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Abstract: For the present, it is difficult to obtain thermodynamic data for binary liquid alloys by
experimental measurements. In this study, the molecular dynamics processes of the binary liquid
alloys Pb50-Sn50, Al50-Sn50, and In50-Zn50 were simulated by using the ab initio molecular dynamics
(AIMD) principle, and their partial radial distribution functions (PRDF) were obtained at different
simulation steps. Combined with the relevant binary parameters of the Molecular Interaction Volume
Model (MIVM), Regular Solution Model (RSM), Wilson Model, and Non-Random Two-Liquid (NRTL)
models. The integral terms containing the PRDF were computed using the graphical integration
method to obtain the parameters of these models, thus estimating their activity and molar excess
Gibbs energy. The total average relative deviations (ARD) of the activity and molar excess Gibbs
energy estimates of the four models for the binary liquid alloys Pb50-Sn50, Al50-Sn50, and In50-Zn50
at full concentration when the PRDF is obtained by the symmetry method are MIVM: 21.59% and
59.35%; RSM: 21.63% and 60.27%; Wilson: 24.27% and 86.7%; NRTL: 23.9% and 83.24%. When the
PRDF is obtained by the asymmetric method: MIVM: 22.86% and 68.08%; RSM: 32.84% and 68.66%;
Wilson: 25.14% and 82.75%; NRTL: 24.49% and 85.74%. This indicates that the estimation performance
of the MIVM model is superior to the other three models, and the symmetric method performs better
than the asymmetric method. The present study also derives and verifies the feasibility of Sommer’s
equation for estimating the molar excess Gibbs energy and activity of binary liquid alloy systems in
the Miedema model by using different equations of enthalpy of mixing versus excess entropy given
by Tanaka, Ding, and Sommer. The total ARD of Tanaka, Ding, and Sommer’s relational equations
in the Miedema model for estimating the activities and molar excess Gibbs energies of the binary
liquid alloys Pb-Sn, Al-Sn, and In-Zn are 3.07% and 8.92%, 6.09% and 17.1%, and 4.1% and 14.77%.
The results indicate that the estimation performance of the Miedema model is superior to the other
four models.

Keywords: binary liquid alloys; thermodynamic modeling; activity; partial radial distribution
function (PRDF); ab initio molecular dynamics simulation (AIMD)

1. Introduction

The thermodynamic parameters of solutions are fundamental data for the develop-
ment of new processes, process optimization, and theoretical research in many fields.
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The study of the thermodynamic properties of solutions is essential for metallurgical
preparation or the development of new materials. Among them, binary liquid alloys are
characterized by simple structure and easy processing, which are widely used in aerospace,
automotive, marine, and other fields [1]. Due to the complexity and accuracy limitations
of actual high temperature experiments, in many cases, the experimental measurement
process is difficult and the thermodynamic data results obtained are not accurate [2,3].
Therefore, it is worthwhile to seek an accurate, convenient, and reasonable method to simu-
late the experimental part of thermodynamic research. Since most of the actual solutions in
thermodynamic experiments are non-ideal solutions, a modified concentration (activity)
instead of the actual concentration must be considered to accurately analyze the thermo-
dynamic behavior of the solution when simulating and calculating the thermodynamic
parameters [4,5]. Therefore, the activity becomes one of the important research topics in
the field of thermodynamic properties, and the molar excess Gibbs energy of the alloy can
also be used as a more intuitive comparison and reference for the value of the alloy activity
as well as the change of the alloy activity.

Until now, scientists have proposed many methods for calculating activity coefficients,
such as the regular solution model (RSM) proposed by Hilderande [6,7] in 1929 and
Wilson [8] in 1964, who postulated that interactions between molecules depended mainly
on the “local concentration” which could be expressed as a volume fraction, and proposed
the Wilson equation. The Non-Random Two-Liquid (NRTL) Model equation proposed by
Renon and Prausnitz in 1968 is based on the semiempirical equation for the concept of
localized concentration [9]. Miedema et al. developed a semiempirical theoretical model
in 1973. Miedema et al. extended the metacellular model used by Wigner–Seitz in the
theoretical description of pure metals to binary alloys and developed an empirical model
after the gradual improvement ofthe Miedema model [10,11]. Tao [12] in 2000, based on
statistical thermodynamics and fluid phase equilibrium theory, derived a new expression
for the regular coordination partition function of liquids and their mixtures. Tao put
forward the concept of local coordination number of molecules in liquid mixtures and its
expression, thus establishing a new model for the thermodynamics of liquid mixtures that
is the Molecular Interaction Volume Model, abbreviated as MIVM, and the above models
have been widely used.

Ab initio molecular dynamics (AIMD), also known as first-principles molecular dy-
namics, has the basic idea of taking the electronic structure of molecules and interatomic
interactions as the basis of calculations and calculating the structure and properties of ma-
terials through molecular dynamics simulations [13,14]. AIMD calculation methods have
a wide range of applications, which can be used to study the structure, thermodynamic
properties, kinetic properties, and electronic structure of a variety of materials [15].

Based on the predictive activity models of various binary alloy systems and the
principle of AIMD, this paper uses Materials Studio software (Materials Studio 7.0-2020)
to construct a binary alloy metal molecular model [16]. Next, Vienna ab initio simulation
package (VASP) software (VASP-5.4.1.) is used to simulate molecular dynamics processes
to obtain the thermodynamic data required for the binary liquid alloy system, and the
partial radial distribution function (g(r)) is obtained by Visual Merchandising (VMD)
software (VMD-1.9.4a53) [17–20]. Then, the parameters required for the MIVM, RSM,
Wilson, and NRTL models are obtained by calculating the potential energy function. Two
methods (the PRDF is obtained by the asymmetry method and the PRDF is obtained by the
symmetry method) were used to estimate the activity and molar excess Gibbs energy of
liquid mixtures of three binary positive deviation systems, Pb50 Sn50, Al50 Sn50, and In50
Zn50. Selection of binary liquid alloys with 50 percent monometallic concentration have a
low melting point, good fluidity, easy processing, and low cost. Another task is to estimate
the molar excess Gibbs energy and activity of the three systems in the Miedema model
using three different relation equations between mixing enthalpy and excess entropy given
by Tanaka [21], Ding [22], and Sommer [23,24], and to compare the estimation effects of
each model and the two methods.
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2. Methods and Steps of Simulation Calculation
2.1. Obtaining the Partial Radial Distribution Function by AIMD

In this work, the simulation uses the AIMD principle. Firstly, the molecular configura-
tion of the alloy cells was established in the Materials Studio simulation software using
the Packing method [16]. A total of 118 atoms consisting of 59 Pb atoms and 59 Sn atoms;
126 atoms consisting of 63 Al atoms and 63 Sn atoms; and 122 atoms consisting of 61 In
atoms and 61 Zn atoms were simulated by placing them into square cubic boxes with
side lengths of 15.5 Å, 15 Å, and 14 Å, respectively. The densities of the three systems
of Pb0.5-Sn0.5, Al0.5-Sn0.5, and In0.5-Zn0.5 were 8.632 g/cm3 [25], 4.53 g/cm3 [26], and
6.665 g/cm3, respectively [27]. Next, AIMD simulations based on density functional theory
(DFT) were performed using the VASP software [17]. The exchange-correlation function
employed the Perdew–Burke–Ernzerhof (PBE) function, which is based on the generalized
gradient approximation (GGA) [18]. Ultrasoft pseudopotentials [19] were used. The cutoff
energy is chosen to be 1.3 times higher than the maximum cutoff energy provided in the
pseudopotential files [17], and the calculation accuracy was chosen to be 10−4 eV/Å for
the electron step and 10−3 eV/Å for the ion step. In simulating the kinetics, the simulation
temperatures were set to 1050 K, 973 K, and 730 K, respectively, with the NVT system [20]
synthesized using a Nosé–Hoover thermostat for temperature control [28]. The time step
was 3 fs and the maximum number of steps for the ion motion was 5000 (15 ps). The
K-point is set to the Gamma point [17]. Subsequently, the trajectory file XDATCAR was
obtained as an output of the VASP kinetic simulation calculations, which includes the
atomic coordinate information output at certain step intervals (i.e., all the atomic coordinate
information of the 5000 steps of the performed calculations). Subsequent import into the
VMD software allows the direct generation of g(r) images and g(r) coordinate data required
for stepwise calculations [29].

