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Abstract: Endometrial cancer (EC) is the second most common malignancy of the female reproductive
system worldwide. The updated EC classification emphasizes the significant role of various signaling
pathways such as PIK3CA-PIK3R1-PTEN and RTK/RAS/β-catenin in EC pathogenesis. Some of
these pathways are part of the EGF system signaling network, which becomes hyperactivated by
various mechanisms and participates in cancer pathogenesis. In EC, the expression of ErbB receptors
is significantly different, compared with the premenopausal and postmenopausal endometrium,
mainly because of the increased transcriptional activity of ErbB encoding genes in EC cells. Moreover,
there are some differences in ErbB-2 receptor profile among EC subgroups that could be explained
by the alterations in pathophysiology and clinical behavior of various EC histologic subtypes. The
fact that ErbB-2 receptor expression is more common in aggressive EC histologic subtypes (papillary
serous and clear cell) could indicate a future role of ErbB-targeted therapies in well-defined EC
subgroups with overexpression of ErbB receptors.

Keywords: ErbB receptors; EGF system; physiology; signaling pathways; carcinogenesis; expression
profile; clinical role; endometrial cancer

1. Introduction

Endometrial cancer (EC) is the second most common malignancy of the female repro-
ductive system worldwide [1]. It is more prevalent in wealthy and more developed regions
(North America, Europe, Australia, New Zealand), compared with less developed ones
(Central and South America, Asia, Africa) [1]. However, mortality rates are considerably
higher in less developed areas (northern Africa, Melanesia) [2,3]. The disease usually affects
postmenopausal women, with an average annual incidence reaching 2.1% [1]. Although
the vast majority of EC patients are postmenopausal, approximately 14% of them are
premenopausal and almost 4% are below 40 years of age [4–22].

Current evidence does not support any screening methodology for early detection
of EC, as cervical cytology performs poorly [23]. However, the fluorescence in situ hy-
bridization test (FISH) in vaginal swab specimens has shown promising results in EC
detection [24]. Artificial intelligence and machine learning algorithms have been proposed
to assist in the discrimination between benign and malignant endometrial nuclei, obtained
via image analysis and measured from liquid-based cytology slides and lesions so far. These
show promising results, as their performance appears to be similar to that of traditional
regression models in EC [25–28]. Moreover, biospectroscopy has several applications in

Epigenomes 2023, 7, 24. https://doi.org/10.3390/epigenomes7040024 https://www.mdpi.com/journal/epigenomes

https://doi.org/10.3390/epigenomes7040024
https://doi.org/10.3390/epigenomes7040024
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/epigenomes
https://www.mdpi.com
https://orcid.org/0000-0002-9244-0649
https://orcid.org/0000-0003-4444-3711
https://orcid.org/0000-0003-3555-8867
https://doi.org/10.3390/epigenomes7040024
https://www.mdpi.com/journal/epigenomes
https://www.mdpi.com/article/10.3390/epigenomes7040024?type=check_update&version=2


Epigenomes 2023, 7, 24 2 of 17

biomedical science, from detecting toxins and pollutants in the human body to identifying
areas of stem cells in human tissue. It can effectively identify biomarkers of disease states at
many organ sites without the need for staining or isotopic labeling [29,30]. Apart from that,
pelvic ultrasound scans or saline infusion sonograms can be offered on a 1–2-yearly basis in
the context of routine gynecological examination, except for individuals undergoing close
follow-up for hereditary, non-polyposis colon cancer (HNPCC) [31].

In the past, the sporadic classification of EC cases was based on clinical, metabolic,
endocrine and pathological features [32,33]. More recently, genomic data including so-
matic mutation rates, frequency of copy number alterations and MSI status have been
used to create an updated EC classification, reflecting the increased impact of molecu-
lar biology in disease progression and patients’ outcome [34,35]. Moreover, the updated
EC classification emphasizes the significant role of various signaling pathways, such as
PIK3CA-PIK3R1-PTEN and RTK/RAS/β-catenin, in EC pathogenesis [34–36].

Some of these pathways are part of the EGF system signaling network, which becomes
hyperactivated with various mechanisms (gain of function mutations, genomic amplifi-
cation, chromosomal rearrangements and autocrine activation) and participates in cancer
pathogenesis [37–42].

Our aim is to provide an update on current knowledge of the signaling network of
ErbB receptors and their participation in cancer pathogenesis, as well as their potential
clinical role in EC cases.

