
Citation: Wang, Y.; Jin, J.; Zhang, Q.;

Zhang, M.; Lin, X.; Wang, X.; Lin, P.

Accuracy of Non-Destructive

Estimation of Length of Soil Nails.

Buildings 2023, 13, 1699. https://

doi.org/10.3390/buildings13071699

Academic Editor: Erwin Oh

Received: 7 June 2023

Revised: 27 June 2023

Accepted: 29 June 2023

Published: 3 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Article

Accuracy of Non-Destructive Estimation of Length of Soil Nails
Yonghong Wang 1, Jiamin Jin 1, Qijun Zhang 2, Ming Zhang 3, Xiwei Lin 2, Xin Wang 4 and Peiyuan Lin 5,*

1 School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, China;
wangyonghong@qut.edu.cn (Y.W.)

2 Qingdao Yegao Construction Engineering Co., Ltd., Qingdao 266520, China
3 Sichuan Lutong Detection Technology Co., Ltd., Chengdu 610097, China
4 China Southwest Geotechnical Investigation & Design Institute Co., Ltd., Chengdu 610052, China
5 School of Civil Engineering, Sun Yat-Sen University, Zhuhai 519082, China
* Correspondence: linpy23@mail.sysu.edu.cn; Tel.: +86-0756-3668053

Abstract: The effective length of soil nails is one of the critical parameters ensuring the reinforcing
effect, and its accurate estimation is of great significance for the safety of the slope and deep foundation
pit supporting projects. Traditional quality insurance methods, such as nail pullout tests, suffer from
a series of drawbacks including being destructive, high cost, and time-consuming. In contrast,
non-destructive testing (NDT) has been increasingly applied in various engineering fields in the
past decades given its advantages of not damaging the material and easy operation. However, the
current application of NDT in soil nail length measurement is relatively limited, and its accuracy and
reliability are yet to be quantitatively evaluated. This paper introduces three methods for estimating
soil nail length based on guided wave theory and collects 116 sets of NDT data for nail length. The
accuracy of the NDT in soil nail prediction is statistically analyzed using the model bias method.
The results show that those methods can accurately predict the nail length with an average error of
less than 3% and a low dispersion of 12%. The accuracy of the NDT methods is not affected by the
hammer type or estimation method. Furthermore, this paper proposes a model calibration to the
original NDT method, which improves the model’s average accuracy by 3% and reduces dispersion
by 4% without increasing computational complexity. Finally, the probability distributions of the
model biases are characterized. This study can provide practical tools for fast estimation of in situ
nail length, which is of high significance to supporting slopes and deep foundation pits.

Keywords: soil nail; non-destructive testing (NDT); accuracy assessment; statistical analysis; model
uncertainty

1. Introduction

Soil nails, steel bars encapsulated by cement columns, are widely used to reinforce
soil or rocks to enhance the stability and bearing capacity of the mass. The applications
include tunnels [1,2], underground mines [3], bridges [4], dams [5], slopes [6], and others.
This method uses soil nails as a metal-tensioned system [7]. Consequently, the effective
length of a soil nail is a critical parameter that directly affects its tensile strength and
shearing capacity, thus the stability and safety of the supported structures. For this reason,
the accurate measurement and monitoring of soil nail length are essential for ensuring
the design integrity and performance of the soil nail system. Conventional methods of
measuring soil nail length, such as pull-out tests, are often destructive, time-consuming, and
expensive and may not apply to specific soil or rock formations. The traditional method for
quality testing of soil nails is the pull test, which is time-consuming and destructive. More
importantly, it is difficult to comprehensively reflect the effective length and compactness
of a soil nail.

More sophisticated and complex soil nail systems have been designed and constructed,
and as the demand for safety and quality assurance increases, non-destructive testing
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(NDT) techniques for soil nail length measurement has become increasingly important
in recent years, being considered as a powerful supplement to the pullout tests for the
assessment of nail length. Therefore, developing and validating accurate and reliable NDT
models for soil nail length measurement is crucial for ensuring the safety and efficiency
of geotechnical construction projects. There exist various kinds of non-destructive testing
(NDT) techniques applied in real projects, such as ultrasonic testing [8,9], impact echo [10],
acoustic emission [11], and electromagnetic wave [8,12] techniques. These methods can
also apply to soil nailing inspection. However, their accuracy and reliability can be affected
by their inherent drawbacks or external biases, such as material anisotropy, temperature,
stress, equipment frequency, noise, or interference, etc. In order to address these challenges
and improve the performance of soil nailing length measurement, researchers have been
exploring the use of elastic wave NDT techniques, such as guided waves [13–15] and Lamb
waves [16,17]. The development of advanced signal processing algorithms [18,19] and
modeling techniques [14,20,21] has also facilitated the analysis and interpretation of elastic
wave signals to provide information on the length, shape, and condition of soil nails.

