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Abstract: Nickel-based composite coatings containing graphene nanoplatelets (GNPs) were prepared
on Q235 steel using laser cladding. In order to retain the multilayer GNPs in the composite coatings
after laser cladding, NiGNPs were prepared by electroless nickel plating on GNPs as the additive
phase. All the coatings contain γ-(Ni, Fe), Cr23C6, Cr7C3, Fe3C and WC phases, and multilayer GNPs
were retained successfully in the composite coatings. With the addition of GNPs, the microstructure
of the coatings was obviously refined and the content of Cr-C compounds were increased along with
its changed morphology. The mean microhardness of the Ni-based composite coatings containing
GNPs was significantly improved compared to that of Ni45 coating, and the maximum microhardness
was 745.06 when 20% NiGNPs was added. The results indicated that, due to the refinement and
lubricating effects of GNPs, the friction coefficients of composite coatings were reduced and the wear
resistance was improved compared to Ni45 coating.

Keywords: Ni-based composite coatings; GNPs; laser cladding; wear resistance

1. Introduction

Surface modification by coating is an effective way to improve the surface proper-
ties of the metal substrate and prolong the service life of the workpiece [1,2]. Recently,
surface modification technologies for alloys have mostly been performed by laser sinter-
ing [3], electrochemical deposition [4], thermal spraying [2], surfacing welding [5] and laser
cladding [6]. Among these, laser cladding is most widely used to obtain high-quality met-
allurgical bonding coatings owing to its simplicity, high processing efficiency and accuracy,
automation control, concentrated energy with a small heat-affected zone and low damage
to the substrate [7].

Nickel-based alloy coatings are widely used in marine, chemical, nuclear industry and
machinery fields owing to their toughness, strong oxidation resistance and high corrosion
resistance [8]. Given the rapid development of industrialization and the complicated
operating environment, it is important that the wear resistance of the coatings, especially
for the service life of minerals machinery, is developed further. The issues can be solved by
preparing the nickel-based composite coating by adding various reinforcing phases into
the alloy. At present, B4C, TiC, WC and Cr3C2 are used as reinforcing phases for nickel-
based alloys [9,10]. However, these carbide-reinforcing phases have a tendency to produce
stress concentration, with cracks and holes therefore forming in the cladding layer [11].
Graphene, a type of carbon nanomaterial, has been widely used as a reinforcing phase
owing to its unique two-dimensional structure and excellent mechanical properties, which
can avoid the disadvantages of the above reinforcing phases [12,13]. Meanwhile, graphene
possesses a special single-atom layer structure and many excellent thermal and mechanical
properties: 130 GPa of the strength, ~5000 J/(m·K·s) of thermal conductivity and excellent
self-lubricating properties. These excellent properties of graphene have prompted it to be
one of the most desirable reinforcing phases.
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In this work, graphene nanoplatelets (GNPs) were electroless nickel plated to solve
the problem of GNPs ablation during laser cladding, and then the plated GNPs were
added into nickel-based powders as the reinforcement phase; meanwhile, laser cladding
technology was used to prepare nickel-based composite coatings with high hardness, wear
resistance, friction reduction and corrosion resistance on the key friction pairs surfaces. The
microstructure evolution of nickel-based composite coatings with different GNPs contents
were analyzed. Then, the hardness, friction coefficient and wear resistance of nickel-based
composite coatings containing different GNPs contents were also presented.

2. Experimental Procedures

Due to its low cost, high strength, strong plasticity and good welding performance,
Q235 steel is widely used in industry [14]. In this work, the chemical composition of Q235
steel with the dimension of 90 mm × 70 mm × 10 mm listed in Table 1 was used as the
substrate for laser cladding. Before laser cladding, the rust, grease and other impurities on
the substrate surface were removed. The self-made SD-Ni45 powder was used as the based
powder, and the chemical composition was shown in Table 2. SD-Ni45 powder is spher-
ical, with a diameter of 48~100 µm. Graphene nanoplatelets (GNPs, thickness: 4–20 nm,
layers: <30) were used as the additive phase, and the microstructure characterization was
illustrated in Figure 1.

Table 1. Chemical composition of Q235 steel (wt. %).

Elements C Mn Si S P Fe

Contents ≤0.22 0.3~0.65 ≤0.35 ≤0.05 ≤0.045 Bal.