2.2. Obtaining the First Peak of the Partial Radial Distribution Function

The partial radial distribution function is a function that describes the distribution state
of matter and is used to describe the distribution of particles in space. It is defined as the
product of the probability of a particle appearing on the unit sphere around a point in space
and the density of the particle distribution on the sphere. The partial radial distribution
function is an important manifestation of orderliness in the liquid alloy system. The typical
partial radial distribution function is shown in Figure 1 [30,31]. Function in the origin of
the coordinates near the existence of a clear peak, the first peak can be expressed and the
central atom has interaction around the atom distribution changes [32].
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In this paper, r0: represents the abscissa of the starting point of non-zero values; r1:
denotes the position of the first valley of the function gij(r); rm: is the position of the first
peak of the function gij(r); the following gij(r) = gji(r), gii(r), gjj(r) denotes the partial radial
distribution function. In this paper, the way of describing the partial radial distribution
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function is divided into two kinds: one is the partial radial distribution function in the
r0~rm region of the integral value of the symmetric treatment to obtain the method called
symmetric method; one is to directly select the integral value of the r0~r1 region of the
partial radial distribution function of the method called asymmetric method. The following
gives the three systems of all the g(r) images as well as all of the key points of the data in
the following Figures 2–4 and Tables 1–3:
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Figure 2. gIn-In(r), gIn-Zn(r), and gZn-Zn(r) of the Pb50Sn50-1050 K system based on 5000 step PRDF data.
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Figure 3. gAl-Al(r), gAl-Sn(r), and gSn-Sn(r) of the Al50Sn50-973 K system based on 5000 step PRDF data.
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Figure 4. gIn-In(r), gIn-Zn(r), and gZn-Zn(r) of the In50Zn50-730 K system based on 5000 step PRDF data.
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Table 1. The three key coordinate points of gPb-Pb(r), gPb-Sn(r), and gSn-Sn(r) in the Pb50Sn50-1050 K system.

Parameters
Step of Pb50-Sn50 (1050 K)

0–1000 1000–2000 2000–3000 3000–4000 4000–5000 0–2000 0–3000 0–4000 0–5000

r0 i-i 2.650 2.650 2.650 2.650 2.650 2.650 2.650 2.650 2.650
g(r0)i-i 0.004 0.004 0.004 0.004 0.005 0.004 0.004 0.004 0.004
rm i-i 3.450 3.350 3.350 3.350 3.350 3.350 3.350 3.350 3.350

g(rm)i-i 2.751 2.671 2.634 2.628 2.521 2.645 2.641 2.638 2.615
r1 i-i 4.750 4.850 4.850 4.550 4.850 4.750 4.850 4.850 4.850

g(r1)i-i 0.577 0.581 0.594 0.680 0.646 0.590 0.595 0.604 0.613
r0 i-j 2.550 2.650 2.550 2.650 2.550 2.550 2.550 2.550 2.550

g(r0)i-j 0.002 0.011 0.001 0.007 0.001 0.001 0.001 0.001 0.001
rm i-j 3.250 3.250 3.250 3.250 3.250 3.250 3.250 3.250 3.250

g(rm)i-j 2.748 2.601 2.614 2.547 2.508 2.675 2.654 2.627 2.603
r1 i-j 4.750 4.950 4.450 4.450 4.550 4.750 4.750 4.750 4.750

g(r1)i-j 0.699 0.671 0.704 0.669 0.677 0.688 0.700 0.696 0.700
r0 j-j 2.550 2.550 2.550 2.450 2.550 2.550 2.550 2.450 2.450

g(r0)j-j 0.003 0.002 0.013 0.001 0.001 0.002 0.006 0.001 0.001
rm j-j 3.150 3.050 3.150 3.150 3.050 3.150 3.150 3.150 3.150

g(rm)j-j 2.874 2.632 2.647 2.807 2.667 2.712 2.690 2.719 2.706
r1 j-j 4.150 4.150 4.150 4.650 4.350 4.350 4.150 4.550 4.550

g(r1)j-j 0.790 0.801 0.756 0.673 0.697 0.748 0.783 0.729 0.724

Table 2. The three key coordinate points of gAl-Al(r), gAl-Sn(r), and gSn-Sn(r) in the Al50Sn50-973 K system.

Parameters
Step of Al50-Sn50 (973 K)

0–1000 1000–2000 2000–3000 3000–4000 4000–5000 0–2000 0–3000 0–4000 0–5000

r0 i-i 1.850 2.150 2.250 2.250 2.250 1.850 1.850 1.850 1.850
g(r0)i-i 0.002 0.001 0.001 0.004 0.005 0.001 0.001 0.001 0.001
rm i-i 2.750 2.750 2.750 2.750 2.750 2.750 2.750 2.750 2.750

g(rm)i-i 4.165 3.629 3.686 3.843 3.850 3.897 3.827 3.831 3.834
r1 i-i 3.750 3.850 3.850 3.650 3.850 3.850 3.850 3.850 3.850

g(r1)i-i 0.612 0.708 0.722 0.676 0.717 0.669 0.687 0.691 0.697
r0 i-j 1.750 2.350 2.350 2.250 2.350 1.750 1.750 1.750 1.750

g(r0)i-j 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.001
rm i-j 2.950 2.950 2.950 2.950 2.950 2.950 2.950 2.950 2.950

g(rm)i-j 2.634 2.219 2.149 2.134 2.094 2.426 2.334 2.284 2.246
r1 i-j 3.750 4.150 4.050 4.050 3.850 3.750 3.750 3.750 3.750

g(r1)i-j 0.713 0.667 0.728 0.712 0.770 0.754 0.767 0.777 0.776
r0 j-j 2.450 2.550 2.550 2.550 2.550 2.450 2.450 2.450 2.450

g(r0)j-j 0.003 0.003 0.005 0.004 0.001 0.001 0.001 0.001 0.001
rm j-j 3.150 3.150 3.150 3.150 3.150 3.150 3.150 3.150 3.150

g(rm)j-j 2.324 2.383 2.319 2.286 2.381 2.354 2.342 2.328 2.339
r1 j-j 4.450 4.450 4.450 4.450 4.550 4.450 4.450 4.450 4.450

g(r1)j-j 0.824 0.838 0.829 0.783 0.866 0.831 0.830 0.818 0.833
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Table 3. The three key coordinate points of gIn-In(r), gIn-Zn(r), and gZn-Zn(r) in the In50Zn50-730 K system.

Parameters
Step of In50-Zn50 (730 K)

0–1000 1000–2000 2000–3000 3000–4000 4000–5000 0–2000 0–3000 0–4000 0–5000

r0 i-i 2.250 2.550 2.450 2.550 2.550 2.250 2.250 2.250 2.250
g(r0)i-i 0.003 0.010 0.001 0.011 0.005 0.002 0.001 0.001 0.001
rm i-i 3.250 3.150 3.150 3.150 3.150 3.250 3.150 3.150 3.150

g(rm)i-i 2.368 2.424 2.505 2.429 2.651 2.370 2.397 2.405 2.454
r1 i-i 4.150 4.250 3.950 4.450 4.250 4.150 4.150 4.150 4.150

g(r1)i-i 0.777 0.680 0.861 0.680 0.704 0.744 0.757 0.771 0.775
r0 i-j 2.150 2.350 2.350 2.350 2.350 2.150 2.150 2.150 2.150

g(r0)i-j 0.001 0.010 0.011 0.004 0.006 0.001 0.001 0.001 0.001
rm i-j 2.850 2.850 2.850 2.850 2.850 2.850 2.850 2.850 2.850

g(rm)i-j 3.045 2.760 2.640 2.654 2.536 2.903 2.815 2.775 2.727
r1 i-j 3.950 3.950 3.950 3.950 3.950 3.950 3.950 3.950 3.950

g(r1)i-j 0.695 0.725 0.648 0.630 0.603 0.710 0.689 0.675 0.660
r0 j-j 2.050 2.050 2.150 2.150 2.150 2.050 2.050 2.050 2.050

g(r0)j-j 0.001 0.001 0.012 0.009 0.011 0.001 0.001 0.001 0.001
rm j-j 2.650 2.550 2.550 2.650 2.550 2.650 2.650 2.650 2.550

g(rm)j-j 3.455 3.307 3.452 3.353 3.605 3.340 3.371 3.366 3.404
r1 j-j 3.550 3.650 3.650 3.850 3.550 3.550 3.550 3.650 3.650

g(r1)j-j 0.455 0.457 0.505 0.574 0.542 0.470 0.486 0.521 0.527

2.3. Average Pair Potential Energy Functions for Binary Liquid Alloys

The interaction potential function of molecular pairs is an important element in the
study of the structure of matter and plays a decisive role in the thermodynamic properties
of matter. The unknown parameters in the molar excess Gibbs energy thermodynamic
model contain potential energy information. The partial radial distribution function is the
result of the dynamic equilibrium of molecules under the action of the potential energy
function [33].