Although elastic wave NDT techniques have been widely used, the accuracy of this
technique in predicting soil nail length must be evaluated as the site condition is typically
highly complicated. The wave reflection and refraction in in situ nails are usually different
from those obtained in labs. The wave shape, attenuation, mode, etc., are all influenced by
workmanship, soil condition, and construction quality. Engineers who lack of experience
may fail to estimate the length of in situ nails, leading to the misjudgment of nail bearing
capacity, as well as fulfillment of the design requirements. Therefore, the main work of this
study is to first introduce three methods for determining the nail length from NDT elastic
wave signals and then conduct a statistical evaluation and calibration of the accuracy of
methods. Model accuracy is quantified using model bias, defined as the ratio of the true
nail length to the NDT-predicted nail length.

2. NDT Methods for Estimating Nail Length

A guided wave is a type of ultrasonic wave, which is an elastic wave formed by the
interference of longitudinal or transverse waves traveling simultaneously in an interfacial
object, such as a nail, in the reflection or transformation mode [22]. The propagation of
guided waves in soil nails depends on the steel bar, the grout column, and the surrounding
soil or rock properties. Figure 1 shows the layered structure of a soil nail. The propagation
speed and attenuation of waves with different frequencies and modes in the soil nails
vary [23,24]. By taking advantage of the propagation characteristics of guided waves
in solid media and analyzing the propagation signals, the length of the soil nail can be
determined. The basic steps for the guided wave method to estimate the quality of soil
nails are as follows. First, select the appropriate sensor and transmitter for generating and
receiving guided wave signals. It is then arranged on the soil nail to ensure that the guided
wave can propagate along the axial direction of the soil nail. Characteristics include the
time to receive and record the pilot signal and its corresponding amplitude and frequency.
Finally, the length of the soil nail and the possible defects are estimated according to these
characteristics. It is clarified that this paper focuses merely upon the determination of
nail length.
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Figure 2 illustrates three methods to process and analyze the signals of guided waves,
namely, slope attenuation, end reflection, and frequency change of the end reflection.
These methods are used to determine the effective length of a soil nail. Specifically, slope
attenuation refers to the decrease in energy of a wave signal as it propagates through the
steel rod medium, resulting in a continuous reduction in amplitude. This gradual decrease
in amplitude is caused by biases such as distance, scattering, or absorption. Different media,
propagation conditions, and waveforms have varying attenuation patterns, which can be
categorized into diffraction attenuation, scattering attenuation, and absorption attenuation.
In particular, at the bottom of the steel rod, where it meets the boundary with the rock
mass, the energy reflected into the steel rod is minimal. As shown in Figure 2a, the crossing
point at which the energy is significantly weakened or reaches the end of its attenuation
is defined as the bottom signal, and the corresponding distance represents the effective
length of the steel rod.
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The second estimation method involves the recurrence of reflection signals at the
bottom of the steel rod. Both longitudinal and shear waves propagate within the rod body.
Due to the cylindrical shape, there is a small part of energy leaking into the grout column,
very little is radiating into the surrounding geomaterials. The wave attenuation is not
significant, and thus, when it meets the end of the steel rod, it bounces back ‘strongly’,
forming a clear peak in the wave signals. As shown in Figure 2b, this signal has distinct
characteristics that can be differentiated from other signals.

The third estimation method is based on slight frequency changes at the bottom
signal position. At the bottom of the steel rod, the mechanical impedance difference
between the two media is significant, causing a frequency difference between adjacent peaks.
Therefore, when the frequency of a point on the waveform record changes from high to low,
i.e., λ1 < λ2 (see Figure 2c), it is determined that this point is the bottom signal.

According to the waveform characteristics, different methods are selected, and
Equation (1) is used to estimate the effective length of the steel rod.

L = v×t
2 (1)

Here, L represents the length of soil nail, v represents the wave propagation speed,
and t represents the propagation time.