Table 2. Chemical composition of SD-Ni45 powder (wt. %).

Elements C Cr Mn Si B WC Fe Ni

Contents 0.55 14 0.13 2.5 1.9 20 14.2 Bal.

The original structure of graphene makes it likely to be destroyed during laser cladding.
This problem was effectively solved by electroless nickel plating on the surface of the GNPs.
This is a bright spot and an improvement of the current processes, which has important
significance and application value. The nickel-plated graphene nanoplatelets (NiGNPs)
were obtained, and the content of GNPs in NiGNPs was about 1.3–1.7% (wt. %). The mi-
crostructure characterization of NiGNPs is shown in Figure 1. The Raman results indicated
that the characteristic peaks of D, G and 2D appeared in the GNPs sample (IG/ID = 8.40)
was not observed in NiGNPs, while a nickel diffraction peak existed. The bulk samples
were used for XRD and the results also showed that the C(002) and C(004) diffraction peaks
of GNPs completely disappeared after electroless nickel plating, while Ni diffraction peaks
appeared. These results indicated that the GNPs surface was successfully covered with
a metallic nickel coating layer after nickel plating. In this work, the content of 10%, 20%
and 30% NiGNPs were selected to be added to SD-Ni45 powder, respectively, to prepare
composite coatings using a Torch Light 6000W fiber laser equipment with wavelength of
980 nm, manufactured by Shandong Energy Heavy Equipment Manufacturing Co., Ltd.,
Taian, China. The rectangular light spot with the size of 18 mm × 2 mm was used for laser
cladding. Eight passes of laser cladding overlap tests were carried out on each plate. In
the early stage, the effects of laser cladding power of 1000–4000 W and scanning speed
of 100–600 mm/min on microstructure and properties of coatings were investigated. The
results showed that the coating hardness decreases due to the high laser energy density
when the power is too high or the scanning rate is too slow, while the coating forming is
poor if the power is too low or the scanning speed is too fast. Based on process parameter
optimization, the related cladding parameters were listed in Table 3, and no shielding gas
was used during cladding. Pre-laid powder was used in this work, and the schematic
diagram of laser cladding was shown in our previous work [15].
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Figure 1. Microstructure analyses of GNPs and NiGNPS: (a) SEM image of GNPs, (b) SEM image of
NiGNPs, (c) Raman patterns, (d) XRD patterns.

Table 3. Laser cladding parameters of GNPs reinforced nickel-based composite coatings.

Laser Power (W) Scanning Speed (mm/min) Powder Thickness (mm) Overlapping Rate (%)

3000 480 1 30

The surface morphology and microstructure of GNPs reinforced nickel-based compos-
ite coatings were characterized by scanning electron microscope (SEM, JSM-7200F, JEOL,
Tokyo, Japan) equipped with energy-dispersive spectroscopy (EDS, OXFORDX-MAX50,
UK). The phase composition of the cladding layer was analyzed by X-ray diffractometer
(XRD, X’PERT PRO MPO, Panaco Inc., Netherlands). The microhardness of coatings was
measured by a microhardness tester (HV-1000, Beijing Times ChuangHe Technology Co., Ltd.,
Beijing, China). The loading load was 100 g and the holding time was 15 s. The first point
of each sample was measured 10 µm away from the coating surface and then a hardness
point was measured every 10 µm from the start point to the end of the matrix. The hardness
test was repeated three times and then the average value was taken. WTM-2E controlled
atmosphere micro friction and a wear tester was used to measure the wear properties of
composite coatings with the wear time of 30 min at room temperature. The grinding ball
with diameter of 3 mm was GCr15 bearing steel, the normal load was 800 g, the motor
speed was 500 r/min, and the radius of rotation was 3 mm. The hardness of the GCr15
ball was 65HRC. The sample size of friction and wear test was 15 mm × 15 mm × 10 mm.
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Before the test, SiC sandpaper of grit 180#, 320#, 600# and 1000# were used to grind the
surface, and SEM results showed that the tested surface was the middle microstructure of
the coatings. The weight of the specimen before and after the wear test was recorded.

