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Abstract: This work employs the Birnbaum–Saunders distribution to model the fatigue-life of metallic
materials under cyclic loading and compares it with the normal distribution. Fatigue-limit models
are fitted to three datasets of unnotched specimens of 75S-T6 aluminum alloys and carbon laminate
with different loading types. A new equivalent stress definition that accounts for the effect of the
experiment type is proposed. The results show that the Birnbaum–Saunders distribution consistently
outperforms the normal distribution in fitting the fatigue data and provides more accurate predictions
of fatigue-life and survival probability.

Keywords: metallic fatigue data; fatigue-life prediction; fatigue-limit models; maximum likelihood
methods; Birnbaum–Saunders distribution

1. Introduction

Fatigue-life prediction is vital to prevent the failure of mechanical parts that are un-
der cyclic loadings. In the field of fatigue-life assessment, two primary methodologies
are commonly used: stress-life models (or S-N curves) [1–4] and linear elastic fracture
mechanics (LEFM) [5–8]. The S-N curve method relies on experimental data that models
stress amplitude against the number of cycles until failure. It provides a direct correlation
between the cyclic stress level and the expected life of the component. This method is
particularly effective for high-cycle fatigue analysis, where stresses are below the mate-
rial’s yield strength and failure is expected after a large number of cycles (typically over
104 cycles). The underlying assumption is that the material does not have initial flaws and
the initiation of cracks dominates the fatigue-life. This assumption may not be valid in
certain operational scenarios. For example, S-N curves are not employed in the Aircraft
Structural Integrity Program (ASIP) according to USAF MIL-STD-1530D [9]. This spec-
ification highlights the importance of selecting appropriate methodologies for different
operational contexts.

On the other hand, LEFM focuses on the growth of existing cracks and is governed by
the principles of fracture mechanics. It relies on the concept of stress intensity factors to
predict crack growth rates and the subsequent fatigue-life under cyclic loading. LEFM is
most applicable to low-cycle fatigue scenarios where the stress levels are high enough to
induce plasticity at the tip of the crack, and the life of the component is largely determined
by the rate of crack propagation [10]. This approach is adopted by the USAF, as detailed
in [9,11]. A comprehensive review of various fatigue crack types and their development
in actual aerospace structures is detailed in [12]. A probabilistic extension is provided
in [13] that emphasizes the role of the equivalent initial damage size (EIDS) or, equivalently,

Metals 2024, 14, 508. https://doi.org/10.3390/met14050508 https://www.mdpi.com/journal/metals

https://doi.org/10.3390/met14050508
https://doi.org/10.3390/met14050508
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metals
https://www.mdpi.com
https://orcid.org/0000-0002-4361-2491
https://orcid.org/0000-0001-5114-853X
https://doi.org/10.3390/met14050508
https://www.mdpi.com/journal/metals
https://www.mdpi.com/article/10.3390/met14050508?type=check_update&version=2


Metals 2024, 14, 508 2 of 20

the effective initial flaw size (EIFS) [14]. Recent works have also been developed, such
as [6], which utilizes the continuum damage mechanics (CDM) theory and LEFM theory to
predict the total gear bending fatigue-life, and [7], which investigates the effect of crack
initiation angles and plastic zones of thin-walled cylindrical shells with cracks.

The main difference between the two methodologies lies in their foundational as-
sumptions: S-N curves assume a flaw-free material and focus on the initiation of fatigue
cracks, whereas LEFM assumes the presence of initial cracks and concentrates on their
propagation [15].

In this current study, our focus is on high-cycle fatigue analysis with the goal of
predicting the life of mechanical components made from the same material and having
the same surface finish; therefore, we only consider S-N models. This choice is justified by
the nature of high-cycle fatigue processes, where the material is subjected to relatively low
stress levels that do not promote significant crack propagation before a very high number
of cycles is reached. Moreover, considering homogeneous material and surface finish
criteria, the S-N approach offers a more straightforward and practical means of predicting
fatigue-life without the need for intricate crack growth analyses as is required by LEFM.
It is important to note that this work is an academic study based on uniform samples
under controlled experimental conditions. Future work could extend these findings to
more practical conditions and real-world settings.

Although there are many models to relate stress with the fatigue-life, with probabilistic
models, the fatigue-life is often assumed to be a log-normal random variable [16–19] or follow
a Weibull distribution [16,20,21]. In this work, we consider Birnbaum–Saunders distributions
and compare the fitting of different fatigue datasets with the log-normal distribution.