According to the equation for the intermolecular pair potential energy as a function of
radial distribution in a highly dilute pure gas [34]:

g(r) = exp[−ε(r)/kT] (1)

k is the Boltzmann constant 1.38 × 10−23 J/K and T is the temperature. Assume that
this equation can be approximated for i-j binary liquid alloys in order to calculate their
interatomic pair potential functions. According to the probability density distribution
function and the expectation principle, the expressions for the molecular pair potentials, εii,
εjj, and εij of the binary liquid alloy can be obtained as [35,36]:

εii
kT

=
∫ r1

r0

εii(r)gii(r)∫ r1
r0

4πgii(r)r2dr
dV = −

∫ r1
r0

ln gii(r)gii(r)r2dr∫ r1
r0

gii(r)r2dr
(2)

εij

kT
= −

∫ r1
r0

ln gij(r)gij(r)r2dr∫ r1
r0

gij(r)r2dr

ε jj

kT
= −

∫ r1
r0

ln gjj(r)gjj(r)r2dr∫ r1
r0

gjj(r)r2dr
, (3)

Thus, under the condition that g(r) is known, then the values of εii, εjj, and εij = εji can
be calculated from Equations (2) and (3).

3. Thermodynamic Model
3.1. Molecular Interaction Volume Model (MIVM)

The MIVM possesses characteristics such as inclusivity, diffusion stability, and ther-
modynamic consistency. The model satisfies the Gibbs–Duhem equation [37], so it can also
be used to describe the thermodynamic properties of partially mutually soluble systems.



Metals 2024, 14, 102 7 of 23

Tao used statistical thermodynamics in the derivation process to obtain configurational
partition functions that include both volume and energy terms. The model is suitable for
different temperature system transformations and has a wide range of applications with
relatively mature physical significance.

For the i-j binary alloy system MIVM the molar excess Gibbs energy is expressed
as [12]:

GE
m

RT
= xi ln

(
Vmi

xiVmi + xjVmjBji

)
+ xj ln

(
Vmj

xjVmj + xiVmiBij

)
−

xixj

2

[
ZiBji ln Bji

xi + xjBji
+

ZjBij ln Bij

xj + xiBij

]
(4)

The molar excess Gibbs energy (Gm
E) measures the overall energy change, and fluid

phase equilibrium studies also require knowledge of the component activities (a). The
expression for the activity coefficient of component i is [12]:

ln γi = ln

(
Vmi

xiVmi + xjVmjBji

)
+ xj(

VmjBji

xiVmi + xjVmjBji
−

VmiBij

xjVmj + xiVmiBij
)−

x2
j

2

[
ZiB2

ji ln Bji

(xi + xjBji)
2 +

ZjBij ln Bij

(xj + xiBij)
2

]
(5)

γi, γj are the activity coefficients of compositions i, j, ai = γixi aj = γjxj are the
respective activities. Where R is the ideal gas constant of 8.314 J/(K.mol). T is the absolute
temperature. Vmi, Vmj denote the molar volume of group elements i, j at the temperature
of the system to be solved, respectively. xi, xj denote the local mole fractions of the group
elements i, j, and Zi, Zj denote the first coordination numbers of pure substances i, j. Bij
and Bji are the parameters of molecular pair energy interactions, define Bij, Bji [12]:

Bij = exp
(
−

εij − ε jj

kT

)
Bji = exp

(
−

ε ji − εii

kT

)
(6)

3.2. Regular Solution Model (RSM)

The RSM was proposed by Hildebrand in 1929 [6,7]. This model assumes that the
mixture enthalpy of the solution is non-zero, while the mixture entropy is equal to that of
an ideal solution. In other words, this model considers the interactions between solvent
molecules but neglects the influence of volume.

For the i-j binary alloy system RSM the molar excess Gibbs energy is expressed as [6,7]:

GE
m

RT
=

w
kT

xixj (7)

The expression for the activity coefficient of component i is [6,7]:

ln γi =
w
kT

x2
j (8)

where w is the interaction parameter. The w
kT expression obtained from Guggenheim’s

lattice-like theory is used here [38]:

w
kT

= Z
[

εij

kT
− 1

2

(
εii
kT

+
ε jj

kT

)]
(9)

Z is the average coordination number. For i-j binary liquid mixtures, the empirical
formula for the local coordination number can be replaced by the expression containing
the partial radial distribution function given by Hill [34]:

Zii = xiρ04π
∫ ∞

0 r2gij(r)dr Zij = xjρ04π
∫ ∞

0 r2gij(r)dr
Zjj = xjρ04π

∫ ∞
0 r2gjj(r)dr Zji = xiρ04π

∫ ∞
0 r2gji(r)dr

(10)
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ρ0 denotes the corresponding mean density for the corresponding alloy composition.
Dorini gives the expression for the average coordination number Z based on the local
coordination number of the liquid alloy used here [39]:

Z = xi(Zii + Zij) + xj(Zji + Zjj) (11)

3.3. Wilson Model

The Wilson model was proposed by Wilson in 1964 [8]. Wilson used the ratio of the
Boltzmann distribution to define the “local concentration”, in which the local volume
fraction was defined. The disadvantage is that it cannot be used in systems where the
liquid phase is partially miscible. For the i-j binary alloy system Wilson Model the molar
excess Gibbs energy is expressed as [8]:

GE
m

RT
= −xi ln

(
xi + Ajixj

)
− xj ln

(
xj + Aijxi

)
(12)

The expression for the activity coefficient of component i is [8]:

ln γi = − ln
(
xi + Ajixj

)
+ xj

[
Aji

xi + Ajixj
−

Aij

xj + Aijxi

]
(13)

where, the parameters Aij and Aji are defined as [8]:

Aij =
Vi
Vj

exp
(
−

εij − εjj

kT

)
Aji =

Vj

Vi
exp

(
−

εij − εii

kT

)
(14)

3.4. Non-Random Two-Liquid Model (NRTL)

The NRTL model was proposed by Renon and Prausnitz in 1968 [9]. This model was
derived by combining a local composition equation, based on the non-random assumption,
with a potential energy expression for liquid mixtures from the two-liquid theory. It
overcomes the disadvantage that Wilson’s equation cannot be used for systems in which
the liquid phase is partially miscible. This model is often considered the most balanced
model in the organic field in terms of simplicity, accuracy, and rationality. Their molar
excess Gibbs energy expression [9]:

GE
m

RT
= xixj

(
τji exp

(
−ατji

)
xi + xj exp

(
−ατji

) + τij exp
(
−ατij

)
xj + xi exp

(
−ατij

)) (15)

The expression for the activity coefficient of component i is [9]:

ln γi = x2
j

(
τji
(
exp

(
−2αijτji

))2([
xi + xj exp(−αijτji)

])2 +
τij exp

(
−2αijτij

)([
xj + xi exp(−αijτij)

])2

)
(16)

where, the model parameters τij and τji are defined as [9]:

τij =
εij − ε jj

kT
τji =

ε ji − εii

kT
(17)

The meaning of α is related to the stochasticity of the mixtures, and the value ranges from
0.2 to 0.47, in this paper, we take 0.3; αij = αji, τij, τji can be expressed as the pair potential.