3. Results and Discussion
3.1. Microstructure

Figure 2 showed the XRD patterns of four composite coatings with different GNPs
contents. All four coatings contain γ-(Ni, Fe), Cr23C6, Cr7C3, Fe3C and WC phases. Com-
pared with the Ni45 coating, the composite coatings containing GNPs have additional
diffraction peaks at about 26.5◦ and 54.5◦, which is related to the characteristic peak of
C(002) and C(004) of multilayer graphene [16,17]. With the increase of GNPs content, the
characteristic peaks of graphene become more obvious. This indicated that GNPs can be
successfully retained in the nickel-based composite coatings after laser cladding. Notably,
the diffraction peaks of grains along (111) and (200) crystal planes were enhanced with
the addition of GNPs, indicating that GNPs could promote grain growth on (111) and
(200) planes. Meanwhile, the peak strength of diffraction peaks of Cr23C6, Cr7C3 and other
carbides increased as the increasing of GNPs content. During laser cladding, GNPs can
react with strong carbide elements such as Cr to form Cr-rich carbides, thus, the Cr-rich
carbides content in the nickel-based composite coating increases.
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Figure 2. XRD patterns of different content of graphene nanosheets reinforced nickel-based composite
coatings. (a) full patterns (b) Magnified patterns between 35◦ and 55◦.

Figure 3 showed the surface microstructure of nickel-based composite coatings with
different GNPs contents. It can be seen that the Ni45 coating was mainly composed of
the square block (Spot A), triangle-like shape (Spot B), rod-like (Spot C), irregular shape
(Spot D) and thin strip network (Spot E). From the EDS results shown in Table 4 combined
with XRD patterns above, Spots A, B and C were mainly composed of Cr and C elements,
which are related to Cr7C3 and Cr23C6, respectively. Spot D was γ-(Ni, Fe) solid solution
due to the main composition of Fe and Ni elements, while Spot E was a carbides eutectic
microstructure composed of Cr, Fe and Ni elements. With the addition of GNPs, the
morphology and quantity of Cr-rich carbides in the coatings were changed. In the cladding
layer, the precipitates of Cr-rich carbides with large bar-like and sheet-like morphology
were formed. The eutectic microstructure also changed gradually from a thin strip network
to a granular network and the area of Cr-carbide in the composite coatings increased.
Some research indicated [18] that graphene can improve the nucleation rate and promote
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crystallization, thus, the grains could be refined, resulting in the refinement of eutectic
microstructure in the cladding layer.
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Figure 3. SEM images of surface microstructure of Ni-based composite coatings with different
NiGNPs content: (a) 0, (b) 10%, (c) 20%, (d) 30%.

Table 4. EDS results of each point shown in Figure 3 (at %).

Spot Fe Ni C Cr W Possible Phase

A 12.8 9.8 18.7 53.3 5.4 Cr7C3
B 12.3 9.0 15.9 56.6 6.2 Cr23C6
C 16.9 9.5 14.8 54.3 4.5 Cr23C6
D 21.2 53.5 18.3 6.1 0.8 γ-(Ni, Fe)
E 19.6 18.6 26.0 32.0 3.8 Cr-Fe-Ni-C