2. Physiology of ErbB Receptors

The EGF system is present in various human organs and plays a significant role in cell
proliferation, differentiation, migration and apoptosis during embryogenesis and postnatal
development [39,43,44].

2.1. ErbB Receptors

ErbB receptors are members of the subclass I superfamily of receptor tyrosine kinases
(RTKs) [37,39,45]. In humans, the EGF system consists of the following ErbB receptors:
epidermal growth factor receptor (EGFR), ErbB-2, ErbB-3 and ErbB-4 [37,39,44–46]. These
receptors are trans-membrane glycoproteins that catalyze the transferring of γ phosphate
of ATP to hydroxyl groups of tyrosines in target proteins [47]. However, ErbB-3 has no
intrinsic tyrosine kinase activity, and it depends on another ErbB receptor (usually ErbB-2)
for intracellular signaling [45,48].

Regarding their structure, ErbB receptors have an extracellular ligand-binding domain,
a transmembrane domain, a short juxtamembrane section, an intracellular bilobed tyrosine
kinase domain and a tyrosine-containing C-terminal tail (Figure 1) [44–46,49].
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Figure 1. Schematic structure of ErbB receptors. EC domain: extracellular ligand-binding domain. 
TM domain: transmembrane domain. JM section: juxtamembrane section. K domain: intracellular 
bilobed tyrosine kinase domain. CT tail: tyrosine-containing C-terminal tail. 
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tomoregulin [39,44–46]. Ligand binding to the extracellular domain of the ErbB receptor 
results in conformational changes and induces homodimerization and heterodimerization 
of receptors [37,44–46]. However, the ErbB-2 receptor fails to bind any ligands [37,44–46]. 
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1. Ligands with binding specificity for EGFR only: EGF, TGF-a and AR [44–46]. 
2. Ligands with dual binding specificity for EGFR and ErbB4: HB-EGF, BTC and EPR 
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[44–46]. 
5. Ligands with dual binding specificity for ErbB-3 and ErbB-4: NRG-1, NRG-2 [44–
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It should be emphasized that ErbB ligands usually act a short distance from the cells 

producing them [46,50]. Overall, ErbB ligands may act either on the same cell (autocrine 
signaling), on an adjacent cell (juxtacrine signaling) or on a nearby cell (paracrine 
signaling) [46,50]. 

Table 1. ErbB ligands and their affinity for ErbB receptors. 

 ErbB-1 ErbB-2 ErbB-3 ErbB-4 
EGF + - - - 

TGF-a + - - - 
Amphiregulin + - - - 

HB-EGF + - - + 
Betacellulin + - - + 

Epigen + - - + 
Epiregulin + - - + 

Neuregulin-1 - - + + 
Neuregulin-2 - - + + 
Neuregulin-3 - - - + 
Neuregulin-4 - - - + 

Neuroglycan C - - + - 
Tomoregulin - - - + 

+ means positive, while - means negative. 

Figure 1. Schematic structure of ErbB receptors. EC domain: extracellular ligand-binding domain.
TM domain: transmembrane domain. JM section: juxtamembrane section. K domain: intracellular
bilobed tyrosine kinase domain. CT tail: tyrosine-containing C-terminal tail.

The extracellular ligand-binding domain is divided into four subdomains: L1 (or I),
CR1 (or II), L2 (or III) and CR2 (or IV) [44,46,49]. The leucine-rich subdomains L1 and L2
participate in ligand binding [44,46,49]. The cysteine-rich subdomains CR1 and CR2 par-
ticipate in disulfide bond formation, while subdomain CR1 contains a β-hairpin loop and
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participates in ErbB receptors’ homodimerization and heterodimerization [44,46,49]. More-
over, the intracellular tyrosine kinase domain is subdivided into two lobes, N and C [44,46].

2.2. ErbB Ligands

In humans, the EGF system has the following ErbB peptide mediators (ligands): EGF,
transforming growth factor-a (TGF-a), amphiregulin (AR), heparin-binding growth factor
(HB-EGF), betacellulin (BTC), epigen, epiregulin (EPR), neuregulin-1 (NRG-1), neuregulin-
2 (NRG-2), neuregulin-3 (NRG-3), neuregulin-4 (NRG-4), neuroglycan C and tomoreg-
ulin [39,44–46]. Ligand binding to the extracellular domain of the ErbB receptor results
in conformational changes and induces homodimerization and heterodimerization of
receptors [37,44–46]. However, the ErbB-2 receptor fails to bind any ligands [37,44–46].