3.5. Miedema Model

The Miedema model is a semi-empirical theoretical model developed by Miedema
in 1973 [10,11]. This model assumes that the Wigner–Seitz cell theory can be extended
from pure metals to binary alloys, and they believe that the concept of cells in alloys is still
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valid. The Miedema model generation heat calculation is an important achievement in
alloying theory in recent years, with wide practical application. The heat of generation of
any binary alloy other than O, S, Se, and Te can be calculated by using the basic properties
of the components. The relationship between the partial molar excess free energy GE

i of
component i and its activity coefficient in a binary alloy system consisting of component i
and component j are expressed as:

GE
i = RT ln γi (18)

The partial molar excess free energy of component i Gi and the Gibbs excess free
energy of the i-j binary alloy system are related by:

GE
i = GE

ij + (1 + xi)
∂GE

ij

∂xi
(19)

In the binary system i-j, the molar excess Gibbs energy GE
ij and excess entropy SE

ij and
the enthalpy change of ∆Hij are related by:

GE
ij = ∆Hij − TSE

ij (20)

T is the absolute temperature, in binary system alloys, the heat of generation can be
obtained from the Miedema model, and the heat of generation in the formation of liquid
solution or solid solution is derived as [10,11]:

∆Hij = fij
xi
[
1 + uixj

(
ϕi − ϕj

)]
xj
[
1 + ujxi

(
ϕj − ϕi

)]
xiV

2/3
i
[
1 + uixj

(
ϕi − ϕj

)]
+ xjV

2/3
j
[
1 + ujxi

(
ϕj − ϕi

)] (21)

fij =

2pV2/3
i V2/3

j

[
q/p

(
n1/3

wsi − n1/3
wsj

)2
−
(
ϕi − ϕj

)2 − a(r/p)
]

(
n1/3

ws

)−1

i
+
(

n1/3
ws

)−1

j

(22)

In Equations (21) and (22), xi and xj are the molar fractions of i and j, respectively; Vi
and Vj are the molar volumes of group elements i and j, respectively; (nws)i and (nws)j
are the electron densities of group elements i and j, respectively; ϕi and ϕj are the elec-
tronegativities of group elements i and j; p, q, µi, µj, b, r/p are constants and p/q = 9.4 for
all alloys;

3.5.1. Relationship between Enthalpy of Mixing and Excess Entropy as Defined by Tanaka

Kubaschewiski and Alcock [40] examined the relationship between the enthalpy of
mixing and excess entropy of binary alloys and concluded that there was an approximately
linear relationship. After more careful study, Tanaka concluded that the ratio coefficient
of SE

ij and ∆Hij is related to the melting point of pure metals, which can be given by the
relation [21]:

SE
ij =

∆Hij

[(
1

Tmi

)
+
(

1
Tmj

)]
14

(23)

Tmi and Tmj are monometallic melting points, the same applies below. Order:

β = 1 −
T
[(

1
Tmi

)
+
(

1
Tmj

)]
14

(24)

Then one can obtain:
GE

ij = βij∆Hij (25)

Combined with the Miedema model Equations (21) and (22), the relationship between
the activity coefficients of i as a function of component xi is obtained:
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ln γi =
1

RT
βij∆Hij

1 + xj


1
xi
− 1

xj
− ui(ϕi−ϕj)

[1+uixj(ϕi−ϕj)]
+

uj(ϕj−ϕi)
[1+ujxi(ϕj−ϕi)]

−
V2/3

i [1+ui(1−2xi)(ϕi−ϕj)]+V2/3
j [−1+uj(1−2xi)(ϕj−ϕi)]

xiV
2/3
i [1+uixj(ϕi−ϕj)]+xjV

2/3
j [1+ujxi(ϕj−ϕi)]


 (26)

3.5.2. Relationship between Enthalpy of Mixing and Excess Entropy as Defined by Ding

Ding Xueyong gives different empirical constants based on SE
ij and ∆Hij relationship

of [22]:
SE

ij = 0.1 × ∆Hij
[
(1/Tmi) +

(
1/Tmj

)]
(27)

Order:
αij = 1 − 0.1T

[
(1/Tmi) +

(
1/Tmj

)]
(28)

Then it is available:
GE

ij = αij∆Hij (29)

Next, in combined with the Miedema model Equations (21) and (22), the relationship
between the activity coefficients of i as a function of component xi is obtained:

ln γi =
1

RT
αij∆Hij

1 + xj


1
xi
− 1

xj
− ui(ϕi−ϕj)

[1+uixj(ϕi−ϕj)]
+

uj(ϕj−ϕi)
[1+ujxi(ϕj−ϕi)]

−
V2/3

i [1+ui(1−2xi)(ϕi−ϕj)]+V2/3
j [−1+uj(1−2xi)(ϕj−ϕi)]

xiV
2/3
i [1+uixj(ϕi−ϕj)]+xjV

2/3
j [1+ujxi(ϕj−ϕi)]


 (30)

3.5.3. Relationship between Enthalpy of Mixing and Excess Entropy as Defined by Sommer

For the relationship between the enthalpy of mixing and excess entropy, Sommer,
Germany, gave the following new expression based on the formula of V.T. Witusiewicz [41]
in combination with binary system alloys [23,24]:

SE
ij = Ω

[
∆H
T

+ xixjRPT

]
(31)

Among them [23,24]:

Ω =
1

2π

(
Tm

Tb
+ 1
)

(32)

PT =
1
2
+

4Tm

3T
+ 2ln

T
Tb − Tm

(33)

Tbi and Tbj are monometallic boiling points, respectively. Tm =
(
Tmi + Tmj

)
/2;

Tb =
(

Tbi + Tbj

)
/2, e is a natural constant.

Combining Equations (18), (19) and (29), ln γi can be expressed as:

ln γi =
αijHij

RT
+

αij(1 + xi)
∂∆Hij

∂xi

RT
(34)

Associative formulations (30) and (34) are available for the Miedema model:

∂∆Hij

∂xi
= ∆Hij(

1 − xi
1 + xi

)

 1
xi
− 1

1−xi
− µi(φi−φj)

[1+µi(1−xi)(φi−φj)]
+

µi(φj−φi)

[1+µjxi(φj−φi)]

−
V2/3

i [1+µi(1−2xi)(φi−φj)]+V2/3
j [−1+µj(1−2xi)(φj−φi)]

xiV
2/3
i [1+µixj(φi−φj)]+xjV

2/3
j [1+µjxi(φj−φi)]

 (35)

The Sommer enthalpy change and entropy change relation combining Equations (18)–
(20), (31)–(33) and (35) can ultimately lead to the derivation of expressions for the molar
excess Gibbs energy and activity:

GE
ij = (1 − Ω)∆Hij − xi(1 − xi)TΩRPT (36)
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ln γi =
(1−Ω)∆Hij−xi(1−xi)TΩRPT

RT +
(1+xi)

[
(1−Ω)

∂∆Hij
∂xi

−(1−2xi)TΩRPT

]
RT

=
(1−Ω)∆Hij−xi(1−xi)TΩRPT

RT

+

(1−xi)(1−Ω)∆Hij


1
xi
− 1

1−xi
− µi(φi−φj)

[1+µi(1−xi)(φi−φj)]
+

µi(φj−φi)

[1+µjxi(φj−φi)]

−
V2/3

i [1+µi(1−2xi)(φi−φj)]+V2/3
j [−1+µj(1−2xi)(φj−φi)]

xiV
2/3
i [1+µixj(φi−φj)]+xjV

2/3
j [1+µjxi(φj−φi)]

−(1+xi)(1−2xi)TΩRPT

RT

(37)

For the Miedema model parameters are shown in Table 4. where the r/p value is only
relevant for transition metal and non-transition metal alloys, and for two non-transition
metals the p value is 10.6.

Table 4. Parameters for Miedema model calculation of Pb-Sn, Al-Sn, In-Zn systerms [42].

Metal Φ nws
1/3 V2/3 µ α Tm/K Tb/K r/p

Pb 4.1 1.15 6.9 0.04 0.73 1050 2022 2.1
Al 4.2 1.39 4.6 0.07 0.73 933 2793 1.9
Sn 4.15 1.24 6.4 0.04 0.73 505 2875 2.1
In 3.9 1.17 6.3 0.07 0.73 430 2345 1.9
Zn 4.1 1.32 4.4 0.1 0.73 693 1181 1.4

4. Results and Discussion
4.1. Parameters of Four Models

The expressions (2) and (3) for the average atom pair potential of the binary liquid
alloy containing g(r) are substituted into the model parameter expressions (6), (9), (14), and
(17) for MIVM, RSM, Wilson, and NRTL, respectively, and the values of the integral terms
are calculated by using the graphical integration method with trapezoidal integration as the
basic principle [43]. This method divides the integration region into several small trapezoids
and sums their areas to obtain the integral value. Obviously, this method is different from
the mathematical form of L-PPDF fitted with the Gaussian function by Chunlong Wang
et al. [31], which depends on the fitting parameters u and v. Therefore, in this work, no
fitting parameters are introduced in the process of solving each model parameter.