Figures 4 and 5 showed the SEM images of the cross-sectional microstructure of
Ni-based composite coatings with different GNPs content. Figure 4 showed the overall
cross-sectional nickel-based composite coatings, which revealed that a sound metallurgical
bonding between the cladding layer and the substrate was achieved with different GNPs
content added, i.e., a high adhesion existed between the coating and the substrate. The
final thickness of the coatings decreased with the increase of the added GNPs content, and
the coating thickness is 816 µm, 798 µm, 785 µm and 768 µm for the NiGNPs content of 0,
10%, 20% and 30%, respectively. Ni45 coating was briefly shown in Figure 5(a1–a3). In the
bottom part of the coating, the flat crystal grew near the interface between the cladding layer
and substrate due to the small supercooling degree, and then the columnar crystal grew
perpendicular to the flat crystal along the direction of heat flow in the solidification process.
In the middle part, the microstructure gradually turned into dendrites. In the upper part,
equiaxed grains or cellular grains were gradually formed due to the large supercooling
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degree. The EDS results of Spot A and B shown in Figure 5(a1) were 45.3 Fe-17.4 Ni-
25.8 C-10.4 Cr-0.9 W and 50.9 Fe-20.8 Ni-23.2 C-4.6 Cr-0.5 W, respectively. The content
of the C element and Cr element at Spot A in the interdendritic zone is significantly
higher than that at Spot B (dendritic zone). As GNPs were added, the cross-sectional
microstructure of the nickel-based composite coatings from the bottom to the upper was
shown in Figure 5b–d. From the bottom to upper part of the coatings, the flat crystal and
columnar crystal (perpendicular to the flat crystal), dendrites (central cladding layer) and
the cellular crystal (upper part of cladding layer) were presented, while the growth of the
columnar crystal was not as severe as that in Ni45 coating. This indicates that GNPs do
not change the microstructure morphology of the coatings significantly; however, they
can inhibit the growth of columnar crystals. Meanwhile, the microstructure of composite
coatings was refined as GNPs were added. It could be seen that some porosity existed in the
coating when the addition of NiGNPs content reached 20%, as shown in Figure 4. As GNPs
content increased, the melt viscosity and the tendency of GNPs agglomeration during the
laser cladding process was increased [19]. Some research assumes these porosities to be
bubbles porosities. The driving force of the formation of gas porosities is usually linked to
the formation of CO or CO2 gas which originated from oxidation processes, and which are
then entrapped within the melt while failing to diffuse out, depending on the processing
parameters [20,21]. Thus, the porosities were easily generated.
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Figure 5. SEM images of cross-sectional nickel-based composite coatings with different NiGNPs
content: (a) 0, (b) 10%, (c) 20% and (d) 30%. Numbers 1, 2 and 3 represent the bottom, middle and
upper microstructure of the corresponding coating, respectively.

The characteristic peak of GNPs in different composite coatings was detected by
XRD shown in Figure 2, which indicated that graphene existed in the composite coatings
prepared by laser cladding. Raman analyses were used to further confirm the existence
of GNPs in the composite coating, and the results were shown in Figure 6. It was seen
that D, G and 2D peaks of graphene existed, which indicated that graphene does exist
in the laser-cladding nickel-based composite coatings [22]. Meanwhile, the ratios of area
G and area D peaks of GNPs in the nickel-based composite coatings added with 10%,
20% and 30% NiGNPs after laser cladding (IG/ID) were calculated as 1.07, 1.03 and 1.05,
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respectively. The G peaks are associated with ideal graphitic carbons, whereas the D
peaks are related to the structural defects of C-C bond [23]. Usually, the ratio of IG/ID is
used to characterize the damage degree of GNPs [24]. The decreased value of IG/ID after
laser cladding indicated that the laser beam with high energy density caused the damage
of GNPs structure, resulting in the increased density of structural defects of GNPs [25].
The intensity of 2D peak of GNPs in the Ni-based composite coatings with the addition
of 30% was lower than that in the low addition composite coatings, and the ratio of G
peak and 2D peak (IG/I2D) of GNPs in the composite coatings added with 10%, 20% and
30% NiGNPs were calculated as 1.34, 1.32 and 1.41, respectively. The IG/I2D presents the
number of graphene layers, indicating the agglomeration intensity of graphene under
the same conditions [26]. Therefore, as the addition of NiGNPs was 30%, the GNPs were
agglomerated seriously, which lead to the occurrence of blowhole in the composite coating
during the laser cladding process.
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3.2. Mechanical Properties
3.2.1. Microhardness

Figure 7 showed the mean microhardness and cross-sectional microhardness distribu-
tion of Ni-based composite coatings with different GNPs content. The mean microhardness
of Ni-based coatings with different GNPs content were 555.58, 659.09, 745.06 and 671.78,
respectively. The mean microhardness of three Ni-based composite coatings containing
GNPs was significantly improved compared to that of the Ni45 coating. With the increase
of GNPs content, the microhardness of the Ni-based composite coatings was gradually
increased first and then decreased. The increased microhardness of the Ni-based composite
coating may be attributed to the facts listed as follows. Firstly, the thermal conductivity of
GNPs is much higher than that of the substrate, and the large supercooling degree could be
generated due to the difference between GNPs and substrate during laser cladding, which
lead to the refinement of microstructure [27]. The above analysis of the microstructure
(Figures 3 and 5) has verified this; the refined microstructure of the coating possessed the
increased microhardness with the increase of GNPs content. Similarly, the microstructure
of different coating parts is slightly different, resulting in the microhardness curve of coat-
ing parts being slightly fluctuated. In addition, the improvement could be attributed to
GNPs-strengthening phases constraining the local deformation of the composite coatings
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during the indentation [28]. Finally, the increased microhardness of the coatings may be
related to the increased amount of carbides due to the melt and reaction of GNPs [29]. It
was noted that the microhardness of the coating was decreased when the NiGNPs content
exceeded 20%, which resulted from the aggregation phenomenon of GNPs in the un-dense
cladding layer. The similar results can be seen in Ref. [30] and the aggregation phenomenon
of GNPs was verified Figures 9 and 10 in this work. Moreover, the heterogeneous size and
distribution of grains in the 30% NiGNPs-Ni45 composite coating decreased the uniformity
of the microhardness.