Based on their affinity for one or more receptors, ErbB ligands could be further
classified into the following subgroups:

1. Ligands with binding specificity for EGFR only: EGF, TGF-a and AR [44–46].
2. Ligands with dual binding specificity for EGFR and ErbB4: HB-EGF, BTC and

EPR [44–46].
3. Ligands with binding specificity for ErbB-3 only: neuroglycan C [44–46].
4. Ligands with binding specificity for ErbB-4 only: NRG-3, NRG-4 and tomoreg-

ulin [44–46].
5. Ligands with dual binding specificity for ErbB-3 and ErbB-4: NRG-1, NRG-2 [44–46].
All these data are presented in detail in Table 1.

Table 1. ErbB ligands and their affinity for ErbB receptors.

ErbB-1 ErbB-2 ErbB-3 ErbB-4

EGF + - - -
TGF-a + - - -

Amphiregulin + - - -
HB-EGF + - - +

Betacellulin + - - +
Epigen + - - +

Epiregulin + - - +
Neuregulin-1 - - + +
Neuregulin-2 - - + +
Neuregulin-3 - - - +
Neuregulin-4 - - - +

Neuroglycan C - - + -
Tomoregulin - - - +

+ means positive, while - means negative.

It should be emphasized that ErbB ligands usually act a short distance from the cells pro-
ducing them [46,50]. Overall, ErbB ligands may act either on the same cell (autocrine signaling),
on an adjacent cell (juxtacrine signaling) or on a nearby cell (paracrine signaling) [46,50].

2.3. Receptor Homodimerization and Heterodimerization

There are two distinct conformations of the extracellular ligand-binding domain, based
on the activation status of EGFR, ErbB-3 and ErbB-4 receptors:

1. Closed conformation. When ErbB receptors are inactive, there are intramolecular
interactions between the cysteine-rich subdomains CR1 and CR2, causing closed conforma-
tion of the extracellular ligand-binding domain [44–46,51,52].

2. Open conformation. When ErbB receptors become active, the leucine-rich sub-
domains L1 and L2 create a ligand-binding pocket, allowing interactions with a single
ligand, while the extracellular ligand-binding domain takes an open conformation and the
β-hairpin loop dimerization arm of subdomain CR1 is exposed [44–46,51,52].

It seems that there is equilibrium between both conformations of the extracellular
ligand-binding domain, related directly to ligand presence and subsequent ligand bind-
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ing [51–53]. More specifically, ligand binding to the leucine-rich subdomains L1 and L2
stabilises the extracellular ligand-binding domain to an open conformation, exposes the
β-hairpin loop dimerization arm of subdomain CR1 and allows receptor homodimerization
and heterodimerization [44–46,52–54]. Subsequently, ErbB receptor dimerization induces
conformational changes of the intracellular bilobed tyrosine kinase domain [44–46,55,56].

In contrast, the extracellular ligand-binding domain of the ErbB-2 receptor has an
extended conformation that is not suitable for ligand binding, as there is close proximity of
the leucine-rich subdomains L1 and L2, abolishing the ligand-binding site [44–46,57–59].
However, the extended conformation of the ErbB-2 receptor is necessary for interaction
with other ErbB receptors and subsequent ligand-independent heterodimerization and
signaling [44–46,57–59]. Moreover, abnormal overexpression of the ErbB-2 receptor permits
ligand-independent receptor homodimerization [44,46,58].

Overall, homodimerization and heterodimerization of ErbB receptors represents an
essential part in the pathophysiology of the EGF system signaling network [44–46,55,56].
Furthermore, the ErbB-2 and ErbB-3 heterodimer is the most transforming and mitogenic
receptor complex [60].

2.4. Intracellular Tyrosine Kinase Activation

Following homodimerization and heterodimerization of ErbB receptors, conformational
changes of the intracellular tyrosine kinase domain take place, which in turn cause tyrosine
kinase activation and phosphorylation of the tyrosine-containing C-terminal tail [44–46,55,56].

As already mentioned, the intracellular tyrosine kinase domain has a bilobed structure,
with ATP binding between the N and C lobes [44–46,56]. More specifically, the C-lobe of
an intracellular tyrosine kinase domain (activator) allosterically interacts with the N-lobe
of another intracellular tyrosine kinase domain (receiver) within the same dimerization
pair [44–46,56]. This interaction induces conformational changes in the N-lobe of the
receiver tyrosine kinase and finally causes its activation [44–46,56]. Subsequently, the
activated receiver tyrosine kinase catalyzes phosphorylation of tyrosine residues in the
tyrosine-containing C-terminal tail of the activator tyrosine kinase [44–46,56]. These phos-
phorylated tyrosine residues serve as docking sites for adaptor proteins, enzymes and
various signaling molecules containing Src homology 2 (SH2) and phosphotyrosine binding
(PTB) domains [38,44–46,56,61,62].

