ascribed to HomB are
IL-8 secretion and adherence [164]. While no specific association with clinical outcomes
has been found for either of these proteins, they are likely to be involved in H. pylori
persistence [165].

Another group, defined as Hof proteins, includes eight members, namely Hof A-H.
Each of these contains a hydrophobic C-terminal motif, similar to the Hom family. Recently,
a study of Helicobacter heilmannii showed that Hof E and Hof F act as adhesins in the same
way as other OMPs [37,166].

3. Advancements in H. pylori Vaccine Development and Therapeutic Strategies
3.1. Targeting Outer Membrane Proteins

With the rise of antibiotic-resistant strains of H. pylori, there is a growing emphasis
on exploring alternative treatments to antibiotics. Consequently, the development of an
H. pylori vaccine has emerged as a prominent and actively researched area (Table 2).

Table 2. Improvement of vaccine design and progression of development pathway.

Vaccine Type Status Reference Time

Urease Oral Recombinant I [167–174] 1996–2004

Whole cell Oral I [175] 2001

Imevax/IMX101 Multicomponent I [176] Ongoing

VacA, CagA, NAP (NCT00736476) Recombinant I/II [177] 2018

HpaA expression by Vibrio cholera Recombinant Preclinical [178] 2017

Cholera toxin B and H. pylori Lpp20 Epitope Preclinical [179] 2016

H. pylori vaccine Oral recombinant III [180] 2015

CTB-UreI-UreB (BIB) Recombinant
multi-epitope Preclinical [181] 2014

HelicoVax Multi-epitope Preclinical [182] 2011

Two types of vaccine, whole-cell bacterium and a recombinant preparation, which com-
bines protective antigens with immune adjuvants, are considered the main approaches [183].
While development of the former was abandoned for various reasons, including complexity
of vaccine production, the latter has progressed. Different immune adjuvants, including
BabA, SabA, OipA, CagA, and VacA, have provided vaccines with higher protective ef-
fects [184].

Targeting OMPs is a promising innovative therapeutic approach against H. pylori,
given their importance and roles in gastric conditions (Table 3). Hop B and Hop C are
considered potential targets for vaccine therapy as they are involved during the early
colonization stages of infection with H. pylori. In immunization studies in mice, when
HopB, either on its own or in combination with other antigens (BabB, urease, catalase), was
conjugated to the DC-Chol mucosal adjuvant, enhanced cellular and humoral protective
responses were observed [185]. In a further promising evaluation of HopB immunogenicity
in recombinant plasmids, HopB recombinant protein was introduced as a novel means of
infection prophylaxis and eradication [186].

It has been shown that OipA is a promising candidate for an oral vaccine. In murine
studies, inoculating IgA raised against OipA significantly ameliorated H. pylori infec-
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tion [187]. Similarly, a Salmonella typhimurium bacterial ghost-based DNA vaccine that
delivers the oipA gene is proposed as a novel immunogen. This oral vaccine was capable of
boosting immune responses, observed as heightened antibody and cytokine levels, and min-
imized bacterial colonization [188]. In another study, the efficiency of a recombinant OipA
vaccine in mice was indicated by an elevated interferon-γ response [189]. Hence, a series of
investigations shows a connection between this protein and gastric disorders, but using a
combination of factors is suggested as a more accurate predictor of clinical outcomes.

Table 3. Different H. pylori OMPs, their given names, receptors, and roles in gastric disorders.

OMP Also Known as Receptor PU GC GA DU MALT Reference(s)

Cag A Cytotoxicity in associated
gene Epithelial cell ✓ ✓

EPIYAD/C - ✓ [54]Cag L

Vac A Vacuolating cytotoxin

RPTP-α

VacAs1m1
VacAs2m2 VacAs1m1 VacAs1m1 - - [43,54]

RPTP-β
Lipids

Heparin sulphate
Sphingomyelin

Fibronectin
B2-integrin

EGFR

Hop B/C Alp A/B Laminin - - - - - [190,191]Collagen IV
Hop H Oip A Not known ✓ ✓ - ✓ [54,88,91]

Hop P Sab A
sLex

- - - - ✓ [58]sLea

Hop S Bab A
sLeb

Bab A2 ✓ ✓ - - [54]A, B, O blood group
Hop Q - CEACAMs - ✓ - - - [121]

Abbreviations: PU, peptic ulcer; GC, gastric cancer; GA, gastric adenocarcinoma; DU, duodenal ulcer; MALT,
mucosa-associated lymphoid tissue; sLe, sialyl-Lewis; EGFR, epidermal growth factor receptor; ✓, genopositive.