3. Database of Measured and Predicted Nail Length

This section presents a broad database of soil nail length, including measured length
and NDT-predicted length data. The soil nail data were from various retaining wall projects
in Qingdao, a city in Shandong Province, China. Table 1 summarizes the project information,
including wall geometry, soil strength properties, and nail arrangement. The soil strength
properties were determined by direct shear tests on soil samples in the laboratory. The
walls ranged from 6 m to 32 m with very steep facings and flattened back slopes. They
were built in a wide range of soils, e.g., silty clay, sand, silt. The soil properties are all
within typical ranges. The nails are spaced at a spacing of about 1.2–1.5 m vertically and
horizontally. There is a hybrid wall with a height of 32 m; the slope is reinforced with soil
nails and prestressed cables. In this wall, i.e., W4, the nail length is over 31 m, which is not
very common in practice. Nevertheless, this is a desirable case for testing the ability of the
NDT method when applied for long nails.

Table 1. Summary of wall geometry, soil properties, and nail arrangement for soil nail walls.

Wall Soil Type
Wall Geometry Soil Strength Properties Nail

H (m) α (◦) β (◦) φ (◦) c (kPa) γ (kN/m3) Sh (m) Sv (m) i (◦) d (mm)

W1 Silty clay 8.1 10 0 22 16 18.2 1.2 1.2 20 22
W2 Silty clay 16 0 5 17 22 17.9 1.2 1.2 15 25
W3 Silty clay with gravel 22 20 20 21 10 19 1.35 1.35 10 30
W4 Clay, medium sand 32 40 6 23–31 10–16 20 1.5 1.5 10 36
W5 Silty clay, sand 6.2 0 0 24 18 19 1.4 1.4 10 22
W6 Silty sand, clay 6–12 15 5 27–31.9 0–17 19.1–20.2 1.4 1.4 10 25
W7 Silty clay, coarse sand 8–10 6 0 12.3 16 20.8 1.2 1.2 15 25
W8 Silty clay 17 10 5 18.9 26 19.2 1.5 1.5 10 25
W9 Sandy silt, fine sand 20.5 11.3–22 0 20–40 0–20 19.2 1.5 1.5 8 30

Note: H = wall height; α = face batter angle; β = back slope angle; φ = soil friction angle; c = soil cohesion;
γ = soil unit weight; Sh = horizontal nail spacing; Sv = vertical nail spacing; i = nail inclination angle; and d = nail
bar diameter.

A total of 116 sets of non-destructive testing (NDT) data for soil nails were collected
following the testing procedure: (1) attach the sensor/transducer at a location 2 cm from the
nail head through a circular connector that fits the shape of the nail tendon tightly; (2) hit
the nail head (tendon) with a small or a large hammer, where small hammer excites waves
with low frequencies and large hammer excites waves with high frequencies; (3) record the
wave signal received by the sensor through a digital oscilloscope, which is then connected
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to a laptop for data storage. Table 2 summarizes the information of the database, including
hammer types, estimation methods, measured lengths, and NDT-predicted lengths of these
soil nails. By developing this database, the errors of the three NDT methods in predicting
nail length can be statistically evaluated and calibrated.

Table 2. Summary of soil nail parameter of NDT method.

No. True
Length (m)

Hammer
Type

Estimation
Method a

NDT Nail
Length (m) No. True

Length (m)
Hammer

Type
Estimation
Method a

NDT Nail
Length (m)

1 9.0 Small SA 9.11 59 4.5 Large FC 4.33
2 9.0 Small SA 9.09 60 4.5 Large FC 4.33
3 9.0 Large FC 9.08 61 4.5 Small SA 4.13
4 9.0 Large FC 9.08 62 4.5 Small FC 4.10
5 9.0 Small FC 9.04 63 4.5 Large FC 4.13
6 9.0 Small SA 9.05 64 4.5 Large FC 4.09
7 9.0 Large SA 8.99 65 4.5 Small SA 4.36
8 9.0 Large FC 8.87 66 4.5 Small FC 4.33
9 15.2 Small SA 16.71 67 4.5 Large SA 4.14