Metals 2022, 12, x FOR PEER REVIEW 9 of 17 
 

 

resulting in the microhardness curve of coating parts being slightly fluctuated. In 
addition, the improvement could be attributed to GNPs-strengthening phases 
constraining the local deformation of the composite coatings during the indentation [28]. 
Finally, the increased microhardness of the coatings may be related to the increased 
amount of carbides due to the melt and reaction of GNPs [29]. It was noted that the 
microhardness of the coating was decreased when the NiGNPs content exceeded 20%, 
which resulted from the aggregation phenomenon of GNPs in the un-dense cladding 
layer. The similar results can be seen in Ref. [30] and the aggregation phenomenon of 
GNPs was verified in Figures 9 and 10 in this work. Moreover, the heterogeneous size and 
distribution of grains in the 30% NiGNPs-Ni45 composite coating decreased the 
uniformity of the microhardness. 

 
Figure 7. (a) Mean microhardness and (b) cross-sectional microhardness distribution of Ni-based 
composite coatings with different GNPs content. 

3.2.2. Friction and Wear Property 
Friction coefficient is one of the effective methods of evaluating the wear resistance of 

coatings, and the low friction coefficient often means a better friction reduction effect. Figure 
8 showed the friction coefficient curves and loss weight histograms of Ni-based composite 
coatings with different GNPs content. It can be seen that different trends of friction 
coefficient curves were obtained for different coatings. For Ni45 coating, except for the initial 
wear stage, the friction coefficient possessed a platform stable stage. When GNPs were 
added, the friction coefficient of the coatings decreased successively after reaching the 
maximum value. The final friction coefficient of the three coatings added-GNPs was 
significantly decreased compared to Ni45 coating [31], and the friction coefficient of the 
composite coatings decreased first and then increased with the increase of GNPs content 
from Figure 8a. The final friction coefficient of 20% NiGNPS-Ni45 cladding layer obtained 
the lowest value of 0.388, which is lower than the friction coefficient of 0.47 of laser cladding 
coating when 10% TiC, TiN and B4C are added to the powder Ni204 [32]. The friction 
coefficient of composite coatings with the addition of 10% or 20% NiGNPs had a higher 
value in the early wear period (3 s < t ≤ 900 s) than in the later wear period; however, the 
friction coefficients of both composite coatings during all wear periods were lower than that 
of Ni45 coating. After 900s, the friction coefficients of the two nickel-based composite 
coatings containing NiGNPs (10% and 20%) decreased gradually, and finally stabilized 
around 0.385–0.401. During the early wear period, the fine microstructure and hard carbides 
in 10% NiGNPs-Ni45 and the 20% NiGNPs-Ni45 cladding layer were worn, making the 
friction coefficients of two composite coatings lower than that of the Ni45 sample. As the 
wear progressed, GNPs embedded in the composite coatings were ground. GNPs is a two-

Figure 7. (a) Mean microhardness and (b) cross-sectional microhardness distribution of Ni-based
composite coatings with different GNPs content.