Porcine milk has shown promising therapeutic potential by interfering with SabA
adhesion. Apparently, this product has an inhibitory effect on H. pylori adhesion by
expressing Lewis B glycans, as well as sialyl Lewis X [192]. Multiple trials demonstrated the
efficacy of SabA as a potential recombinant vaccine candidate. One study evaluated a novel
immunogenic cocktail, including VacA, BabA, SabA, FecA and Omp16, using a reverse
vaccinology approach [193,194]. Similarly, a multi-epitope oral vaccine composed of BabA,
SabA, OipA, VacA, CagA, cholera toxin subunit B (CTB) and other components, serves
as another promising vaccine candidate [195]. The significant role of SabA in anchoring
H. pylori and its ability to adapt to the gastric environment reinforces the idea of using
this protein as the basis for vaccine design. Furthermore, there is promise in evaluating
glycosphingolipids as therapeutic targets to develop new treatments for pathogenic host–
microbe interactions in the human stomach [196,197].

Research has been performed to evaluate anti-adhesive agents on hopQ genotypes. In
one study, HopQ1 was more sensitive than HopQII to different dietary ingredients [198]. It
is suggested that engineered CEACAMs conjugated to antimicrobial agents, with higher
specificity and affinity for HopQ, can improve antibacterial efficiencies [199]. Further
research is needed regarding prevalence of this protein, correlation with clinical outcomes
and potential targets.

When the efficacy of various drugs to interfere with the interaction between BabA and
gastric mucosa was evaluated, rhamnogalacturonans showed potential as inhibitors of this
protein [200]. In terms of treatment, some progress has been made using mucolytic agents.
Findings show that N-acetylcysteine has the ability to disrupts BabA adhesion to the gastric
mucosa. Also, this conserved disulfide has a synergic effect with antibiotic therapy that
boosts the efficiency of each [201]. Pectin and rhamnogalacturonans show promise as BabA
adhesion blockers, indicating that BabA could potentially serve as a target for designing
receptor-mediated adhesion drugs [200].

Four highly conserved OMPs have been discovered that offer considerable potential
as vaccine candidates. These proteins, namely HopV, HopW, HopX, and HopY, show no



Pathogens 2024, 13, 392 11 of 25

signs of phase variation, indicating their stable expression during chronic infection and
suitability as immunogens [161,184].

3.2. Targeting Cag A

Regarding therapies that target Cag A, progress has been made using ATPase Cagα
inhibitors to target the Cag type IV secretion system. CHIR-1, a kinase-targeting compound,
and difluoromethylornithine, have both shown promising results. However, technical
limitations make it difficult to achieve full inhibition. It is necessary to preincubate bacteria
with CHIR-1 to reach the strongest level of inhibition [202–205]. In summary, a major role of
VacA and CagA in H. pylori pathogenicity and disease progression is evident. Irrespective
of the geographical differences, CagA is a good indicator of patient outcome and targeting
this protein could provide a potentially effective means of treatment [206].

3.3. Enhancing Immune Responses

In order to achieve a protective immune response some therapeutic strategies such as
T cell activation and targeting inhibitory receptors are of note. In this regard, promising
results were obtained using MDX-1106 (anti-PD-1), lambrolizumab, and rapamycin to
control the mTOR/p70 S6 kinase pathway. However, further clinical research is required
to acquire a deep knowledge of immunity to H. pylori. A better understanding of these
mechanisms is critical to design an appropriate vaccine [207]. Several prototype vaccines
are in development and currently undergoing trials (Table 2).

Regarding other therapeutic approaches directly against H. pylori, several targets are
suggested for treatment. These include shikimate pathways (involved in ubiquinone and
aromatic acid synthesis), flavodoxin (electron carrier protein), coenzyme A, succinylase
pathway, and urease inhibitory compounds. By developing compounds that interfere
with these targets, researchers aim to disrupt essential bacterial functions and reduce
colonization by H. pylori, leading to its control or even eradication from within the host [208].
As discussed below, there are several innovative therapeutic approaches against H. pylori,
including novel treatments targeting key virulence factors and host–microbe interactions.