3. Signaling Pathways

Activation and subsequent autophosphorylation of ErbB receptors enables recruit-
ment of various signaling molecules containing the SH2 and PTB domains, that result in
downstream signaling via several pathways (Figure 2) [38,42,44–46,56,61–63]:

3.1. Ras/Raf/MAPK Pathway

The Ras/Raf/mitogen-activated protein kinase (MAPK) pathway has a fundamental
role in cell biology, mainly as a transducer of extracellular signals to cellular responses [63,64].
It is actively involved in cell cycle regulation (proliferation, differentiation, migration and
apoptosis), integrin signaling, tissue repair and angiogenesis [64–67].

Following ErbB receptor activation and phosphorylation of the tyrosine-containing
C-terminal tail, the activated ErbB receptor recruits, directly or indirectly (through the
Shc adaptor protein), an adaptor protein named growth factor receptor binding protein 2
(Grb2) via its SH2 domain (Src homology 2) [64,68–72]. Subsequently, the SH3 domain of
Grb2 interacts with the proline-rich C-terminal domain of Son of Sevenless (Sos) in order to
create an ErbB receptor–Grb2–Sos complex [64,68,71,72]. This leads to Sos translocation to
the cell membrane and enables its interaction with Ras [72–74].
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The interaction between Sos and Ras causes conformational changes and allosteric
activation of Sos through a rotation of its REM domain [72–75]. The allosteric activation of
Sos allows Ras binding and promotes replacement of GDP with GTP in Ras that leads to
Ras activation (Ras-GTP) and initiation of the Ras pathway [72,73,75,76].

More specifically, Ras–GTP recruits and dimerizes Raf-1 protein kinase on the inner
side of the cell membrane, in order to activate it through tyrosine phosphorylation [72,77,78].
Subsequently, activated Raf-1 interacts and activates MAPK/ERK kinase (MEK1 and
MEK2), which in turn phosphorylates, activates and anchors to the cytoplasm downstream
proteins such as extracellular signal-regulated kinases (ERK1 and ERK2) [64,72]. Then,
activated ERK1 and ERK2 translocate to the nucleus in order to phosphorylate and activate
various nuclear transcription factors involved in cell proliferation, differentiation and
migration [63,64,72].

Overall, the Ras/Raf/MAPK pathway is implicated in a wide variety of cellular
biological functions, but is also related to tumorigenesis [64,72].

3.2. PI3K/Akt Pathway

The phosphatidylinositol 3-kinase (PI3K)/Akt pathway has an essential role in cell
biology, mainly in transduction of extracellular signals to intracellular messages [79]. It
is actively involved in cell cycle regulation (proliferation, migration and apoptosis) and
cytoskeletal rearrangement [80].

Following ErbB receptor activation and phosphorylation of the tyrosine-containing
C-terminal tail, the activated ErbB receptor directly recruits the PI3K (subclass IA) regu-
latory subunit via its SH2 domain and causes allosteric activation of the PI3K catalytic
subunit [79,81,82]. Subsequently, activated PI3K catalyzes conversion of phosphatidylinosi-
tol (4, 5) bisphosphate (PIP2) to phosphatidylinositol (3, 4, 5) trisphosphate (PIP3) at the cell
membrane [79,81]. Then PIP3 provides docking sites for signaling proteins with pleckstrin
homology (PH) domains, including 3-phosphoinositide-dependent kinase 1 (PDK1) and
serine-threonine protein kinase Akt (protein kinase B (PKB)) [79,81,82].

In particular, PIP3 directly recruits Akt to the cell membrane via its PH domain
and this results in Akt conformational changes and exposure of two crucial amino-acid
residues (Thr308 and Ser473) [79,80,83]. Thr308 is phosphorylated by PDK1, while Ser473
is phosphorylated by PDK2 [79–81,83,84]. Both phosphorylation events are necessary for
full Akt activation, which in turn phosphorylates many cytoplasmic and nuclear proteins
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and regulates a wide range of cellular processes involved in protein synthesis, cell cycle
progression and cell survival [79–84].