Birnbaum–Saunders distributions were introduced as a two-parameter family of life
distributions [22]. Several studies have used these distributions to fit fatigue datasets
using the maximum likelihood [23,24] and Bayesian methods [25–27]. In addition, many
variations have been proposed, such as the log-linear model for the Birnbaum–Saunders
distribution [28] and the bivariate log-Birnbaum–Saunders distribution [29]. An extensive
review of the Birnbaum–Saunders distribution and its generalizations is provided in [30,31].

Our goal is to study the use of Birnbaum–Saunders distributions and analyze their
fitting results compared with the dominant choice of normal distributions. To this end,
we use two datasets of fatigue experiments applied to specimens of 75S-T6 aluminum
alloys [32,33] and a dataset of bending tests of carbon laminate [34]. Moreover, we study the
effect of equivalent stress model when fatigue data includes different types of experiments.

For the S-N models, there are many possible regression models that could be consid-
ered. We focus only on the fatigue-limit type of model with constant and non-constant
variance (or shape parameter). The fatigue-life variable is modeled by the log-normal dis-
tribution or Birnbaum–Saunders distribution. Equivalently, the logarithm of N is modeled
by normal and sinh-normal distributions, respectively. However, we show that modeling
log(N) as a Birnbaum–Saunders distribution provides better fitting results. This proposed
model is unprecedented in the literature to the best of our knowledge.

The first dataset is the same data considered in [16], where fatigue-limit models and
random fatigue-limit models were calibrated using normal and Weibull distributions. Here,
we re-calibrate fatigue-limit models using the Birnbaum–Saunders distribution. In addition,
we propose a new equivalent stress model that accommodates the different experiment
types in our Dataset 1. For Dataset 2, fatigue data corresponds to rotating–bending ex-
periments applied to round bar specimens with different sizes [33]. Again, we calibrate
fatigue-limit models and compare the fit of the normal and Birnbaum–Saunders distribu-
tions. For Dataset 3, we use the laminate panel data [18,34] and calibrate and compare our
proposed models.

The results show that modeling log(N) by means of the Birnbaum–Saunders distri-
bution improves the fitting systematically in the three datasets with different variations
in fatigue-limit models. It is also expected that such a choice would improve fitting with
different S-N models. However, it is not our goal to find the best model for each dataset.
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For Dataset 1, our proposed equivalent stress also improves data fitting using different
models and distributions.

This paper is organized as follows. Section 2 considers the fatigue data of unnotched
sheet specimens of 75S-T6 aluminum alloys. Six different variations of fatigue-limit models
are introduced in Section 2 to show and compare stress-life models fitted to the data
using the normal and Birnbaum–Saunders distributions. In Section 3, a new equivalent
stress definition is proposed to eliminate the effect of the type of experiment. Section 4
presents fatigue data that correspond to unnotched round bar specimens with different
sizes. Calibration and model comparison then follows in the same section. Then, laminate
panel data are fitted and analyzed in Section 5 using the predefined fatigue-limit models.
Conclusions are presented in Section 6.

2. Model Calibration and Comparison for Dataset 1
2.1. Description of Dataset 1

Dataset 1 consists of 85 axial-load fatigue experiments that apply constant-amplitude
cyclic loading to unnotched sheet specimens of 75S-T6 aluminum alloys ([32], Table 3,
pp. 22–24). These experiments were conducted at the Battelle Memorial Institute, sponsored
by the National Advisory Committee for Aeronautics (NACA), to explore axial-load fatigue
behavior under operational stress conditions. The data recorded for each specimen include
the following:

• Maximum stress, Smax, measured in ksi units;
• Cycle ratio, R, defined as the minimum to maximum stress ratio. The ratio R is positive

when the experiment corresponds to tension–tension loading and negative when the
experiment corresponds to tension–compression loading;

• Fatigue-life, N, defined as the number of load cycles at which fatigue failure oc-
curred; and

• A binary variable (0/1) to denote whether the test stopped before failure (run-out).

The specimen sheets have dog-bone shape with thickness of 0.09 inches, as illustrated
in Figure 1. Importantly, a “critical section” is defined as the area including 1/2 inch
on either side of the specimen’s minimum cross-section. Only failures occurring within
this critical section were considered significant and included in the dataset. In 12 of the
85 experiments, the specimens remained unbroken when the tests were stopped. The
recorded number of load cycles for these 12 experiments is the lower bound of an interval
in which failure would have occurred had the test been continued. Specimens that buckled
or failed outside the designated critical section are excluded from the dataset.

-10 -8 -6 -4 -2 0 2 4 6 8 10

-2

-1

0

1

2

Figure 1. Shape and dimensions of sheet specimens in Dataset 1.