10 15.2 Small SA 15.94 68 4.5 Large SA 4.10
11 15.2 Large ER 16.52 69 4.5 Small SA 3.48
12 15.2 Large ER 16.59 70 4.5 Small SA 3.50
13 15.6 Small SA 16.40 71 4.5 Large SA 3.47
14 15.6 Small FC 15.89 72 4.5 Large SA 3.50
15 15.6 Large FC 15.47 73 4.5 Small FC 3.71
16 15.6 Large FC 15.71 74 4.5 Small FC 3.69
17 15.6 Small SA 16.37 75 4.5 Large FC 3.69
18 15.6 Small SA 16.41 76 4.5 Large FC 3.66
19 15.6 Large FC 15.09 77 4.5 Small SA 3.56
20 15.6 Large FC 16.00 78 4.5 Small SA 3.50
21 15.6 Small SA 15.98 79 4.5 Large SA 3.54
22 15.6 Small SA 16.07 80 4.5 Large SA 3.51
23 15.6 Large FC 15.90 81 5.0 Small SA 4.79
24 15.6 Large SA 16.39 82 5.0 Small FC 4.72
25 15.6 Small ER 15.52 83 5.0 Large FC 4.77
26 15.6 Small FC 15.45 84 5.0 Large FC 4.75
27 15.6 Large ER 16.17 85 12.0 Small SA 12.01
28 15.6 Large FC 16.16 86 12.0 Small SA 11.80
29 31.6 Small FC 32.40 87 12.0 Large SA 11.93
30 31.6 Small FC 32.5 88 12.0 Large SA 11.90
31 31.2 Small SA 32.2 89 12.0 Small ER 11.63
32 31.2 Small ER 30.42 90 12.0 Small FC 11.62
33 31.2 Large SA 32.13 91 12.0 Large FC 12.16
34 31.2 Large FC 32.08 92 12.0 Large FC 11.90
35 31.6 Small SA 29.98 93 21.0 Small ER 21.17
36 31.6 Small FC 29.04 94 20.5 Small FC 17.65
37 31.6 Large SA 31.84 95 20.6 Large FC 19.80
38 31.6 Large SA 32.21 96 20.8 Large FC 25.20
39 31.6 Small FC 31.66 97 21.0 Small ER 20.35
40 31.6 Small FC 29.37 98 21.0 Small FC 25.00
41 31.6 Large FC 32.74 99 24.5 Large FC 28.00
42 31.6 Large FC 33.08 100 28.2 Large FC 29.50
43 31.6 Large FC 31.74 101 3.5 Small ER 3.20
44 31.6 Large SA 32.07 102 3.5 Small FC 3.07
45 4.5 Small SA 4.28 103 6.2 Large FC 6.00
46 4.5 Small SA 4.42 104 9.0 Large FC 9.74
47 4.5 Large SA 4.09 105 9.0 Small ER 9.80
48 4.5 Large SA 4.15 106 9.0 Small FC 10.40
49 4.5 Small SA 3.95 107 26.1 Large FC 27.50
50 4.5 Small SA 3.94 108 26.1 Large FC 27.25
51 4.5 Large SA 4.10 109 23.1 Small ER 22.50
52 4.5 Large SA 4.16 110 3.5 Small FC 6.45
53 4.5 Small SA 4.35 111 3.5 Large FC 4.25
54 4.5 Small SA 4.31 112 15.56 Large FC 15.50
55 4.5 Large SA 4.40 113 3.0 Small ER 3.08
56 4.5 Large SA 4.24 114 3.0 Small FC 2.00
57 4.5 Small FC 4.23 115 3.0 Large FC 4.00
58 4.5 Small SA 4.34 116 3.0 Large FC 3.12

Note: a SA = Slope attenuation; FC = Frequency change of end reflection; ER = End reflection.
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Hammers that are used to strike the head of soil nails to generate acoustic signals are
specified into two types, i.e., large and small. Both types of hammers are in a cylindrical
shape. The large hammer has a diameter of 40 mm, while the small hammer has a diameter
of 10 mm. The waves excited from small diameter hammers have higher frequencies and
are theoretically more suitable for shorter nails; meanwhile, large hammers excite waves
with lower frequencies and are more suitable for longer nails.

The data show that using large and small hammers each account for 50% of the col-
lected soil nail NDT projects. The NDT estimation methods of frequency change of end
reflection, slope attenuation, and end reflection take up 48.3%, 41.4%, and 10.3%, respec-
tively. Figure 3 displays the histogram and cumulative percentage of the true (measured)
lengths of soil nails. The x-axis is the measured nail length Lm; the y-axis on the left is
the relative frequency, defined as the ratio of the value of Lm in a certain interval to the
total number of data; the y-axis on the right is the cumulative distribution, defined as the
percentage of Lm data below a certain value. According to the data, the minimum true
nail length is 3.00 m, the maximum is 31.60 m, and the average is 12.86 m; 50% of lengths
are less than 9.0 m, and over 80% of the lengths are within 21.00 m. Figure 4 illustrates
the tests carried out on site. Following the testing procedure described above, the wave
signals are acquired on site and then analyzed according to the three methods introduced
in Section 2 to determine the nail length. Overall, the database contains good information
for the evaluation of model accuracy of the NDT methods on the length of soil nails.
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4. Results of Accuracy Assessment