It is interesting to note that specific docking sites for the PI3K (subclass IA) regu-
latory subunit are present on the ErbB-3 receptor, while they are absent on the EGFR
receptor [63,85]. Moreover, EGFR-dependent PI3K activation occurs either through EGFR
and ErbB-3 dimerization or through a Gab-1 docking protein [63,86].

Overall, the PI3K/Akt pathway is implicated in various cellular processes and plays
an important role in carcinogenesis [63,80].

3.3. STAT Pathway

The signal transducers and activators of transcription (STAT) pathway has a principal
role in cell biology, mainly as a transducer of extracellular cytokine signals to cellular re-
sponses [87–89]. It is actively involved in cell cycle regulation (proliferation, differentiation,
migration and apoptosis) [87–89].

Following ErbB receptor activation and phosphorylation of the tyrosine-containing
C-terminal tail, the activated ErbB receptor can cause JAK—independent tyrosine phos-
phorylation of STAT proteins, probably via the Src kinase [87–90]. Phosphorylated and
activated STAT proteins create dimers via SH2 domain interactions and translocate to the
nucleus, where they bind to specific DNA sequences in gene promoters and regulate gene
transcription [87–89,91].

Overall, the STAT pathway is implicated in various developmental and homeostatic
processes, but also related to tumorigenesis [87–89,91].

3.4. Src Kinase Pathway

The Src kinase pathway has a critical role in cell biology, especially as a transducer of
extracellular signals to cellular responses [92]. It is actively involved in cell cycle regulation
(proliferation, adhesion, migration and apoptosis), integrin signaling and angiogenesis [91,92].

Following ErbB receptor activation and phosphorylation of the tyrosine-containing
C-terminal tail, the activated ErbB receptor recruits Src kinase via its SH2 domain and
causes Src activation [91,93]. Subsequently, activated Src acts as signal transducer and
enhancer of ErbB receptor activation [63,94,95].

More specifically, Src activates many downstream proteins (p130Cas, FAK, PI3K,
VEGF, HIF1α and STAT) through tyrosine phosphorylation [91]. Furthermore, Src reg-
ulates various cell cycle proteins (c-Myc, cyclin D and p21) through transcriptional and
post-translational mechanisms [91].

Overall, the Src kinase pathway is implicated in many cellular processes and plays an
important role in carcinogenesis [63,91,96,97].

3.5. PLCγ/PKC Pathway

The phospholipase Cγ (PLCγ)/protein kinase C (PKC) pathway has an essential role in
cell biology, mainly in transduction of extracellular signals to intracellular messages [46,98].
It is actively involved in cell cycle regulation (proliferation, differentiation and migration)
and angiogenesis [46,98].

Following ErbB receptor activation and phosphorylation of the tyrosine-containing
C-terminal tail, the activated ErbB receptor recruits PLCγ via its SH2 domain and causes
PLCγ phosphorylation and activation [98–100]. Subsequently, activated PLCγ catalyzes hy-
drolysis of phosphatidylinositol (4, 5) bisphosphate (PIP2) to inositol (1, 4, 5) trisphosphate
(IP3) and (1, 2) diacylglycerol (DAG) [95,98,101]. IP3 has significant role in intracellular
calcium release, while DAG is cofactor in protein kinase C (PKC) activation [46,63,95]. Acti-
vated PKC catalyzes phosphorylation and activation of several transcription factors [46].
Moreover, PKC is actively involved in multiple signaling components, including MAPK
and JNK pathways [46,63,95,102,103].

Overall, the PLCγ/PKC pathway is implicated in many cellular processes and plays
an important role in carcinogenesis [46,98].
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4. Epigenetic Regulation of ErbB Signaling

As already mentioned, the activation and subsequent autophosphorylation of ErbB
receptors enables recruitment of various signaling molecules and results in downstream
signaling via several pathways [38,42,44–46,56,61–63].

However, heritable changes in gene function without alterations in the DNA sequence
(epigenetic changes) could possibly affect ErbB—mediated signal transduction and gene
transcription via several mechanisms [104,105]:

4.1. DNA Methylation

DNA methylation is an extensively studied mechanism of epigenetic alterations [106].
DNA methylation patterns (methylation and demethylation) are regulated by specific
enzymes and subsequently affect gene transcription [106,107].