2.2. Fatigue-Limit Models

The fatigue-life should be modeled for a stress quantity defined for any cycle ratio.
Therefore, we use Walker’s model to define the equivalent stress:

Seq = Smax(1 − R)q (1)

where q is a fitting parameter. In the upcoming sections, we consider fatigue-limit models
where the location parameter is given by A1 + A2log10(Seq − A3) and the fatigue-limit
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parameter A3 is a threshold parameter where fatigue-life becomes infinite when the equiv-
alent stress is lower than A3. Multiple fatigue-limit models could be created based on the
choice of the distribution of the fatigue-life, N. We consider three choices as follows.

2.2.1. Model Ia

In Model Ia, we assume that fatigue-life is modeled using a log-normal distribution,
or equivalently, that log10(N) is modeled with a normal distribution with a mean of

µ(Seq) = A1 + A2 log10(Seq − A3) , if Seq > A3 (2)

and a constant standard deviation of σ(Seq) = τ. Moreover, fatigue experiments are
assumed to be independent, and run-outs are modeled using the survival probability. Thus,
the likelihood function for Model Ia is given by

L(A1, A2, A3, τ, q; n) =
m

∏
i=1

[
1

ni log(10)
g(log10(ni) ; µ(Seq) , τ)

]δi
[

1 − Φ
(

log10(ni)− µ(Seq)

τ

)]1−δi

(3)

where g(t; µ, σ) = 1√
2π σ

exp
{
− (t−µ)2

2σ2

}
, Φ is the cumulative distribution function of the

standard normal distribution, and

δi =

{
1 if ni is a failure
0 if ni is a run-out

Remark 1. Model Ia and the likelihood function (3) have been used in [16].

2.2.2. Model IIa

For Model IIa, we assume that fatigue-life is modeled using the Birnbaum–Saunders
distribution, or equivalently, that log(N) is modeled with a sinh-normal distribution [31]
with a constant shape parameter α, a scale parameter of 2, and a location parameter µ(Seq)
given by Equation (2). Under this assumption, the likelihood function for Model IIa is
given by

L(A1, A2, A3, α, q; n) =
m

∏
i=1

[
1
ni

h(log(ni) ; α, µ(Seq))

]δi
[

1 − Φ
(

2
α

sinh
(

log(ni)− µ(Seq)

2

))]1−δi

where h(y; α, µ) = 1
α
√

2π
cosh

(
y−µ

2

)
exp

(
− 2

α2 sinh2
(

y−µ
2

))
, y > 0, and α, µ > 0 .

2.2.3. Model IIIa

For Model IIIa, we assume that log10(N) is modeled using a Birnbaum–Saunders
distribution with a constant shape parameter α and a location parameter µ(Seq), given by
Equation (2). The resulting distribution for N is not the so-called log-Birnbaum–Saunders
distribution reported in [31]. However, the distribution of N is obtained similarly to
deriving the log-normal distribution.

L(A1, A2, A3, α, q; n) =
m

∏
i=1

[
1

ni log(10)
k(log10(ni) ; α, µ(Seq))

]δi
[

1 − Φ

(
1
α

(√
log10(ni)

µ(Seq)
−

√
µ(Seq)

log10(ni)

))]1−δi

where k(y; α, µ) = 1√
2π

(y+µ)
2α

√
µy3/2 exp

{
− 1

2α2

(
y
µ + µ

y − 2
)}

, y > 0, and α, µ > 0 .

The three models are now fitted to Dataset 1 by maximizing the mentioned likelihood
functions. Numerically, only the log-likelihood can be evaluated, and we maximize the log-
likelihood instead. The ML estimates (MLEs) and the maximum log-likelihood value are
reported in Table 1. The estimated parameters for Model IIa have a different scale compared
with those in Models Ia and IIIa. The change in scale is only because Model IIa models
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log(N) instead of log10(N). However, all applied likelihood functions are normalized;
therefore, the performance of the fit is not affected by the logarithm base selection.

Table 1. Maximum likelihood estimates for Models Ia, IIa, and IIIa.