4. Challenges to Helicobacter pylori Vaccine Development
4.1. Genetic Characteristics of H. pylori OMPs Contribute to Its Variability

A feature of the genome of H. pylori is its appreciable plasticity. This is due to genetic
recombination which results in a high level of mutation, notably reported for babA2 gene
expression [209,210]. This pathogen uses various micro- and macro-diverse tools to survive
in the gastric mucosal environment [211,212]. Genetic incongruity is especially pronounced
among omp genes [37]. Most studies have been performed on two H. pylori well-researched
strains, 26,695 and J99, which are thought to be representative of clinically significant
isolates [116].

There are three categories of H. pylori genes: phase-variable; structure-variable; and
strain-specific [26]. Some phase-variable genes use a specific method to escape from
immune surveillance whereby not only does the expression of antigens change, but also
the bacterium becomes more heterogenous. To date, six genes, including sabA/B, babB/C,
oipA and hopZ, have been identified that are regulated by this mechanism [26,213].

One interesting finding is that H. pylori can upregulate expression of Leb and Lex,
yielding BabA and SabA receptors, respectively. This function is performed by deposition
of these antigens, which facilitates increased colonization [214].

There is broad similarity between H. pylori strains in terms of ribosome-binding sites
(nucleotide number). However, the shorter spacing that is observed in some H. pylori
genes may cause a change in the gene expression reported for seven orthologous pairs
of omp genes. Examples can be seen in babA genes. Slipped-strand repair plays a pivotal
role in altering expression of these proteins, thereby providing a mechanism by which
H. pylori can evade the host immune system. The Com-B system in bab A/B/C is integral
to this mechanism. While the central region of these genes is diverse, the 5′ and 3′ ends
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are similar. Slipped-strand repair has been reported in several genes and is thought to
underpin antigenic variation and genetic diversity that is observed among H. pylori strains.
Five hop orthologs undergo this regulation to change signal sequence, while the final
product of expression remains the same [36,37,136,210,215]. In addition, gene duplication,
in which there are two copies of an allele, is described for babA, hopJ, hopK, hopQ, hopM
and hopN genes. This event differs between various hop genes depending on the H. pylori
strain [37,134].

As well as OMPs, based on recent studies there are two other genes that affect H. pylori
pathogenicity. ice A1 and ice A2 are a pair of novel genes that are considered as risk factors
for various gastric conditions. Transcription of either ice A gene can be induced by H. pylori
attachment to gastric epithelial cells. Their distribution among different geographical areas
and gastric diseases is variable [216,217]. There is a relationship between this gene and
other virulence factors such as CagA and VacA. The findings of one study suggest that
ice A and cagA may be used as potential markers for clinical outcomes [62]. However, as
the findings are paradoxical, elucidation through further research is required [59,218]. The
duodenal ulcer-promoting gene dupA, which is located in the plasticity region of cag PAI, is
thought to provide an increased risk for duodenal ulcers. Expression of this gene induces
IL-8 and neutrophil activity [219]. On the other hand, in patients with gastric cancer its
prevalence is much lower. dup A may provide a good candidate to predict clinical outcomes
such as duodenal ulcers [26,219–221].

4.2. Protective Nature and Heterogeneity of Biofilm Limit Vaccine Accessibility

Another medical challenge that is presented by H. pylori is its capacity to form biofilm.
Under the protection of the impervious matrix of extracellular polymeric substances (EPS),
bacteria are refractory to antibiotic penetration, thus greatly reducing the efficacy of stan-
dard treatment approaches [222]. There is strong evidence for a direct correlation between
biofilm formation and antibiotic resistance, influenced by factors such as OMPs, other
virulence factors, extracellular matrix, efflux pumps and metabolic changes [223]. There-
fore, susceptibility to antibiotics such as amoxicillin, clarithromycin, levofloxacin, and
metronidazole by bacteria protected by biofilm is reduced substantially [224].

Heterogeneity in the regulation of OMPs, an important feature of biofilms, leads to
variation in biofilm composition and plays a key role in adherence [225,226]. Of all OMPs
in H. pylori, the Hom family and AlpB are initially involved. Since the latter is highly
conserved in H. pylori strains, it is considered a promising therapeutic candidate [227,228].