The parameter values of each model are calculated by using the asymmetric method
and the symmetric method, as shown in Table 5. For the parameters of the symmetry
method, the table presents the data calculated by multiplying by two the integral values of
r0~rm in the selected g(r).

In order to visualize the difference between the fitted values and the experimental
values more intuitive, the standard deviation SD and the average relative deviation ARD
of the calculated results are denoted as:

SD =

√
∑
(
aest − aexp

)2

N
, ARD =

1
N ∑

∣∣∣∣ aest − aexp

aexp

∣∣∣∣× 100%

aest is the estimated value of activity and aexp [43–45] is the experimental value of activity.

SD =

√
∑(GE

m(est)− GE
m(exp))2

N
, ARD =

1
N ∑

∣∣∣∣GE
m(est)− GE

m(exp)
GE

m(exp)

∣∣∣∣× 100%

Gm
E(est) is the estimated value of the molar excess Gibbs energy and Gm

E(exp) [44–46] is
the experimental value of the molar excess Gibbs energy.
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Table 5. Parameters of four models were calculated for Pb-Sn, Al-Sn, and In-Zn systems by asymmet-
ric and symmetric methods.

System Step

MIVM RSM Wilson NRTL

Asym Sym Asym Sym Asym Sym Asym Sym

Bij Bji Bij Bji w/kT w/kT Aij Aji Aij Aji τij τji τij τji

Pb50-Sn50
(1050 K)

0–1000 0.87 0.97 0.98 0.94 1.08 0.25 0.85 1.00 0.83 1.12 0.03 0.14 0.06 0.02
1000–2000 0.84 0.96 1.01 0.98 1.49 0.04 0.84 0.96 0.86 1.16 0.05 0.18 0.02 −0.01
2000–3000 0.94 1.09 0.96 1.02 0.14 0.06 0.95 1.08 0.90 1.09 −0.08 0.06 −0.02 0.04
3000–4000 1.09 0.98 0.92 1.02 0.37 0.15 0.86 1.24 0.90 1.05 0.02 −0.08 −0.02 0.09
4000–5000 0.94 1.05 1.01 0.98 0.09 0.05 0.92 1.08 0.86 1.15 −0.05 0.06 0.02 −0.01

0–2000 0.95 0.98 0.95 1.02 0.51 0.11 0.85 1.08 0.89 1.09 0.03 0.05 −0.02 0.05
0–3000 0.87 1.00 0.96 1.02 0.86 0.09 0.88 1.00 0.89 1.09 0.00 0.13 −0.02 0.05
0–4000 0.99 1.00 0.95 1.02 0.11 0.10 0.87 1.13 0.89 1.08 0.01 0.01 −0.02 0.06
0–5000 0.98 0.99 0.94 1.01 0.18 0.16 0.87 1.12 0.89 1.07 0.01 0.02 −0.01 0.07

Al50-Sn50
(973 K)

0–1000 1.14 0.79 1.18 0.70 0.54 0.50 1.19 0.76 1.06 0.78 0.24 −0.13 0.36 −0.17
1000–2000 0.89 0.64 0.98 0.64 3.50 1.18 0.97 0.59 0.96 0.65 0.44 0.12 0.45 0.02
2000–3000 0.90 0.68 0.93 0.60 3.01 1.48 1.02 0.60 0.90 0.62 0.39 0.10 0.51 0.07
3000–4000 0.88 0.59 0.95 0.59 3.93 1.46 0.89 0.58 0.89 0.63 0.53 0.13 0.53 0.05
4000–5000 0.93 0.66 0.89 0.56 2.90 1.76 0.99 0.62 0.85 0.59 0.42 0.07 0.58 0.12

0–2000 1.08 0.79 1.08 0.67 0.89 0.83 1.18 0.72 1.01 0.72 0.24 −0.08 0.40 −0.08
0–3000 1.05 0.78 1.03 0.65 1.11 1.05 1.17 0.70 0.98 0.68 0.26 −0.05 0.43 −0.03
0–4000 1.03 0.76 1.01 0.63 1.32 1.15 1.15 0.69 0.95 0.67 0.27 −0.03 0.46 −0.01
0–5000 1.01 0.75 0.98 0.62 1.55 1.27 1.12 0.67 0.93 0.65 0.29 −0.01 0.48 0.02

In50-Zn50
(730 K)

0–1000 0.95 1.08 0.81 1.22 0.17 0.24 0.66 1.56 0.74 1.33 −0.08 0.05 −0.20 0.21
1000–2000 0.93 1.05 0.86 1.14 0.16 0.00 0.64 1.53 0.69 1.41 −0.05 0.07 −0.13 0.15
2000–3000 0.85 0.89 0.79 1.04 1.61 0.42 0.54 1.39 0.64 1.29 0.12 0.16 −0.04 0.24
3000–4000 0.93 1.06 0.73 1.04 0.09 0.94 0.65 1.52 0.63 1.20 −0.06 0.08 −0.04 0.32
4000–5000 0.76 0.96 0.74 0.96 1.88 0.78 0.58 1.25 0.58 1.22 0.05 0.27 0.04 0.30

0–2000 0.92 1.04 0.79 1.13 0.24 0.58 0.64 1.51 0.69 1.30 −0.04 0.09 −0.13 0.23
0–3000 0.88 1.01 0.76 1.17 0.66 0.47 0.62 1.44 0.71 1.25 −0.01 0.13 −0.16 0.28
0–4000 0.91 1.00 0.75 1.14 0.58 0.59 0.61 1.49 0.69 1.23 0.00 0.10 −0.13 0.29
0–5000 0.88 0.98 0.83 1.10 0.82 0.16 0.60 1.45 0.67 1.36 0.02 0.12 −0.09 0.18

4.2. Miedema Model Estimation of Molar Excess Gibbs Energy and Activity

The Miedema model is an empirical theoretical model. The molar excess Gibbs
energy and activity of a binary alloy system can be estimated by the Miedema formula in
combination with the basic properties of the group elements and the relevant parameters,
simply by knowing the equation of the corresponding enthalpy of mixing of the alloy
system in relation to the excess entropy. The experimental values of full concentration
molar excess Gibbs energy (GE

m), activity (a) of Pb-Sn, Al-Sn, and In-Zn alloys under the
Miedema model are given below with the comparison and deviation of the calculated
values in Tables 6–8 and Figures 5–7.

Table 6. Comparison of experimental and calculated values of molar excess Gibbs energy and activity
for Pb-Sn alloys all at full concentration in the Miedema model at 1050 K.

Molar Excess Gibbs Energy (J/mol)

xi Exp Ding Tanaka Sommer

0.9 436 334 393 387
0.8 801 598 704 693
0.7 1085 791 931 916
0.6 1279 910 1071 1054
0.5 1373 955 1124 1106
0.4 1356 923 1087 1069
0.3 1221 814 958 942
0.2 956 624 735 723
0.1 552 354 416 410

ARD% 30.11% 17.73% 19.05%

SD 325 197 210
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Table 6. Cont.

Activity

xi ai-Exp aj-Exp ai-Ding aj-Ding ai-Tanaka aj-Tanaka ai-Sommer aj-Sommer

0.9 0.904 0.159 0.904 0.141 0.904 0.150 0.904 0.149
0.8 0.814 0.296 0.813 0.264 0.815 0.277 0.815 0.276
0.7 0.730 0.412 0.726 0.372 0.731 0.387 0.731 0.385
0.6 0.650 0.512 0.641 0.470 0.649 0.483 0.648 0.482
0.5 0.572 0.599 0.556 0.560 0.566 0.571 0.565 0.570
0.4 0.492 0.677 0.467 0.646 0.480 0.654 0.478 0.653
0.3 0.405 0.752 0.371 0.730 0.385 0.735 0.384 0.735
0.2 0.303 0.827 0.265 0.815 0.279 0.818 0.277 0.818
0.1 0.174 0.908 0.144 0.904 0.153 0.905 0.152 0.905

ARD% of Single Component 5.37% 6.18% 3.22% 3.89% 3.43% 4.13%

SD of Single Component 0.022 0.029 0.013 0.02 0.014 0.021

ARD% 5.77% 3.55% 3.78%

SD 0.026 0.017 0.018

Table 7. Comparison of experimental and calculated values of molar excess Gibbs energy and activity
for Al-Sn alloys all at full concentration in the Miedema model at 973 K.