A1 A2 A3 q τ/α Max Log-Likelihood

Model Ia 7.38 −2.01 35.04 0.5628 0.5274 −950.16

Model IIa 18.81 −5.68 33.11 0.5390 1.54 −960.68

Model IIIa 7.22 −1.90 35.32 0.5574 0.0933 −938.90

The results in Table 1 indicate that Models Ia and IIIa provide the best fit for Dataset 1.
We visualize the fit using the 0.05 and 0.95 quantile functions and the median function.
The data can also be plotted given the MLE of q. We distinguish data based on the
experiment type or stress ratio. Figures 2 and 3 illustrate the quantile functions of Models Ia
and IIIa obtained using the MLE parameters. The quantile functions of Model IIIa produce
a better fit than those of Model Ia, which coincides with the fact that Model IIIa has the
highest log-likelihood value among the three models in Table 1. We also observe that data
seem segregated by the median according to the experiment type: tension–tension (R > 0)
and tension–compression (R < 0). We analyze this behavior further in Section 3.
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Figure 2. Model Ia: log10(N) ∼ N(µ(Seq), σ) and Seq = Smax(1 − R)q.
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Figure 3. Model IIIa: log10(N) ∼ BS(α, µ(Seq)) and Seq = Smax(1 − R)q.

We allow the standard deviation or shape parameter to be non-constant to improve the
fit of the three previous models. In particular, we assume this parameter is a function of the
equivalent stress. With the same probability distributions previously considered, we introduce
three new fatigue-limit models with non-constant standard deviation/shape parameters.
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2.2.4. Model Ib

Analogous to Model Ia, for Model Ib, we assume that log10(N) has a normal distri-
bution with the mean function µ(Seq) defined in Equation (2). However, the standard
deviation is assumed to be non-constant and given by σ(Seq) = 10(B1+B2 log10(Seq)). The re-
sulting likelihood function is equivalent to that derived for Model Ia.

2.2.5. Model IIb

For Model IIb, the fatigue-life N is modeled by the Birnbaum–Saunders distribution
with location parameter µ(Seq) (defined in Equation (2)) and non-constant shape parameter
α(Seq) = 10(B1+B2 log10(Seq)).

2.2.6. Model IIIb

For Model IIIb, log10(N) is modeled using the Birnbaum–Saunders distribution with
the location parameter µ(Seq) and non-constant shape parameter α(Seq) = 10(B1+B2 log10(Seq)).

The new Models Ib, IIb, and IIIb are calibrated to fit Dataset 1, and the MLEs of
the parameters of these models are presented in Table 2. Comparing the maximum log-
likelihood values in Tables 1 and 2 reveals that the fit improved considerably for all
models. In contrast, the difference between the new models decreased, with Model IIIb still
providing the best fit.

Table 2. Maximum likelihood estimates for Models Ib, IIb, and IIIb.

A1 A2 A3 q B1 B2 Max Log-Likelihood

Model Ib 6.72 −1.57 36.21 0.5510 4.55 −2.89 −920.51

Model IIb 16.56 −4.26 35.51 0.5239 5.54 −3.21 −926.97

Model IIIb 6.70 −1.56 36.24 0.5501 2.90 −2.34 −917.38

We compare the fit of Models Ib and IIIb using the quantile functions in Figures 4 and 5.
Both models produced significantly improved fit compared with Figures 2 and 3. The
fatigue-limit parameter slightly increased, and the 0.05 quantile converges rapidly to its
asymptote as the equivalent stress approaches the fatigue-limit. In both cases, the data
remain mostly partitioned by the median into the two experiment types.
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Figure 4. Model Ib: log10(N) ∼ N(µ(Seq), σ(Seq)) and Seq = Smax(1 − R)q.
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Figure 5. Model IIIb: log10(N) ∼ BS(α(Seq), µ(Seq)) and Seq = Smax(1 − R)q.

2.3. Model Comparison

Using a classical approach, we compute some popular information criteria, such as
the Akaike information criterion (AIC) [35], Bayesian information criterion (BIC) [36,37],
and AIC with correction [38], which are based on the maximized log-likelihood values.
Such measures consider the goodness of fit and complexity of the models regarding the
number of parameters. Table 3 contains the maximum log-likelihood values corresponding
to the models introduced in Section 2.2 and the classical information criterion computations.

Table 3. Classical information criteria.

Models Ia Ib IIa IIb IIIa IIIb

Maximum log−likelihood −950.16 −920.51 −960.68 −926.97 −938.90 −917.38

Akaike information criterion (AIC) 1910.3 1853.0 1931.4 1865.9 1887.8 1846.8

Bayesian information criterion (BIC) 1922.5 1867.7 1943.6 1880.6 1900.0 1861.4

Akaike information criterion with correction 1911.1 1854.1 1932.1 1867.0 1888.5 1847.8

3. Analysis of the Stress Ratio Effect and Equivalent Stress for Dataset 1

In all previous models, the equivalent stress is based on Walker’s model [39], which is
Smax(1 − R)q. The following analysis in Table 4 reveals that the parameter q is related to
the sign of the cycle ratio R.

Table 4. Maximum likelihood estimates for Models I and II with Seq = Smax(1 − R)q.