3.2.2. Friction and Wear Property

Friction coefficient is one of the effective methods of evaluating the wear resistance
of coatings, and the low friction coefficient often means a better friction reduction effect.
Figure 8 showed the friction coefficient curves and loss weight histograms of Ni-based
composite coatings with different GNPs content. It can be seen that different trends of
friction coefficient curves were obtained for different coatings. For Ni45 coating, except for
the initial wear stage, the friction coefficient possessed a platform stable stage. When GNPs
were added, the friction coefficient of the coatings decreased successively after reaching
the maximum value. The final friction coefficient of the three coatings added-GNPs was
significantly decreased compared to Ni45 coating [31], and the friction coefficient of the
composite coatings decreased first and then increased with the increase of GNPs content
from Figure 8a. The final friction coefficient of 20% NiGNPS-Ni45 cladding layer obtained
the lowest value of 0.388, which is lower than the friction coefficient of 0.47 of laser cladding
coating when 10% TiC, TiN and B4C are added to the powder Ni204 [32]. The friction
coefficient of composite coatings with the addition of 10% or 20% NiGNPs had a higher
value in the early wear period (3 s < t ≤ 900 s) than in the later wear period; however,
the friction coefficients of both composite coatings during all wear periods were lower
than that of Ni45 coating. After 900s, the friction coefficients of the two nickel-based
composite coatings containing NiGNPs (10% and 20%) decreased gradually, and finally
stabilized around 0.385–0.401. During the early wear period, the fine microstructure and
hard carbides in 10% NiGNPs-Ni45 and the 20% NiGNPs-Ni45 cladding layer were worn,
making the friction coefficients of two composite coatings lower than that of the Ni45
sample. As the wear progressed, GNPs embedded in the composite coatings were ground.
GNPs is a two-dimensional material with a special structure, where a weak van der Waals
force between layers are existed, giving GNPs a self-lubricating property. Therefore, the
wear of the cladding layer was lowered and the friction coefficients of composite coatings
were gradually decreased [33]. It is noted that the friction coefficient of the 30% NiGNPs-
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Ni45 cladding layer increased again compared to that of the other two composite coatings,
probably due to the relatively large content of GNPs in the 30% NiGNPs-Ni45 sample.
The agglomeration of GNPs reduced the compactness of the microstructure of the 30%
NiGNPs-Ni45 cladding layer during laser cladding. The enhancement effect of GNPs on
cladding layer was therefore weakened, resulting in the slight reduce of friction coefficient
of the coating.
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Loss weight and loss weight ratio are the indexes to evaluate the wear resistance of
materials. The loss weight ratio (w) is calculated as follows:

w =
m

π·d·n (1)

where m is the loss weight of the sample, d is the diameter of the grinding ball and n
represents the total number of turns of the grinding. Figure 8b,c showed the comparison
of loss weight and loss weight ratio of four nickel-based coatings with different GNPs
content. It can be seen that the Ni45 coating had the highest loss weight with the value
of 1.2 mg, while the 20% NiGNPs-Ni45 sample possess the lowest value of 0.7 mg. The
loss weight ratio of four nickel-based coatings with different GNPs content were calculated
as 8.49 × 10−3 mg/m, 5.52 × 10−3 mg/m, 4.95 × 10−3 mg/m and 6.44 × 10−3 mg/m,
respectively. Obviously, with the increase of GNPs content, the wear resistance of the
Ni-based composite coatings was first gradually increased and then decreased, and the
highest wear resistance was achieved when 20% NiGNPs was added, which was consistent
with the results and analyses of the friction coefficient of the four coatings.
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Figure 9 showed the worn morphology of the four nickel-based coatings with different
GNPs content, and the corresponding EDS results were shown in Table 5. The width of the
wear tracks was increased as the addition of GNPs, and the average value was 294.7 µm,
350.5 µm, 422.1 µm and 628.4 µm for Ni45 coating, 10% NiGNPs-Ni45, 20% NiGNPs-Ni45
and 30% NiGNPs-Ni45 coating, respectively. As seen in Figure 9a–b, large numbers of
fine, granular and floc debris with large areas of flake shedding (micro-holes) existed at the
worn surface of Ni45 coating, and furrows parallel to the wear direction were observed.
From Figure 9c–h, with the addition of GNPs, the wear debris on the worn surface of the
coating was significantly reduced compared to that of Ni45 sample. Meanwhile, the furring
phenomenon was not obvious, with a relatively reduced degree of flake shedding. This
indicated that the wear resistance of the coating containing GNPs was higher than that
of the Ni45 coating. From the EDS results shown in Table 5, the flocking and granular
debris were mainly composed of Fe, Ni, Cr and C elements. During the wear process, the
hard phases fall off when the grinding ball is constantly rubbed, forming peeling pits and
furrows in the wear track and producing wear debris on the surface. The furrow was the
typical characteristic of abrasive wear and debris was the typical characteristic of adhesive
wear, while microstructure spalling was the main feature of fatigue wear [34]. Thus, the
mixed mechanisms of abrasive and fatigue wear occurred on the worn surface of coatings.