In this section, the model bias λ is used to quantify the accuracy of the NDT methods
for nail length. The model bias λ is defined as the ratio of the true nail length to the
NDT-predicted nail length. The model bias λ is treated as a random variable, with its
mean representing the average accuracy of the model and its coefficient of variation (COV)
characterizing the deviation between predicted and actual values. This section firstly
evaluates the NDT methods using all collected data as one group; then, the data are further
divided into several subsets according to hammer type and estimation method in order to
discuss the impact of these factors on the estimation accuracy. In addition, this section also
characterizes the probability density functions for the model biases.

Figure 5 shows the comparison between the true (measured) nail length and the NDT-
predicted nail length. Visually, the measured and predicted nail lengths from all ranges
are in good agreement with each other, following around the 1:1 corresponding line. By
computing the bias data, it is found that the mean and COV of the bias are 1.03 and 0.12,
respectively. This means that, on average, the NDT-predicted nail length is nearly accurate,
i.e., just 3% shorter than the true length, and the dispersion in prediction accuracy is very
low, i.e., just 12%. According to the ranking scheme proposed by Phoon and Tang [25], the
accuracy of the proposed NDT methods can be considered as high. Therefore, the three
NDT methods can satisfactorily predict the nail length.
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Figure 6 plots the model biases, λ, against the NDT predicted nail length. The model
bias λ appears to decrease from about 1.5 to 1.0 as the predicted length Ln increases from
about 2 m to 5 m. After that, there appears to be no apparent trend between λ and Ln.
A Spearman rank correlation test was conducted on the dataset, and the results showed
that the Spearman correlation coefficient ρ between Ln and λ is −0.65 and the p-value is 0
(less than 0.05), suggesting a statistically significant negative correlation between λ and
Ln at a significance level of 0.05. This is undesirable, as the model accuracy statistically
depends upon the predicted value.
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Figure 6. Plots of original and improved values λ for the NDT model against its predicted values.

To further investigate the influence of hammer type and NDT estimation method on
prediction accuracy, the bias data were divided into subsets, for example, λ based on small
or large hammers and λ based on the frequency change of the end reflection method, the
end reflection method, and the slope attenuation method. The cumulative distributions of
these bias data subsets are plotted in Figure 7a,b. Visually, the distributions appears to have
similar trends, suggesting no significant differences among the subsets. The bias means
are 1.02 and 1.04 for the data subsets from the large and small hammers, respectively, and
the bias COVs are 0.104 and 0.126, respectively. The differences between the means and
the COVs are actually small. This suggests that these two subsets could be from the same
population. Similar observations can be made for the method-based subset cases.
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The Mann–Whitney test was applied to the two subsets based on hammer type, and
the Kruskal–Wallis test was applied to those based on NDT methods. The test results
were summarized in Table 3. The p-value from the Mann–Whitney test was 0.219, which is
greater than 0.05, quantitatively confirming that the two bias data subsets can be considered
from the same population at the 0.05 significance level. In other words, selecting either
a small or big hammer has no significant effect on the accuracy of the NDT method in
predicting the effective length of soil nails. The Kruskal–Wallis test results showed that the
p-values were 1.000, 0.162, and 0.125; all again exceeded 0.05. Therefore, it can be concluded
that the selection of hammer type and estimation method has no significant impact on the
accuracy of the NDT method for soil nail length.

Table 3. Summary of statistics of model biases and Mann–Whitney or Kruskal–Wallis test results for
different data cases.

Data Group
Model Bias, λ Mann–Whitney

or Kruskal–Wallis
p-ValueMean COV

All data, n = 116 1.03 0.116 Not applicable

Large hammer, n = 58 1.02 0.104 0.219

Small hammer, n = 58 1.04 0.126 >0.05

Frequency change of end reflection, n = 56 1.01 0.129 1.000

End reflection, n = 12 0.99 0.053 >0.05

End reflection, n = 12 0.99 0.053 0.162

Slope attenuation, n = 48 1.06 0.103 >0.05

Slope attenuation, n = 48 1.06 0.103 0.125

Frequency change of end reflection, n = 56 1.01 0.129 >0.05
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5. Model Calibration