Model Data A1 A2 A3 q τ/α/B1 B2 Max Log-Likelihood

Ia R < 0 7.94 −2.10 61.43 1.37 0.3203 — −403.56

IIIa R < 0 7.89 −2.10 57.643 1.2753 0.0575 — −399.64

Ib R < 0 7.44 −1.86 52.56 1.12 5.23 −3.09 −392.86

IIIb R < 0 7.41 −1.85 52.06 1.0986 3.40 −2.50 −392.23

Ia R > 0 6.93 −1.84 34.86 0.6304 0.5561 — −531.21

IIIa R > 0 6.75 −1.71 35.18 0.6269 0.0974 — −523.95

Ib R > 0 6.84 −1.75 36.55 0.5410 8.11 −5.07 −500.46

IIIb R > 0 6.75 −1.69 36.62 0.5388 6.27 −4.41 −499.15

In Table 4, the fatigue-limit parameter, A3, has a different scale based on the stress ratio.
We divided 1− R by 2 in the equivalent stress formula to solve this. However, the estimated
values of q do not change. Therefore, we defined the equivalent stress as Smax(

1−R
2 )1+q
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or Sa(
1−R

2 )q, where Sa denotes the stress amplitude. Then, we recalibrated the proposed
models in Table 5. The fatigue-limit parameter has the same scale for R > 0 and R < 0.
In contrast, the estimated value of q changes signs with R. Thus, it seems reasonable to
propose the following equivalent stress:

Seq = Smax

(
1 − R

2

)1−sign(R)q
(4)

Table 5. Maximum likelihood estimates for Models I and II with Seq = Smax(
1−R

2 )1+q.

Model Data A1 A2 A3 q τ/α/B1 B2 Max Log-Likelihood

Ia R < 0 7.08 −2.11 23.80 0.3679 0.3203 — −403.56

IIIa R < 0 7.09 −2.10 23.81 0.2754 0.0575 — −399.64

Ib R < 0 6.82 −1.86 24.26 0.1156 4.19 −3.09 −392.86

IIIb R < 0 6.80 −1.85 24.31 0.0986 2.57 −2.50 −392.23

Ia R > 0 6.59 −1.84 22.52 −0.3696 0.5561 — −531.21

IIIa R > 0 6.43 −1.71 22.78 −0.3732 0.0974 — −523.95

Ib R > 0 6.56 −1.75 25.12 −0.4590 7.29 −5.07 −500.46

IIIb R > 0 6.54 −1.74 25.19 −0.4607 5.68 −4.49 −499.13

Next, we calibrate the parameters using the full data (R > 0 and R < 0). Table 6 presents
the MLEs of Models Ia, IIIa, Ib, and IIIb, along with the maximum log-likelihood and AIC
values. The fit is considerably improved in all cases using the equivalent stress Equation (4).

Table 6. Maximum likelihood estimates for Models I and II with Seq = Smax(
1−R

2 )1−sign(R)q.

Model A1 A2 A3 q τ/α/B1 B2 Max Log-Likelihood AIC

Ia 6.99 −2.09 23.72 0.4310 0.4797 — −942.55 1895.1

IIIa 6.81 −1.95 23.98 0.4336 0.0845 — −930.85 1871.7

Ib 6.58 −1.76 24.56 0.4433 5.97 −4.23 −899.36 1810.7

IIIb 6.54 −1.74 24.62 0.4436 4.38 −3.65 −897.67 1807.3

Figures 6 and 7 illustrate the new quantile functions of Models Ia and IIIa with
improved equivalent stress Equation (4). The variance is reduced compared to quantiles in
Figures 2 and 3. In addition, the two data types are well distributed around the median.
Furthermore, the fit can be slightly improved by adapting Huang’s model [40] for R > 0.5.
For Models Ib and IIIb, the estimated quantile functions with the new quivalent stress are
presented in Figures 8 and 9.
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Figure 7. Model IIIa: log10(N) ∼ BS(α, µ(Seq)) and Seq = Smax(
1−R

2 )1−sign(R)q.
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Figure 8. Model Ib: log10(N) ∼ N(µ(Seq), σ(Seq)) and Seq = Smax(
1−R

2 )1−sign(R)q.
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Figure 9. Model IIIb: log10(N) ∼ BS(α(Seq), µ(Seq)) and Seq = Smax(
1−R

2 )1−sign(R)q.