It is noted that some C-rich phase was observed on the worn surface of composite
coatings, which may be retained GNPs due to the analyses above. Raman analyses were
performed at the worn surface of the nickel-base composite coatings with different GNPs
content to further verify the C-rich phase, and the results were shown in Figure 10. It was
seen that D, G and 2D peaks existed, which were typical characteristic peaks of GNPs.
Therefore, the C-enriched phases exited at the worn surface of composite coatings were
GNPs. As can be seen from Figure 10, the GNPs showed different morphology, with a
multilayer structure characterized by wrinkles and folds at the worn surface of the nickel-
based composite coatings, which is quite different from the original GNPs morphology
shown in Figure 1a. GNPs patch could be spread along the sliding direction due to the role
of cyclic stress, which is characterized by the laminated sheets with different sizes shown
in Figure 10a,c,e. Compared with the low GNPs content (10% and 20%) composite coatings,
micro-holes existed at the worn surface of 30% NiGNPs-Ni45 sample, which was also
observed shown in Figure 4d. The wear debris was relatively increased, with small flakes
of microstructure spalling. This indicated that the wear resistance of 30% NiNPS-Ni45
sample was slightly lower than that of the other two composite coatings, which was also
consistent with the friction coefficient results shown in Figure 8.

In general, the reasons for the excellent wear resistance and friction reduction of the
Ni-based composite coatings containing GNPs could be summarized as follows. Firstly,
GNPs refine the grain size and improves the hardness of the coatings. Generally speaking,
the higher the hardness, the better the wear resistance. Secondly, GNPs, a two-dimensional
material with special structure, has a weak van der Waals force between the layers, which
makes it possess good self-lubrication performance; the contact surface enriched GNPs can
provide a lubricating effect [35].

Through this work, some prospects for coating research can be suggested. In the
coating study, it is necessary to further study the volume fraction of each phase and use the
BSE model to characterize the phases’ natures and morphologies. During the laser cladding
process, shielding gas should be used, which can influence porosities occurrence within the
cladded coatings. In the analysis of wear mechanism, coating microstructure, porosity and
the actual nature of the debris, especially oxides, should be taken into account. This could
be the subject of one or more other works to be published later.
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Table 5. EDS results of each spot shown in Figure 9 (at %).

Spot Fe Ni C Cr W

A 49.6 10.7 33.0 5.5 0.7
B 49.8 4.9 42.4 2.3 0.4
C 36.0 29.3 22.2 11.2 1.3
D 72.1 2.6 23.2 1.5 0.6
E 67.6 2.3 28.3 1.6 0.5
F 22.0 0.8 76.5 0.5 0.1
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4. Conclusions

Nickel-based composite coatings containing different GNPs content were successfully
prepared on Q235 steel by laser cladding technology. The microstructure and wear property
of the four nickel-based coatings were studied in detail. The main conclusions were listed
as follows:

(1) All the four coatings contain γ-(Ni, Fe), Cr23C6, Cr7C3, Fe3C and WC phases. Besides,
multilayer GNPs were retained successfully in the nickel-based composite coatings
when GNPs were added.

(2) With the addition of GNPs, the growth of columnar crystals of the coatings were inhib-
ited and the microstructure of the composite coatings were obviously refined. Mean-
while, the content of Cr-C compounds increased and its morphology was changed,
and the eutectic structure was gradually changed into granular network. When the
GNPs content reached 30%, the serious agglomeration of GNPs led to gas porosi-
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ties appearing in the composite coating during the laser cladding process, and the
compactness of the cladding layer was reduced.

(3) The mean microhardness of the Ni-based composite coatings containing GNPs was
significantly improved compared to that of the Ni45 coating. With the increase of
GNPs content, the microhardness of the Ni-based composite coatings was increased
first and then decreased, and the maximum mean microhardness of Ni-based compos-
ite coating was 745.06 when 20% NiGNPs was added.

(4) With the addition of GNPs, the friction coefficient was reduced and the wear resistance
was improved compared to the Ni45 coating, which was due to the refinement effect
and lubricating effect of GNPs.
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