Molar Excess Gibbs Energy (J/mol)

xi Exp Ding Tanaka Sommer

0.9 1318 1130 1266 1149
0.8 2194 1937 2171 1970
0.7 2703 2454 2750 2498
0.6 2911 2711 3039 2761
0.5 2870 2733 3063 2784
0.4 2624 2542 2849 2591
0.3 2200 2158 2418 2200
0.2 1619 1596 1788 1628
0.1 887 872 977 890

ARD% 6.11% 6.34% 4.55%

SD 160 147 130

Activity

xi ai-Exp aj-Exp ai-Ding aj-Ding ai-Tanaka aj-Tanaka ai-Sommer aj-Sommer

0.9 0.927 0.393 0.919 0.335 0.921 0.388 0.919 0.343
0.8 0.887 0.514 0.864 0.487 0.872 0.542 0.865 0.495
0.7 0.859 0.567 0.823 0.566 0.839 0.611 0.825 0.573
0.6 0.828 0.606 0.784 0.618 0.810 0.652 0.788 0.624
0.5 0.782 0.650 0.740 0.664 0.776 0.687 0.745 0.668
0.4 0.711 0.702 0.680 0.711 0.725 0.726 0.686 0.714
0.3 0.609 0.762 0.591 0.766 0.642 0.774 0.599 0.768
0.2 0.468 0.831 0.461 0.831 0.510 0.835 0.468 0.832
0.1 0.274 0.909 0.271 0.908 0.306 0.909 0.277 0.908

ARD% of Single Component 3.12% 2.93% 3.94% 3.68% 2.58% 2.89%

SD of Single Component 0.028 0.022 0.024 0.028 0.025 0.021

ARD% 3.03% 3.81% 2.74%

SD 0.025 0.026 0.023
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Table 8. Comparison of experimental and calculated values of molar excess Gibbs energy and activity
for In-Zn alloys all at full concentration in the Miedema model at 730 K.

Molar Excess Gibbs Energy (J/mol)

xi Exp Ding Tanaka Sommer

0.9 726 679 752 523
0.8 1321 1241 1375 961
0.7 1785 1677 1859 1305
0.6 2112 1975 2190 1546
0.5 2288 2124 2354 1670
0.4 2295 2107 2335 1666
0.3 2105 1907 2114 1516
0.2 1686 1506 1669 1203
0.1 1000 879 974 706

ARD% 8.08% 2.68% 27.71%

SD 144 50 491

Activity

xi ai-Exp aj-Exp ai-Ding aj-Ding ai-Tanaka aj-Tanaka ai-Sommer aj-Sommer

0.9 0.910 0.300 0.908 0.281 0.909 0.315 0.906 0.223
0.8 0.835 0.500 0.832 0.475 0.836 0.522 0.823 0.393
0.7 0.772 0.636 0.769 0.606 0.777 0.653 0.750 0.522
0.6 0.719 0.728 0.716 0.692 0.730 0.735 0.685 0.619
0.5 0.674 0.788 0.671 0.750 0.692 0.784 0.625 0.693
0.4 0.636 0.827 0.628 0.792 0.659 0.816 0.567 0.752
0.3 0.598 0.854 0.578 0.828 0.621 0.843 0.501 0.803
0.2 0.542 0.882 0.502 0.867 0.555 0.874 0.414 0.855
0.1 0.407 0.925 0.350 0.920 0.401 0.922 0.272 0.916

ARD% of Single Component 3.07% 3.93% 1.81% 1.91% 11.16% 12.34%
SD of Single Component 0.024 0.027 0.014 0.012 0.077 0.082

ARD% 3.50% 1.86% 11.75%
SD 0.026 0.013 0.079
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Figure 5. (a) The experimental and calculated values of molar excess Gibbs energy for the full
concentration of Pb-Sn alloys in the Miedema model at 1050 K, (b) The experimental and calculated
values of activity for the full concentration of Pb-Sn alloys in the Miedema model at 1050 K.
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Figure 6. (a) The experimental and calculated values of molar excess Gibbs energy for the full
concentration of Al-Sn alloys in the Miedema model at 973 K, (b) The experimental and calculated
values of activity for the full concentration of Al-Sn alloys in the Miedema model at 973 K.
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Figure 7. (a) The experimental and calculated values of molar excess Gibbs energy for the full
concentration of In-Zn alloys in the Miedema model at 730 K, (b) The experimental and calculated
values of activity for the full concentration of In-Zn alloys in the Miedema model at 730 K.

Figure 5 and Table 6 show that for Pb-Sn alloys Tanaka Ding, and Sommer’s improved
mixing enthalpy versus excess entropy relationship equation in the Miedema model to esti-
mate the activity effect ARD is less than 10%. However, since the experimental values of the
activity of Pb-Sn alloys are consistent with symmetry and are the effect of the presentation
of very small deviations, so there is a possibility of chance in the estimation results.

Figure 6 and Table 7 show that the estimation effect of the three methods for Al-Sn
alloys is obvious. The activity ARD of the three methods is less than 5%, and the ARD of the
estimated molar excess Gibbs energy is less than 10%, the estimation effect can be said to
be accurate. The Sommer’s improved mixing enthalpy versus excess entropy relationship
equation in the Miedema model has a better estimation effect.

Figure 7 and Table 8 show that for In-Zn alloys, Sommer’s formula is slightly less
effective than the first two in estimating activity, with an ARD of 11.75%, while the ARD
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of the other two is less than 5%. This shows that all three methods give relatively good
estimation results for different systems. The relation between the enthalpy of mixing and
excess entropy given by Sommer is based on the application of the Miedema model to binary
alloys in order to estimate the activity and molar excess Gibbs energy is reasonable and
feasible. The total average relative deviations of Tanaka, Ding, and Sommer’s relational
equations in the Miedema model for estimating the activities and molar excess Gibbs
energies of the binary liquid alloys Pb-Sn, Al-Sn, and In-Zn are 3.07% and 8.92%, 6.09% and
17.1%, and 4.1% and 14.77%, respectively.

4.3. Estimation of the Molar Excess Gibbs Energy and Activity of Pb0.5-Sn0.5, Al0.5-Sn0.5, and
In0.5-Zn0.5 Alloys at Full Concentration Using Partial Radial Distribution Functions

Tables 9–14 show the results of stepwise calculations for the three systems using the
symmetric and asymmetric methods in the four models, respectively. The ARD comparison
images of all the activity distributions calculated for the three binary alloy systems under the
asymmetric and symmetric methods are given, where the x-axis represents the four models.
The two small bars for each model represent the asymmetric and symmetric methods under
each model, the different colors of each bar represent the different ranges of the ARD values,
and the scale of the bar is the number of data accounted for by the calculations of the nine
sets of distributions, see Figures 8–10.

Through Figure 8 it can be seen that the MIVM model in Pb-Sn alloy has the best
overall estimation effect. The ARD less than 10% accounts for five of the nine sets of
stepwise calculation data under the two methods. The symmetric method under the MIVM
model has a better estimation performance. The RSM model has the second-best estimation
performance, and the asymmetric method under the RSM model has a better estimation
effect. The estimation effect of the Wilson and the NRTL models is poorer compared with
the former two, there is no data of ARD less than 10%.

Through Figure 9 it can be seen in Al-Sn alloys in the RSM model the two methods
ARD less than 20% of the data in the two methods under the nine groups of stepwise
calculation data accounted for eight groups. Among the asymmetric methods, there were
two groups with ARDs less than 10% and four groups with ARDs greater than 30%. The
Figure 9 can only show that for the RSM model for Al-Sn alloys, the asymmetric method
estimation of the precision of the higher degree of data is greater. The data with a high
estimation degree of the MIVM model is second only to the RSM model and the asymmetric
method is better under the MIVM model. Wilson model and NRTL model estimation of
activity ARD has no data less than 20%, but there is more data with ARD between 20–30%,
so it is necessary to calculate the average value to compare the estimation effect.

Figure 10 shows that the overall estimation effect of the MIVM model in In-Zn alloys
is better. The ARD less than 30% accounts for seven of the nine sets of stepwise calculation
data in the two methods, in which the symmetric method has a better estimation effect.
The estimation effect of the RSM model is second to that of the MIVM model, in which
the asymmetric method has a better estimation effect. The estimation effect of the Wilson
model and the NRTL model is poorer compared to the former two, and the ARD does not
have any data of less than 30%.