3.1. Profile Likelihood

We compare the profile likelihood of the fatigue-limit obtained using the previous
models. Figure 10 depicts the profile likelihood of the fatigue-limit, A3, using Models Ia
and IIIa. For constant variance and shape parameters, the estimated profile likelihood
using the Birnbaum–Saunders distribution (Model IIIa) has a noticeably higher mode and
a lower variance than Model Ia, which uses the normal distribution. When adopting non-
constant variance and shape parameters, the difference between the two profile likelihoods
is negligible, as displayed in Figure 11.
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Figure 10. Profile likelihoods of the fatigue-limit parameters using Models Ia and IIIa.
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Figure 11. Profile likelihoods of the fatigue-limit parameters using Models Ib and IIIb.

3.2. Survival Functions

We closely examined the survival functions obtained by calibrated Models Ia, Ib, IIIa,
and IIIb at different values of Smax and R in Figure 12. The Birnbaum–Saunders model
(Model IIIa) outperformed the counterpart Gaussian model (Model Ia) because it offers a
higher survival probability before the observed failure and a lower survival probability
after the observed failure. For Models IIIa and IIIb, the resulting survival probabilities are
almost identical for both distributions.
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Figure 12. Survival functions of Dataset 1 specimens using calibrated Models Ia, Ib, IIIa, and IIIb for
different values of Smax and R.

4. Model Calibration and Comparison for Dataset 2
4.1. Description of Dataset 2

This section introduces new datasets for unnotched specimens of 75S-T6 aluminum
alloys. This dataset encompasses the results of the rotating–bending fatigue experiments
conducted on 101 round bar specimens, showcasing five different minimum-section di-
ameters; namely, the diameters are 1/8 inch, 1/4 inch, 1/2 inch, 1 inch, and 1 3

4 inches, as
reported in Tables 6 to 10 in the technical note [33]. The stress ratio for these experiments is
set at −1, indicating fully reversed loading conditions. Among the total specimens, 13 exper-
iments were classified as run-outs, where the specimens did not fail within the test duration.
The distribution of unnotched specimens across the five different minimum-section di-
ameters and the corresponding number of run-outs for each category are summarized in
Table 7.

Table 7. Number of unnotched specimens and run-outs for each round bar diameter.

Minimum-Section Diameter
(Inches)

Number of Unnotched
Specimens Number of Run-Outs

1/8 32 3
1/4 28 5
1/2 14 2

1 17 3
1 3

4 10 0

Similar to Dataset 1, these fatigue tests were performed at the Battelle Memorial
Institute, under the sponsorship of the National Advisory Committee for Aeronautics.
The 75S-T6 aluminum alloy was selected due to its importance in aircraft design. The sam-
ples were cut from 3 inch diameter round bars sourced from the Aluminum Company of
America. To maintain consistency among specimens of various sizes for fatigue testing,
a specific surface finish was carefully chosen. This involved mechanical polishing and an
electrolytic polish to reduce surface-related differences in fatigue behavior.

Again, we consider fatigue-limit Models Ia, Ib, IIIa, and IIIb with the new equivalent
stress Equation (4) to fit the data introduced in Section 4.1. As mentioned, the stress ratio
for rotating–bending experiments is −1; therefore, the equivalent stress equals Smax.

Table 8 provides the MLEs for Models Ia, Ib, IIIa, and IIIb when separately fitting
Specimens 1 and 2. The joint fit for all specimens is also provided. The goodness of fit and
estimated fatigue-limit decreased when the data were combined. Figures 13 and 14 reveal
the quantiles of calibrated Models Ia and Ib, respectively.
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Table 8. Maximum likelihood estimates for Models I and III with Seq = Smax.

Model Specimen Diameter A1 A2 A3 τ/α/B1 B2 Max Log-Likelihood

Ia 1 1/8 7.20 −1.73 21.17 0.4420 — −428.28

Ib 1 1/8 7.36 −1.87 21.11 2.38 −1.87 −425.73

IIIa 1 1/8 7.17 −1.72 21.23 0.0721 — −426.06

IIIb 1 1/8 7.28 −1.82 21.21 0.88 −1.38 −424.62

Ia 2 1/4 8.21 −2.69 21.86 0.4002 — −343.94

Ib 2 1/4 7.21 −1.86 22.88 8.70 −6.33 −327.49

IIIa 2 1/4 7.96 −2.48 22.16 0.0604 — −340.75

IIIb 2 1/4 7.20 −1.85 22.91 6.86 −5.62 −326.85

Ia All — 9.03 −3.04 18.68 0.5626 — −1357.8

Ib All — 8.23 −2.50 20.49 3.39 −2.53 −1338.1

IIIa All — 8.73 −2.84 19.24 0.0880 — −1349.6

IIIb All — 8.15 −2.45 20.61 1.86 −2.02 −1336.1
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Figure 13. Model Ia: log10(N) ∼ N(µ(Seq), σ) and Seq = Smax.
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Figure 14. Model Ib: log10(N) ∼ N(α(Seq), µ(Seq)) and Seq = Smax.