While the prediction accuracy of the NDT methods is small, i.e., the average error
is between 1% and 6%, as shown in Table 2, it is still desirable to make improvements
given that no computational complexity is added. This section attempts to complete this
improvement task. Figure 6 shows that the model bias of the original method decreases
as the predicted value increases; the Spearman’s correlation coefficient is ρ = −0.65, and
the p-value is 0.00, showing statistical correlation at the 0.05 significance level. Therefore,
an empirical correction term can be introduced to the predicted value to improve accuracy.
To be practical, the expression of the correction term should be kept simple. As a result,
this section uses the simple linear function, logarithmic function, exponential function, and
power function to fit the model bias against the predicted value, i.e., λ vs. Ln. The power
function outperformed other fittings, and the deterministic coefficient reaches R2 = 0.44;
the fitting expression M is as follows:

M = αLβ
n + η (2)

where α, β, and η are empirical constants to be optimally determined based on the database.
With the introduction of M, the new NDT-predicted nail length Lnew can be calculated as:

Lnew = MLn =
(

αLβ
n + η

)
Ln (3)

Accordingly, the new model bias can be calculated as = Lm/Lnew. The empirical
constants α, β, and η are optimally obtained by solving for the minimum value of the
coefficient of variation (COV) of the new model bias while keeping the mean value of
the new model bias at 1. The optimal values of α, β, and η are α = 2.56, β = −2.18, and
η = 0.97 (see Table 4). The corrected model, i.e., Equation (3), has a bias mean of 1.00 and
a bias COV of 0.08. This represents a 3% enhancement in the average model accuracy and
a 4% decrease in the accuracy dispersion after a simple calibration. The Spearman’s rank
correlation test showed no statistical correlation between the new model biases and the
new NDT-predicted values.

Table 4. Summary of statistics of model biases for the original and improved NDT methods for
nail length.

Model
Correction Bias Model Bias, λ

α β η µ COV Correlation with Ln Distribution

Original 1 1 0 1.03 0.12 Negative Second-order Gaussian

Improved 2.56 −2.18 0.97 1.00 0.08 Uncorrelated Cubic Polynomial

6. Probability Distribution of λ

This section characterizes the probability distributions of the model biases for both
the original and improved NDT methods. Figure 8 shows the cumulative distribution of
all original and improved model biases. The (modified) Kolmogorov–Smirnov (K-S) tests
were applied to the data and the results showed that the biases do not follow Normal, Log-
normal, Gamma, or Weibull distributions. For cases where bias does not follow common
distributions, multi-order Gaussian functions can be used to track the trend of the bias data.
The effectiveness of this method in approximating highly non-linear distributions has been
proven by, e.g., Yuan and Lin [26] and Lin et al. [27]. Table 5 summarizes the mathematical
expressions and parameters of the second-order Gaussian model and cubic polynomial
model, corresponding to the biases for the original and improved models. The coefficients
of determination for both cases are all close to 1.00; thus, the fittings appear satisfactory in
capturing data trends.
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Table 5. Formulations and parameters for the multi-order Gaussian and polynomial fittings.

Model Fitting Model Expression Parameter Value R2

Original Second-order Gaussian λ = ∑k=2
k=1 akexp

[
−
(

z−bk
ck

)2
] a1 1.593

0.975

b1 3.962
c1 4.777
a2 0.460
b2 −1.510
c2 1.681

Improved Cubic Polynomial λ = p1z3 + p2z2 + p3z + p4

p1 0.020

0.965
p2 −0.012
p3 0.031
p4 1.012

7. Conclusions

This study first collected 116 sets of nail length data from real soil nail wall projects
and then conducted a quantitative evaluation of the accuracy of non-destructive testing
(NDT) methods for predicting nail length based on statistical theory. The main conclusions
are as follows:

(1) Three NDT methods for estimating soil nail length are developed. They are slope
attenuation, end reflection, and the frequency change of the end reflection. On
average, these NDT methods can accurately predict soil length with an error of 3%.
The dispersion of prediction accuracy is low, i.e., only about 12%.

(2) The three NDT methods have good stability in predicting soil nail length; their
accuracies do not depend upon the hammer types and the method types at a level of
significance of 0.05.

(3) By introducing a simple power function to the prediction of the original NDT methods,
the on-average accuracy increases by 3% and the dispersion decreases by 4%, without
additional computational complexity.

(4) The probability distributions of the biases for the original and improved NDT methods
can be approximated using second-order Gaussian and cubic polynomial functions,
respectively.
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