More specifically, DNA methylation is catalyzed by the family of DNA methyltrans-
ferase (DNMT) enzymes, which transfer methyl groups from S-adenosyl-L-methionine
(SAM) to cytosine residues and form 5-methylcytosine (5-mC) [106,108]. The majority
of DNA methylation occurs in CpG islands, in which cytosine is followed by a gua-
nine [106]. Most CpG islands are present in promoters and their methylation leads to
transcriptional silencing [106,108]. Especially in ErbB signaling, PTEN promoter hyper-
methylation suppresses PTEN expression and activity, with a direct effect on PI3K/Akt
pathway signaling [104,109].

Likewise, DNA demethylation is achieved either by active enzymatic demethylation or
by passive replication—dependent on the dilution of methylation [108]. Particularly in ac-
tive enzymatic demethylation, 5-mC undergoes a series of oxidation reactions catalyzed by
the methylcytosine dioxygenases Ten-Eleven-Translocation (TET) enzymes [108,110]. The
5-hydroxymethylcytosine (5hmC) is the first intermediate of active DNA demethyla-
tion [108]. Enrichment of 5hmc in promoter regions is often associated with activation
of gene expression [108]. In this way, DNA demethylation links to genomic instabil-
ity [106,108]. Especially in ErbB signaling, Ras promoter hypomethylation enhances Ras ex-
pression and activity, with a direct effect on signaling of the Ras/Raf/MAPK and PI3K/Akt
pathways [104].

4.2. Histone Modification

Histone modifications represent another mechanism of epigenetic alterations [106].
They affect lysine and arginine residues on histone tails, which are targets of cova-
lent post-transcriptional modifications (acetylation, methylation, phosphorylation and
ubiquitylation) [106,108].

More specifically, histone acetylation occurs through the addition of an acetyl group to
the lysine residues in histone tails [106]. Histone acetyltransferases (HATs) add acetyl groups
and are associated with active gene transcription at promoter and enhancer sites [106]. In
contrast, histone deacetylases (HDACs) remove acetyl groups and are associated with gene
silencing and transcriptional repression [106]. Especially in ErbB signaling, EGFR acetyla-
tion by CREB-binding protein (CBP) acetyltransferase affects receptor phosphorylation and
subsequent activation [104,111].

Likewise, histone methylation occurs through the addition of methyl groups to the
arginine or lysine residues in histone tails [106]. Histone methyltransferases (HMTs) add
methyl groups and are associated with both active gene transcription and gene repres-
sion [106]. In contrast, histone demethylases (HDMs) remove methyl groups [106].

4.3. Non-Coding RNAs

Non-coding RNAs (ncRNAs) are functional RNA molecules that occupy a large frac-
tion of the genome, but they are not translated into proteins [108,112–114]. They have key
roles in the regulation of gene expression at transcriptional and translational levels [113,114].
Moreover, they can be divided into the following categories: microRNAs (miRNAs), long
noncoding RNAs (lncRNAs), small interfering RNAs (siRNAs), small nuclear RNAs (snR-
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NAs), small nucleolar RNAs (snoRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs),
circular RNAs (circRNAs) and PIWI-interacting RNAs (piRNAs) [108,112–114]. Among
these, miRNAs and lncRNAs have crucial roles in cancer epigenetics [113,114].

More specifically, miRNAs are small ncRNAs, approximately 19 to 22 nucleotides
in length, that regulate gene expression by posttranscriptional silencing [115,116]. They
usually bind to the 3′-untranslated region (3′-UTR) of target messenger RNA (mRNA)
molecules, resulting in either translational inhibition or mRNA degradation [113–115,117].

In contrast, lncRNAs are larger ncRNAs, more than 200 nucleotides in length, that regulate
gene expression at transcriptional, post-transcriptional and epigenetic levels [113,118,119]. In
particular, guide lncRNAs act by recruiting or rejecting epigenetic regulators (chromatin modi-
fying complexes and chromatin remodeling complexes) onto specific chromosomal loci [120].
Architect lncRNAs act by modifying the three-dimensional chromatin conformation [120]. En-
hancer lncRNAs regulate gene transcription through enhancer-like functions [120]. Moreover,
lncRNAs regulate DNA methylation status by recruiting or inhibiting DNA methyltransferases
and demethylases [120]. Furthermore, lncRNAs regulate mRNA stability, protein—protein
interactions and post-translational protein modifications [113,121–124].

5. EGF Dysregulation and Carcinogenesis

Dysregulation of the EGF system signaling network participates in the pathogenesis of
various diseases (diabetes, autoimmune, inflammatory, cardiovascular and nervous system
disorders), as well as in cancer [37–39,41]. Moreover, constitutive EGF system activation and
uncontrolled ErbB signaling may disrupt the balance in cell cycle regulation (proliferation,
differentiation, migration and apoptosis), sensitize cells to oncogenic transformation and
trigger ErbB-induced oncogenesis [37–39,41,42].