4.2. Profile Likelihood and Confidence Intervals

We again compare the profile likelihood of the fatigue-limit obtained from the four
previous models using Dataset 2. Figure 15 displays the profile likelihood of the fatigue-
limit, A3, using Models Ia and IIIa. As concluded, the profile likelihood when using
the Birnbaum–Saunders distribution (Model IIIa) has a higher mode and much lower
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variance than Model Ia. With non-constant variance and shape parameters, the two profile
likelihoods are almost identical Figure 16.
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Figure 15. Profile likelihoods of the fatigue-limit parameters using Models Ia and IIIa.
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Figure 16. Profile likelihoods of the fatigue-limit parameters using Models Ib and IIIb.

We confirmed the mentioned conclusions by estimating the confidence intervals of
the pooled MLEs, given that Dataset 2 is complete. The confidence intervals presented in
Table 9 are obtained by stratified bootstrapping, where the sampled dataset maintains the
same proportions in the original data related to the five specimens. The results indicate
that the Birnbaum–Saunders distribution provides tighter confidence intervals than the
normal distribution, especially when using a constant variance. This property is essential
to generate accurate survival and failure predictions.

Table 9. Confidence intervals of 90% for the pooled maximum likelihood estimates for Models I
and III.

Model A1 A2 A3 τ/α/B1 B2

Ia (7.9, 11.1) (−4.3, −2.2) (14.3, 21) (0.49, 0.62) —

Ib (7.6, 9.2) (−3.1, −2.1) (18.5, 21.6) (2.8, 4.6) (−3.4, −2.1)

IIa (7.8,10.3) (−3.8, −2.2) (15.7, 21.1) (0.077, 0.096) —

IIb (7.6, 9.1) (−3.1, −2.0) (18.6, 21.7) (1.3, 3) (−2.9, −1.6)
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4.3. Survival Functions

Figure 17 depicts the survival probabilities of specimens from Dataset 2 under different
settings using calibrated models by the pooled or specific specimen data.
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Figure 17. Survival functions of Dataset 2 specimens using calibrated Models Ia, Ib, IIIa, and IIIb for
values of Smax and R.

Comparing the results for Datasets 1 and 2, we notice higher variability in the latter,
especially when using pooled Dataset 2 with multiple specimens of different geometries and
sizes. The fit results could be improved using Poisson models that consider the geometry
and size of the specimen [41]. However, implementing and analyzing such models is
beyond the scope of the current work.

5. Model Calibration and Comparison for Dataset 3
Description of Dataset 3

To generalize the previous results, we consider a well-known dataset: the laminate
panel S-N dataset [18,34]. This dataset contains fatigue data for 125 carbon eight-harness-
satin/epoxy laminate specimens subjected to four-point out-of-plane bending tests, where
10 out of 125 experiments are run-outs. In this case, the equivalent stress needed in the
fatigue-limit models is given directly in the data, and we do not have the stress ratio. Recent
studies such as [42,43] have used this dataset to validate and test new models to predict
fatigue life.

As a first illustration, we use probability plots, as suggested in [43]. Figures 18 and 19
present the probability plot of the normal distribution and Birnbaum–Saunders distribution
as models for the fatigue-life, N. Modeling N using the normal or Birnbaum–Saunders
distribution is not a good choice. Instead, modeling log(N) using these distributions
provides better probability plots, as illustrated in Figures 20 and 21.

We calibrate six fatigue-limit models, Ia, Ib, IIa, IIb, IIIa, and IIIb, slightly modified
using natural instead of base 10 logarithms. This approach is conducted to make the MLE
parameters comparable to the results in the literature and does not affect the goodness of fit.
We also fit the data using the Weibull distribution but do not include these results, as this
distribution consistently provides the worst fit.
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Figure 18. Probability plot of the normal distribution as a model for the number of cycles N.
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Figure 19. Probability plot of the Birnbaum–Saunders distribution as a model for the number of
cycles N.
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Figure 20. Probability plot of the normal distribution as a model for log(N).

Table 10 provides the MLEs for Models Ia, Ib, IIa, IIb, IIIa, and IIIb. Table 11 compares
all six models employing classical information criteria. Figures 22 and 23 present the
quantiles of calibrated Models Ia and IIIa, respectively. Figures 24 and 25 display the
quantiles of calibrated Models Ib and IIIb, respectively.
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Figure 21. Probability plot of the Birnbaum–Saunders distribution as a model for log(N).