According to the data in Tables 9–14, it can be calculated that the total average relative
deviations of the activity estimates of the four models for the binary liquid alloys Pb50-Sn50,
Al50-Sn50, and In50-Zn50 at the full concentrations. When the PRDF is obtained by the
symmetry method are MIVM: 21.59%; RSM: 21.63%; Wilson: 24.27%; and NRTL: 23.9%.
When the PRDF is obtained by the symmetry method are MIVM: 22.86%; RSM: 32.84%;
Wilson: 25.14%; NRTL: 24.49%. Combined with Figures 8–10, it can be concluded that the
symmetric method of estimation is better than the asymmetric method in the three binary
alloy systems. Among the four models, the MIVM model has a better estimation effect.
The estimation results of the MIVM and RSM models fluctuate greatly with the number of
steps, and the data distribution is not uniform. However, because of the high sensitivity
of the estimation effect to the change in the number of steps, the estimation results are
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more consistent with the experimental values. The Wilson and NRTL models estimate the
activity data with less variation as the number of steps changes, and the estimation effect
is not good. The data obtained from Tables 9–14 also reflect that not all systems are best
estimated at 0–5000 steps (at full steps size).

Table 9. The SD and ARD of molar excess Gibbs energy and activity of Pb50Sn50 alloys were
estimated by asymmetric method at 1050 K.

GE
m and a Step

MIVM RSM Wilson NRTL

ARD% SD ARD% SD ARD% SD ARD% SD

GE
m (J/mol)

0~1000 61.4% 642 72.4% 760 74.2% 787 73.7% 782
1000~2000 107.9% 1131 137.0% 1441 66.2% 704 65.9% 701
2000~3000 131.5% 1390 121.8% 1288 104.0% 1100 103.3% 1093
3000~4000 166.8% 1758 159.8% 1685 112.5% 1190 109.8% 1161
4000~5000 91.2% 965 86.0% 911 98.3% 1040 97.7% 1034

0~2000 25.4% 265 37.0% 388 79.4% 939 87.6% 928
0~3000 22.7% 250 18.1% 199 88.7% 842 79.2% 839
0~4000 85.1% 902 82.6% 876 98.8% 1045 97.4% 1031
0~5000 74.7% 793 71.6% 760 97.1% 1027 95.8% 1014

Average 85.2% 899 87.4% 923 91.0% 964 90.0% 954

a

0~1000 13.4% 0.057 16.2% 0.069 13.1% 0.058 13.0% 0.057
1000~2000 25.8% 0.108 34.8% 0.144 11.9% 0.052 11.8% 0.052
2000~3000 21.2% 0.094 20.0% 0.088 17.5% 0.077 17.5% 0.077
3000~4000 25.6% 0.114 24.7% 0.11 18.7% 0.083 18.4% 0.081
4000~5000 15.7% 0.069 14.9% 0.066 16.7% 0.074 16.7% 0.074

0~2000 5.2% 0.022 7.8% 0.034 15.3% 0.068 15.1% 0.067
0~3000 4.5% 0.021 3.7% 0.017 13.9% 0.061 13.9% 0.061
0~4000 14.8% 0.065 14.4% 0.064 16.8% 0.074 16.6% 0.073
0~5000 13.2% 0.058 12.7% 0.056 16.5% 0.073 16.4% 0.072

Average 15.5% 0.068 16.6% 0.072 15.6% 0.069 15.5% 0.068

Table 10. The SD and ARD of molar excess Gibbs energy and activity of Pb50Sn50 alloys were
estimated by symmetric method at 1050 K.

GE
m and a Step

MIVM RSM Wilson NRTL

ARD% SD ARD% SD ARD% SD ARD% SD

GE
m (J/mol)

0~1000 14.2% 171 59.7% 632 88.7% 939 85.9% 911
1000~2000 117.3% 1239 106.0% 1122 104.6% 1106 102.4% 1083
2000~3000 83.3% 883 90.8% 962 97.5% 1032 96.8% 1024
3000~4000 53.1% 565 76.7% 813 92.1% 976 91.7% 971
4000~5000 123.7% 1306 108.5% 1148 105.7% 1118 103.3% 1092

0~2000 62.3% 662 82.5% 874 94.3% 998 93.5% 990
0~3000 71.7% 761 86.2% 914 95.8% 1014 95.0% 1006
0~4000 66.8% 710 83.9% 889 94.9% 1004 94.2% 997
0~5000 45.3% 483 74.3% 788 91.5% 969 90.8% 962

Average 70.8% 753 85.4% 905 96.1% 1017 94.8% 1004

a

0~1000 3.2% 0.016 13.7% 0.06 15.3% 0.068 15.0% 0.066
1000~2000 19.4% 0.086 17.4% 0.077 17.6% 0.078 17.3% 0.076
2000~3000 14.5% 0.064 16.3% 0.072 16.6% 0.073 16.5% 0.073
3000~4000 9.7% 0.043 15.2% 0.067 15.8% 0.07 15.8% 0.07
4000~5000 20.2% 0.09 17.5% 0.077 17.8% 0.079 17.4% 0.077

0~2000 11.2% 0.049 15.7% 0.069 16.1% 0.071 16.0% 0.071
0~3000 12.7% 0.056 16.0% 0.07 16.3% 0.072 16.3% 0.072
0~4000 12.0% 0.053 15.8% 0.07 16.2% 0.072 16.1% 0.071
0~5000 8.4% 0.037 15.0% 0.066 15.7% 0.069 15.6% 0.069

Average 12.4% 0.055 15.8% 0.07 16.4% 0.072 16.2% 0.072
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Table 11. The SD and ARD of molar excess Gibbs energy and activity of Al50Sn50 alloys were
estimated by asymmetric method at 973 K.

GE
m and a Step

MIVM RSM Wilson NRTL

ARD% SD ARD% SD ARD% SD ARD% SD

GE
m (J/mol)

0~1000 60.4% 1359 43.6% 986 94.9% 2139 92.0% 2075
1000~2000 71.1% 1600 100.0% 2242 65.5% 1481 60.0% 1361
2000~3000 56.5% 1270 76.4% 1715 69.8% 1577 64.7% 1467
3000~4000 89.5% 2017 120.7% 2716 59.1% 1338 52.6% 1197
4000~5000 51.1% 1154 70.5% 1587 69.7% 1574 64.6% 1464

0~2000 55.6% 1249 38.5% 881 91.3% 2057 88.0% 1985
0~3000 38.1% 858 23.3% 550 88.8% 2001 85.3% 1925
0~4000 22.4% 506 9.1% 253 86.3% 1946 82.6% 1866
0~5000 6.0% 148 10.5% 227 83.6% 1885 79.7% 1801

Average 50.1% 1129 54.7% 1240 78.8% 1778 74.4% 1682

a

0~1000 20.2% 0.132 15.7% 0.104 30.9% 0.202 30.7% 0.201
1000~2000 50.8% 0.33 88.8% 0.565 23.2% 0.156 22.6% 0.15
2000~3000 36.6% 0.236 57.4% 0.365 24.5% 0.164 23.8% 0.157
3000~4000 72.9% 0.483 126.6% 0.809 21.4% 0.145 20.9% 0.139
4000~5000 32.1% 0.209 51.1% 0.325 24.4% 0.163 24.0% 0.158

0~2000 20.4% 0.134 14.8% 0.104 30.0% 0.197 29.7% 0.194
0~3000 14.8% 0.098 9.9% 0.074 29.4% 0.193 29.0% 0.19
0~4000 9.1% 0.061 6.6% 0.051 28.8% 0.19 28.4% 0.186
0~5000 2.8% 0.022 8.3% 0.054 28.1% 0.186 27.7% 0.182

Average 28.8% 0.256 58.3% 0.376 26.7% 0.177 26.3% 0.173

Table 12. The SD and ARD of molar excess Gibbs energy and activity of Al50Sn50 alloys were
estimated by symmetric method at 973 K.