Another potential target for vaccine design has been found in H. pylori biofilm. OMVs
are small spherical structures released by Gram-negative bacteria. They are an integral
component of H. pylori biofilm EPS matrix. Produced during bacterial growth, OMVs
are implicated in pathogenesis through biofilm formation. A recent study demonstrated
that an α-class carbonic anhydrase (CA) is found in OMVs, synthesized by both biofilm-
producing and planktonic H. pylori strains [229]. On the other hand, genes responsible for
encoding CAs in H. pylori are distributed to cytoplasmic β-CA (hpβCA) and α-CA (hpαCA).
Also, expression of these two genes is accelerated at low pH and their joint activity with
urease helps H. pylori to withstand the acidic gastric conditions. Therefore, hpCA has been
considered as a new therapeutic candidate [229–233].

4.3. Overcoming Immune Tolerance of H. pylori

The protective host immune response to H. pylori helps to lessen the threat that colo-
nization poses. However, this noted pathogen has evolved a unique strategy to overcome
host defenses. Long-term infection is a consequence of remodeling of the host-pathogen
interface as well as immune evasion due to expression of multiple virulence factors [234].
Hence, H. pylori poses a challenge to therapeutic approaches and effective vaccine de-
sign by modulating host immunity and inducing immune tolerance. Achieving sufficient
and durable protection that involves eliciting robust and long-lasting immune responses
is warranted.
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Different H. pylori virulence factors cause immune tolerance through various ways. It
is known that cag PAI is a potent driver of IL-8 and NfκB secretion. A cascade of intracellu-
lar activities is involved in H. pylori-dependent signal transduction. Nucleotide-binding
oligomerization domain (NOD)1 is an intracellular pattern recognition receptor that recog-
nizes bacterial peptidoglycan, among other danger signals, and thus plays a fundamental
role in innate and adaptive defenses and control of inflammation1 [235]. This protein also
has an important function in cancer development. Following interaction between CagA
and PAR1b, BRCA1 disturbs phosphorylation, which can lead to the promotion of DNA
double-strand breaks and BRCAness. This phenomenon is expanded via p53 inactivation,
enabling DNA-damaged cells to escape from apoptosis and proliferate. This propels a
“hit-and-run mechanism”, which is a significant cause of gastric carcinogenesis [236].

Similarly, VacA activity affects the immune system in multiple ways. For example,
paracellular permeability during carcinogenesis, TGF-β1 production and heightened in-
flammation. At the same time, through vacuolization, antigen proteolysis decreases, which
subsequently reduces peptide presentation and thereby inhibits T cell stimulation. This
leads to down-modulation of CD4+ and CD8+ responses, thus facilitating the persistence of
H. pylori infection [237].

Composed of lipid A and polysaccharide, LPS is an H. pylori endotoxin within the outer
cell membrane. It is intrinsically involved in septic shock and sepsis through triggering
proinflammatory mediators such as TNF-α and IL-1 [238]. LPS can promote gastric cancer
through inhibiting inflammatory immune responses as well as preventing invasion of
gastric cancer cells by immune mediators. Specifically, LPS derived from H. pylori can
weaken cytotoxicity of mononuclear cells towards gastric cancer cells, as well as cytotoxic
activity of gastric epithelia and NK cells. In addition, H. pylori LPS selectively elevates
production of IL-18 and IL-12 and activates signal transduction patterns related to TLR4-
and toll/IL-1 receptor [238–240]. Multiple studies have shown the significant role of TLR4-
LPS in initiation and escalation of gastric cancer. The synthesis of two important factors in
promoting cancer, TNF-α and IL-8, is accelerated after TLR4-LPS binding [241,242].

A series of mechanisms is utilized by this pathogen to enable it to evade the host
immune system. H. pylori is a motile bacterium that is equipped with at least four flagella,
the coordinated actions of which propel it through the gastric mucus layer. Each flagellum
comprises several components including hook, basal body, filament and sheath. Inter-
estingly, reports show that they contribute to biofilm formation [237,243]. As alluded to
above, urease production is another means to combat the immune system. As it helps to
alleviate the acidic environment, this implies a role in chronicity of infection and bacterial
persistence. Also, ammonium produced by urease may cause damage to host cells [244,245].
Additional recognized roles for urease include a chemotactic effect on immune cells as well
as angiogenesis, which may promote development of infection to gastric cancer [246,247].

A “founder colony” is a newly proposed model of escape and persistence in which
H. pylori penetrates deep within the microenvironment of gastric glands to initiate coloniza-
tion. These small colonies then expand to form persistent clonal population islands. They
are distinct from planktonic bacteria in the superficial layer and gaining the space for new
bacterial growth presents a challenge [248].