Table 10. Maximum likelihood estimates for Models I, II, and III.

Model A1 A2 A3 τ/α/B1 B2 Max Log-Likelihood

Ia 31.56 −5.32 209.69 0.4902 — −889.77

Ib 30.26 −5.10 214.22 8.71 −1.64 −885.28

IIa 32.15 −5.43 207.55 0.5031 — −889.90

IIb 30.77 −5.18 212.45 9.01 −1.69 −885.17

IIIa 29.63 −4.99 216.48 0.0718 — −885.64

IIIb 30.14 −5.08 214.59 −6.84 0.73 −884.67

Table 11. Classical information criteria.

Models Ia Ib IIa IIb IIIa IIIb

Maximum log−likelihood −889.77 −885.28 −889.90 −885.17 −885.64 −884.67

Akaike information criterion (AIC) 1787.5 1780.6 1787.8 1780.3 1779.3 1779.3

Bayesian information criterion (BIC) 1798.9 1794.7 1799.1 1794.5 1790.6 1793.5

Akaike information criterion with correction 1787.9 1781.1 1788.1 1780.8 1779.6 1779.8
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Figure 22. Model Ia: log(N) ∼ N(µ(S), σ).
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Figure 23. Model IIIa: log(N) ∼ BS(α, µ(S)).
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Figure 24. Model Ib: log(N) ∼ N(µ(S), σ(S)).
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Figure 25. Model IIIb: log(N) ∼ BS(α(S), µ(S)).

6. Conclusions

Multiple variants of the fatigue-limit models were calibrated and ranked employing
ML and classical information criteria. The proposed approach of modeling the logarithm
of the fatigue-life using the Birnbaum–Saunders distribution proved to be superior or
equivalent to the best model in all cases.

For Dataset 1, fatigue experiments included two types of loadings. We introduced a new
equivalent stress to generalize the models for such scenarios. Therefore, the fit for Dataset 1
considerably improved for all models. The suggested equivalent stress does not require
adding new parameters and could be used for fatigue data with only one loading type.

In Dataset 2, five types of round bar specimens were subjected to rotating–bending
fatigue experiments. The calibration was performed using Specimens 1 and 2 individually.
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Then, pooled calibration was performed using the full dataset. The variability of the latter
calibration increased, which was further analyzed by obtaining confidence intervals of the
MLEs via bootstrapping.

Laminate panel data were adopted in Section 5. Models I, II, and III were calibrated
and ranked using constant and non-constant variance/shape parameters. The fit results
confirmed that Birnbaum–Saunders models are better than log-normal and Weibull models,
especially when the variance is constant. Model IIIa is preferable over IIIb when comparing
the classical information criteria.

For all calibrated models, we analyzed the data with the estimated S-N curves and survival
probabilities in the three datasets. The various models were compared using AIC, BIC, and AIC
with correction. Profile likelihoods were also computed for the fatigue-limit parameter.

The Birnbaum–Saunders distribution provided a better fit for data and higher confi-
dence in estimating the fatigue-limit parameter in Model IIIa. Models Ib and IIIb yielded
similar results regarding information criteria, survival probabilities, and profile likelihood.
A non-constant variance with the log-normal distribution could be an alternative to the
proposed Birnbaum–Saunders model in some frameworks.

Our study demonstrates that the Birnbaum–Saunders distribution, when employed
to model the logarithm of the fatigue-life, surpasses the predictive accuracy of traditional
models. This advantage is particularly pronounced in scenarios involving complex stress-
loading conditions,where the flexibility of the Birnbaum–Saunders distribution enables a
more detailed understanding of fatigue-life expectancy.

We reiterate that this study is academic and focused on the crack initiation stage
of fatigue-life in controlled and homogeneous specimen environments. The datasets
employed assume that the specimens possess uniform material properties and surface
finishes. Consequently, the findings and probability distributions derived from our analysis
may not directly reflect those observed in operational components with varying quality and
environmental exposure. In real-world scenarios, the presence of initial damages, such as
equivalent initial damage size (EIDS), should be carefully considered. This would require
more extensive data and detailed information about the operational components to ensure
meaningful results.

For future directions in this research, there is significant potential to expand the
application of Birnbaum–Saunders distributions beyond the scope of S-N models to crack
propagation and damage tolerance models. Traditionally, these areas have often utilized log-
normal or Weibull distributions [44]. Furthermore, considering the effects of environmental
factors such as corrosion, as discussed in [45,46], could enrich the predictive capabilities
of these models. These types of studies could offer a more comprehensive insight into
fatigue and fracture in working conditions where accurate predictions are essential for the
maintenance and safety of mechanical systems.
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