GE
m and a Step

MIVM RSM Wilson NRTL

ARD% SD ARD% SD ARD% SD ARD% SD

GE
m (J/mol)

0~1000 45.1% 1008 65.2% 1484 87.9% 1982 84.5% 1906
1000~2000 37.9% 862 17.8% 466 71.1% 1606 66.0% 1495
2000~3000 67.9% 1536 12.3% 236 63.6% 1439 57.6% 1308
3000~4000 63.0% 1428 12.2% 233 63.7% 1443 57.6% 1307
4000~5000 106.1% 2095 23.4% 546 56.9% 1290 49.9% 1136

0~2000 4.4% 87 41.8% 970 79.5% 1795 75.4% 1703
0~3000 29.8% 685 27.1% 655 74.3% 1678 69.6% 1574
0~4000 44.9% 1026 19.9% 508 71.7% 1620 66.6% 1508
0~5000 63.1% 1435 12.9% 349 68.7% 1553 63.3% 1434

Average 51.4% 1129 25.8% 605 70.8% 1601 65.6% 1486

a

0~1000 16.2% 0.104 27.8% 0.183 29.2% 0.192 29.4% 0.192
1000~2000 22.0% 0.145 20.4% 0.137 24.8% 0.165 24.6% 0.162
2000~3000 47.7% 0.315 16.1% 0.112 22.7% 0.153 22.4% 0.148
3000~4000 42.9% 0.285 16.5% 0.114 22.8% 0.153 22.6% 0.149
4000~5000 77.8% 0.521 12.1% 0.089 20.7% 0.141 20.3% 0.135

0~2000 1.6% 0.01 24.4% 0.162 27.1% 0.179 27.1% 0.178
0~3000 15.8% 0.105 22.0% 0.147 25.7% 0.171 25.6% 0.169
0~4000 25.2% 0.167 20.7% 0.139 25.0% 0.166 24.9% 0.164
0~5000 38.1% 0.252 19.2% 0.13 24.2% 0.161 24.0% 0.158

Average 31.9% 0.212 19.9% 0.135 24.7% 0.165 24.6% 0.162
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Table 13. The SD and ARD of molar excess Gibbs energy and activity of In50Zn50 alloys were
estimated by asymmetric method at 730 K.

GE
m and a Step

MIVM RSM Wilson NRTL

ARD% SD ARD% SD ARD% SD ARD% SD

GE
m (J/mol)

0~1000 123.0% 2197 111.2% 1986 108.0% 1929 101.8% 1818
1000~2000 98.4% 1757 89.5% 1598 104.4% 1865 98.2% 1753
2000~3000 8.4% 140 8.4% 143 89.2% 1591 81.8% 1463
3000~4000 103.8% 1855 93.8% 1675 105.0% 1874 98.9% 1767
4000~5000 12.5% 230 22.9% 420 84.7% 1511 80.1% 1432

0~2000 92.2% 1647 84.0% 1500 103.3% 1844 97.2% 1736
0~3000 63.2% 1131 57.1% 1019 98.5% 1758 92.7% 1655
0~4000 67.9% 1215 62.0% 1108 100.0% 1785 93.6% 1671
0~5000 51.3% 921 46.1% 826 97.2% 1735 90.9% 1625

Average 69.0% 1233 63.9% 1142 98.9% 1766 92.8% 1658

a

0~1000 38.2% 0.259 34.6% 0.234 35.2% 0.238 33.9% 0.229
1000~2000 33.0% 0.224 32.2% 0.218 34.4% 0.233 33.0% 0.223
2000~3000 5.3% 0.036 6.9% 0.046 30.8% 0.21 28.9% 0.196
3000~4000 34.2% 0.232 31.9% 0.216 34.5% 0.233 33.2% 0.225
4000~5000 6.8% 0.047 13.9% 0.096 29.6% 0.202 28.4% 0.193

0~2000 31.6% 0.214 29.5% 0.2 34.1% 0.231 32.8% 0.222
0~3000 23.8% 0.162 21.8% 0.15 33.0% 0.224 31.7% 0.215
0~4000 25.2% 0.171 23.4% 0.16 33.4% 0.226 31.9% 0.216
0~5000 20.1% 0.138 18.3% 0.128 32.7% 0.222 31.2% 0.212

Average 24.2% 0.165 23.6% 0.161 33.1% 0.224 31.7% 0.215

Table 14. The SD and ARD of molar excess Gibbs energy and activity of In50Zn50 alloys were
estimated by symmetric method at 730 K.

GE
m and a Step

MIVM RSM Wilson NRTL

ARD% SD ARD% SD ARD% SD ARD% SD

GE
m (J/mol)

0~1000 90.9% 1621 84.0% 1500 98.0% 1750 94.6% 1690
1000~2000 113.6% 2029 100.0% 1785 104.7% 1869 99.7% 1781
2000~3000 43.9% 784 72.6% 1294 94.0% 1678 89.2% 1594
3000~4000 9.6% 178 38.3% 692 82.5% 1472 79.4% 1419
4000~5000 10.2% 192 48.9% 868 85.6% 1528 80.6% 1442

0~2000 46.4% 824 62.3% 1111 91.8% 1639 88.4% 1579
0~3000 60.2% 1070 69.2% 1240 91.8% 1640 89.1% 1592
0~4000 42.0% 744 61.4% 1102 89.4% 1597 86.7% 1549
0~5000 85.9% 1535 89.4% 1595 100.7% 1798 95.7% 1710

Average 55.9% 997 69.6% 1243 93.2% 1663 89.3% 1595

a

0~1000 31.3% 0.212 31.2% 0.211 32.9% 0.223 32.4% 0.219
1000~2000 36.3% 0.246 33.4% 0.226 34.5% 0.233 33.4% 0.226
2000~3000 17.6% 0.12 29.9% 0.203 32.0% 0.217 30.9% 0.209
3000~4000 5.1% 0.036 24.1% 0.165 29.1% 0.198 28.3% 0.192
4000~5000 5.7% 0.04 26.2% 0.179 29.9% 0.204 28.6% 0.194

0~2000 18.5% 0.125 27.9% 0.189 31.4% 0.214 30.8% 0.208
0~3000 22.9% 0.154 29.3% 0.199 31.4% 0.213 31.1% 0.211
0~4000 17.0% 0.114 28.1% 0.191 30.8% 0.21 30.4% 0.206
0~5000 30.0% 0.203 32.1% 0.218 33.6% 0.227 32.5% 0.22

Average 20.5% 0.139 29.1% 0.198 31.7% 0.215 30.9% 0.21
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5. Conclusions

For the calculation results and comparison of estimating the molar excess Gibbs energy
and activity of binary alloys under the Miedema model using the relationship between
mixing enthalpy and excess entropy given by Tanaka, Ding, and Sommer (the total ARD
of the molar excess Gibbs energy and activity of the three binary liquid alloys under the
Miedema model are Tanaka: 3.07% and 8.92%; Ding: 6.09% and 17.1%; Sommer: 4.1% and
14.77%). Preliminary validation of the rationality and feasibility of the Sommer relation
for estimating the molar excess Gibbs energy and activity method for binary liquid alloys
under the Miedema model. We hope that it can provide a reference for selecting appropriate
models and methods to estimate thermodynamic data such as activity and excess Gibbs
energy of binary liquid alloys.

Based on the AIMD principle, the kinetic process was simulated by VASP software to
obtain the partial radial distribution function of the alloy at different step sizes, and the
parameters of MIVM, RSM, Wilson, and NRTL models are calculated by the given pair
of the potential energy function and two methods (asymmetric and symmetric methods)
to estimate the molar excess Gibbs energy and activity of binary liquid alloys with good
rationality and feasibility. The total ARD of the molar excess Gibbs energy and activity
of the three binary liquid alloys at full concentration when the PRDF is obtained by the
symmetry method are MIVM: 21.59% and 59.35%; RSM: 21.63% and 60.27%; Wilson: 24.27%
and 86.7%; NRTL: 23.9% and 83.24%. When the PRDF is obtained by the asymmetric
method: MIVM: 22.86% and 68.08%; RSM: 32.84% and 68.66%; Wilson: 25.14% and 82.75%;
NRTL: 24.49% and 85.74%. These calculation results show that the ARD for the estimated
activity is within reasonable limits, and it is reasonable and feasible to show that this given
assumption can be used for the pair potential energy equation for binary liquid alloys. The
results also show that the MIVM model performs better than the RSM, Wilson, and NRTL
models, and the asymmetric method performs better than the symmetric method. Not all
systems are best estimated at the simulation steps from 0 to 5000. This result hopefully
provides a research direction for interested researchers (i.e., based on the AIMD principle,
the PRDFs obtained from the simulation stepwise calculations by using the VASP software
are best fit to the experimental values at which steps).
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