4.4. The Wait for an Approved Vaccine

Despite almost 40 years of research and development, no H. pylori vaccine is commer-
cially available, with most clinical trials concluding after phase I. In addition to genetic
diversity, biofilm characteristics, and the risk of exacerbating gastric diseases and autoim-
munity due to an aberrant immune response, other reasons may partly account for this.
For example, intracellular features of H. pylori enable it to effectively ‘hide’ inside gastric
epithelial cells and gastric lamina propria, thus contributing to persistent infection [249].
Another concern is that many preclinical studies have been performed in mice, which are
not natural hosts of H. pylori. Hence, any vaccine efficacy observed in mouse models may
not translate accurately to humans [250]. Enhancing investment and prioritizing research
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into the design of an efficacious H. pylori vaccine are public health imperatives considering
the widespread prevalence and significant disease burden associated with this bacterium.

5. Conclusions

Helicobacter pylori is the principal cause of gastric conditions including peptic ul-
cers, gastric carcinoma, mucosa-associated lymphoid tissue lymphoma and gastritis. Its
pathogenicity is due to a combination of virulence factors including urease, flagella, and
OMPs [22,191,251–254]. The progression of H. pylori infection to gastric cancer happens
through a series of events. Primary inflammation may develop into acute gastritis and
chronic gastritis. At this stage, multiple factors such as stomach pH, genetic diversity and
environmental factors can gradually alter the gastric condition to cancer. During the early
stages, most patients are unaware of their condition and so treatment is not started until
symptoms are more advanced. Hence, developing earlier and more accurate screening
methods to enable prevention and eradication of H. pylori at the community level, as well
as better treatment strategies to combat existing infection in patients, are warranted [255].
This will require an in-depth knowledge of different features of this bacterium.

Various indices are involved in determining clinical outcome. Notable among these
are host genetics, particularly relating to the functioning of an individual’s immune system,
as well as H. pylori virulence factors These belong to one of three groups that relate to
colonization, development, and disease [90,256]. OMPs exist in all H. pylori strains as a tool
for initial attachment, so are therefore considered as potential targets for candidate vaccine
design. Recombinant vaccines incorporating CagA, VacA, urease, BabA, SabA, OipA and
porin proteins show promise in ongoing trials [194].

Adherence to and colonization of epithelial cells play integral, initial roles in the
pathogenicity of H. pylori. These interactions are mediated via OMPs and other virulence
factors. Through adhesion to gastric mucosa and harnessing its type IV secretion system,
the pathogen transfers toxins and effector molecules into the host cell. OMPs also facilitate
inflammation, metaplasia and the ultimate pathological outcome of gastric cancer [257].
Each OMP has a distinct receptor, so gaining a clear understanding of them all aids di-
agnosis of infection and benefits clinical outcomes. In this context, combined evaluation
of different OMPs can be both more rapid and accurate than any single identification. In
one study, by considering various OMPs including OipA, BabA and SabA, the accuracy of
gastric cancer prediction reached 77% [258]. In addition, an association between the pro-
duction of some OMPs has been identified. While there is an inverse relationship between
OipA and CagPAI, the presence of this OMP is a prerequisite for CagA translocation [86].
Similarly, at an 83% rate of H. pylori infection, a close relationship between VacA and chronic
gastritis is apparent. Also, a correlation between VacA, BabA2 and OipA with increased
risk of gastric cancer has been revealed [103]. When considering these relationships as
potential prognostic markers a number of challenges such as limited time of survival and
geographical regionality of occurrence should be considered.

Although several H. pylori-related virulence factors are involved in promoting gastric
disorders, the causal relationships that underlie severe gastric conditions are still to be
elucidated. The importance of these factors is crucial from both treatment and management
perspectives [71]. It is also necessary to gain a precise evaluation of the epidemiology of
each OMP, as its prevalence at a population level is different based on geographical region,
even within the same country. Other criteria such as patient age gender, and bacterial
genotype are also important [259–261]. To date, despite considerable research efforts there
is no vaccine candidate that is sufficiently far advanced to be of interest to a pharmaceutical
company to take through commercial development. Therefore, further research and greater
investment are warranted in order to improve vaccine design and efficacy in terms of both
prevention and lessening medical burden.
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