More specifically, in malignant transformation, the EGF system becomes hyperacti-
vated with the following four main mechanisms: gain of function mutations, genomic
amplification, chromosomal rearrangements and autocrine activation [40–42].

5.1. Gain of Function Mutations

The gain of function (GOF) mutations may have a crucial role in carcinogenesis, as
they generate novel protein isoforms with new and important functions [125]. Based on
their consequences for cancer development, GOF mutations could be further subclassified
into driver and passenger mutations [125,126]. Driver mutations provide a selective cell
growth advantage and promote cancer development, while passenger mutations do not
confer any cell growth advantage and do not contribute to carcinogenesis [126,127].

Especially in the EGF system, GOF mutations could possibly affect most domains of
an ErbB receptor and lead to aberrant downstream signaling [42]. More specifically, a GOF
mutation usually involves the bilobed tyrosine kinase domain of an ErbB receptor and causes
tyrosine kinase hyperactivation and aberrant downstream signaling, as well as conferring
oncogenic properties [42]. However, GOF mutations could also affect various ErbB recep-
tor domains (the extracellular ligand-binding domain, transmembrane domain and short
juxtamembrane section) and cause receptor activation using alternative mechanisms [42].

5.2. Genomic Amplification

Genomic amplification is the copy number increase in a specific region of the genome
and is associated with overexpression of the amplified genes [128,129]. It usually occurs
during development and carcinogenesis and may be promoted by common chromosomal
fragile sites, errors in DNA replication or telomere dysfunction [129,130]. Amplified
sequences can be organized as extrachromosomal elements, repeated units at a single locus
or interspersed throughout the genome [128,129].

Especially in the EGF system, genomic amplification and subsequent ErbB recep-
tor overexpression leads to increased receptor local concentration, constitutive receptor
activation, avoidance of receptor regulatory mechanisms and aberrant downstream sig-
naling [42,131,132]. More specifically, ErbB-2 overexpression causes constitutive ErbB-2



Epigenomes 2023, 7, 24 9 of 17

activation as well as EGFR ligand-independent activation [131]. Moreover, ErbB-2 overex-
pression inhibits down-regulation mechanisms of ErbB-2 and EGFR [131].

5.3. Chromosomal Rearrangements

Chromosomal rearrangements have important roles in carcinogenesis and include dele-
tions, duplications, inversions and translocations [133]. They are mainly caused by either
defective DNA double strand break repair or faulty DNA replication [134]. Based on their
effect on chromosomes, they could be further subclassified into simple and complex [134].
Simple chromosomal rearrangement results from a single fusion that preserves genetic infor-
mation but sometimes disrupts regulation of the genes involved [134]. In contrast, complex
chromosomal rearrangement results from multiple fusions at a single locus that cause changes
in genetic content and in chromosomal linear structure [134]. Overall, chromosomal rearrange-
ments lead to either hybrid gene formation or gene dysregulation [133,134].

Especially in the EGF system, chromosomal rearrangements cause the formation
of fusion oncoproteins, consisting partly of the ErbB receptor and partly of the fusion
partner [42,135]. These fusion oncoproteins have remarkable structural similarities, can be
membrane bound or cytoplasmic, and contain an activated tyrosine kinase domain [42,135].

5.4. Autocrine Activation

Autocrine activation is a type of self-stimulation in which a cell secretes a hormone-like
factor that binds functional receptors on the same cell [136]. This type of cell signaling
has a significant role in carcinogenesis, particularly in cases of constitutive autocrine
activation [136–138].

Especially in the EGF system, autocrine activation of ErbB receptors is a well described
phenomenon that leads to downstream signaling via several pathways and may confer
oncogenic properties [42,139,140].

6. ErbB Receptors in Endometrial Cancer

During the menstrual cycle, there is a wide variation in the profile of ErbB receptors,
indicating a central role of the EGF system in the regulation of endometrial cyclical growth
and shedding [141,142].

In EC, the expression of ErbB receptors is significantly different, compared with the
premenopausal and postmenopausal endometrium [141,143,144]. This is mainly because
of the increased transcriptional activity of ErbB encoding genes in EC cells [144].

6.1. Profile of ErbB Receptors in Endometrial Cancer

Overall, EGFR overexpression is reported in 43–67% of unselected EC cases [144–155]. EGFR
overexpression is present in approximately 46% of type I EC (endometrioid) cases [149,151,156].
EGFR overexpression is observed in 34–50% of type II EC (papillary serous, clear cell,
undifferentiated) cases [149,151,156–159].

ErbB-2 overexpression and ErbB-2 gene amplification represents a very rare event in
unselected EC cases [144,149,153–155]. However, ErbB-2 overexpression and ErbB-2 gene ampli-
fication are present in only 8–15% and 3% of type I EC cases, respectively [144,149,156,160–163].
In contrast, ErbB-2 overexpression and ErbB-2 gene amplification are more common in type
II EC cases [149,151,156–159].

Moreover, the exact frequency of ErbB-2 overexpression and ErbB-2 gene amplification
in type II EC remains controversial, as there are many racial differences [149,151,157,164,165].
More specifically, ErbB-2 overexpression and ErbB-2 gene amplification are more com-
mon in African—American patients with type II EC, when compared with Caucasian
individuals [164,165].

Likewise, ErbB-2 overexpression and ErbB-2 gene amplification have significant varia-
tions among different histologic subtypes of type II EC [149,151,157,160,165–167]. ErbB-2
overexpression and ErbB-2 gene amplification are reported in 18–80% and 17–47% of papil-
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lary serous EC cases, respectively [149,151,160,163,165–167], and 33% and 16–50% of clear
cell EC cases, respectively [149,151,160,167].

ErbB-3 overexpression is reported in 30% of unselected EC cases [141,153]. More
specifically, ErbB-3 overexpression is more common in well differentiated tumors when
compared with moderately and poorly differentiated ones [141].

Similarly, ErbB-4 overexpression is reported in 15% of unselected EC cases [141,153].
Overall, there are some differences in ErbB-2 receptor profile in selected EC patients

(EC histologic subtypes and racial—ethnic subgroups) [143,150,157,164]. ErbB-2 receptor
expression is more common in papillary serous and clear cell EC cases [143,150,157]. This
is mainly based on differences in the pathophysiology and clinical behavior of various EC
histologic subtypes [143,150,157].

6.2. Clinical Role in Endometrial Cancer

The relationship of the ErbB receptors profile with disease stage, tumor grade and
response to treatment remains controversial in EC cases [149,153].

In particular, the clinical role of EGFR overexpression has not been studied thor-
oughly in EC patients [149,153]. Some studies demonstrate an association between EGFR
overexpression and poor clinical outcome, while others report otherwise [145–148]. It
seems that EGFR overexpression may have a dual role in EC cases [149]. EGFR over-
expression in type I EC is associated with less aggressive disease and more favorable
outcomes [149,151,153,157]. In contrast, EGFR overexpression in type II EC is associated
with more aggressive disease and adverse clinical outcomes [149,151,153,157].

However, the clinical significance of ErbB-2 overexpression and ErbB-2 gene amplifi-
cation has been studied extensively in EC patients [151,157,160,165,166,168–170]. ErbB-2
overexpression and ErbB-2 gene amplification are indicators of a more aggressive disease
with reduced response to treatment and less favorable outcomes, especially in patients with
type II EC [151,153,157,160,165,166,168–171].

Furthermore, the clinical role of ErbB-3 and ErbB-4 overexpression has not been
studied extensively in patients with EC [141,143,150–153,157].

It becomes apparent that ErbB-2 receptor expression is more common in aggressive EC
histologic subtypes (papillary serous and clear cell) [143,150,157]. This possibly indicates a
future role of ErbB-targeted therapies in well-defined EC subgroups with overexpression
of ErbB receptors [150,157,172].

7. Conclusions

Overall, the EGF system signaling network becomes hyperactivated with various
mechanisms and possibly participates in EC pathogenesis via several signaling path-
ways [37–42]. There are some differences in ErbB-2 receptor profile among EC subgroups
that could be explained by the differences in pathophysiology and clinical behavior of
various EC histologic subtypes [143,150,157].

The fact that ErbB-2 receptor expression is more common in aggressive EC histologic
subtypes (papillary serous and clear cell), might indicate a future role of ErbB-targeted
therapies in well-defined EC subgroups with overexpression of ErbB receptors [150,157,172].
In this context, future studies are needed in order to evaluate thoroughly the effectiveness
of ErbB-targeted therapies as single agents or adjuvant treatment in well-defined EC
subgroups with overexpression of ErbB receptors [7,21,172–178].
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