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Simple Summary: The aquaculture industry is expected to grow in the coming years, and this means
more sustainable ways are urgently needed to feed cultured animals. Insects are a promising ingredi-
ent for fish and shrimp aquafeeds, as they can convert agricultural waste into nutritious biomass.
However, insect species that are currently commercially available lack some essential nutrients, such
as omega-3 fatty acids, necessary for suitably growing marine organisms. We have screened the
native wild seaweed fly, Fucellia maritima, to increase current knowledge on the nutritional diversity
that insects may add to aquafeeds and for the presence of pathogenic bacteria. We found that these
flies have a good amount of healthy fats, including important fatty acids that are beneficial for marine
fish. Additionally, they have an acceptable amount of Enterobacteriaceae for animal feed and no
presence of Salmonella sp. This finding suggests that Fucellia maritima can be a valuable ingredient for
aquafeed formulation, enhancing the growth and overall health of farmed marine animals.

Abstract: World aquaculture is expected to continue to grow over the next few decades, which
amplifies the need for a higher production of sustainable feed ingredients for aquatic animals. Insects
are considered good candidates for aquafeed ingredients because of their ability to convert food
waste into highly nutritional biomass. However, commercially available terrestrial insect species
lack n-3 long-chain polyunsaturated fatty acids (LC-PUFAs), which are essential biomolecules for
marine cultured species. Nevertheless, several coastal insect species feature LC-PUFAs in their
natural fatty acid (FA) profile. Here, we analysed the lipidic profile of wild-caught seaweed fly
Fucellia maritima, with a focus on their FA profile, to evaluate its potential to be used as an aquafeed
ingredient, as well as to screen for the presence of pathogenic bacteria. Results showed that the
flies had a total lipid content of 13.2% of their total dry weight. The main classes of phospholipids
(PLs) recorded were phosphatidylethanolamines (PEs) (60.8%), followed by phosphatidylcholine
(PC) (17.1%). The most abundant FA was palmitoleic acid (C16:0) with 34.9% ± 4.3 of total FAs,
followed by oleic acid (C18:1) with 30.4% ± 2.3. The FA composition of the flies included essential
fatty acids (EFAs) for both freshwater fish, namely linoleic acid (C18:2 n-6) with 3.4% ± 1.3 and alpha-
linoleic acid (C18:3 n-3) with 3.4% ± 1.9, and marine fish, namely arachidonic acid (C20:4 n-6) with
1.1% ± 0.3 and eicosapentaenoic acid (C20:5 n-3) with 6.1% ± 1.2. The microbiological analysis found
9.1 colony-forming units per gram (CFU/g) of Enterobacteriaceae and no presence of Salmonella
sp. was detected in a sample of 25 g of fresh weight. These findings indicate that Fucellia maritima
biomass holds the potential to be used as an additional aquafeed ingredient due to its FA profile and
the low count of pathogenic bacteria, which can contribute to the optimal growth of fish and shrimp
with a low risk of pathogen transfer during the feed production chain.
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1. Introduction

Aquaculture has grown steadily over the past several decades and is expected to
grow even more by 2050 [1]. Aquaculture was responsible for the production of 88 million
tonnes of aquatic animals in 2020 (49% of total production) [1]. However, most fish species
produced in aquaculture are highly dependent on a diet rich in protein and long-chain
polyunsaturated fatty acids (LC-PUFAs), and with the decline in the production of fish
meal (FM) and fish oil (FO), new ingredients have been researched and used [1].

Among the new ingredients being explored are those that are plant-based, which are
often not entirely sustainable and might contain anti-nutritional elements [2,3]. Addition-
ally, single-cell organisms have also been tested, but these are costly, and several are yet
to be readily available at a commercial scale [3,4]. Despite drawbacks, namely negative
impacts on the environment and potential disease transmission risks, livestock sources
have also been considered [3,5]. Another potential option to help solve this ingredient
crisis are insect-based meals, although terrestrial insects are relatively deficient in n-3 LC-
PUFAs [3]. Curiously, coastal insect species are known to naturally have LC-PUFAs in their
biochemical profiles [6,7], and their potential use as aquafeed ingredients remains to be
fully investigated [8].

The seaweed fly Fucellia maritima (Haliday, 1838) (Diptera: Anthomyiidae) is an
endogenous species from the European continent. It feeds on decaying organic matter,
commonly termed beach wrack, that is washed upon coastal shores. Additionally, it is the
only known seaweed fly species to also feed on decaying animal matter [9]. Furthermore, it
is possible to rear this fly in captivity under a controlled environment [9]. This species was
recently recorded for the first time on mainland Portugal, where it can be seen throughout
the year overflying beach wrack [10].

The literature suggests that seaweeds can be contaminated by human pathogenic
bacteria, such as Escherichia coli [11]. Considering that F. maritima feeds on decomposing
seaweeds, it is possible that the flies could carry human pathogenic bacteria. Currently,
insect production in Europe operates under the EU regulatory framework of good hygiene
practices (GHPs). Moreover, according to the Commission Regulation (EC) 142/2011 of the
European Union, insect-processed animal proteins (PAPs) are required to be tested before
dispatch, where Salmonella sp. needs to be absent in samples of 25 g fresh weight (FW),
and Enterobacteriaceae cannot exceed 300 colony-forming units (CFU) in samples of 1 g
FW [12].

In this study, we performed an analysis of the lipid profile of adult F. maritima flies
caught in their natural habitat, and in addition, we screened them for pathogenic bacteria
(e.g., Escherichia coli and Salmonella sp.). Our primary objective was to evaluate the nutri-
tional value of these insects as a source of LC-PUFAs and identify if the flies carry bacteria
known to be pathogenic for humans. By investigating the lipid composition of these flies,
we aimed to assess their suitability as a potential aquafeed ingredient, considering their
nutritional value.

2. Materials and Methods
2.1. Insect Sampling

Adult specimens of F. maritima overflying beach wrack were captured using a sweeping
net at Barra Beach, Aveiro, Portugal, in October 2020 (40◦37′44.3′′ N 8◦44′42.0′′ W). Collected
specimens were stored in 50 mL polypropylene flasks for transportation to the insectarium
facility located at ECOMARE (University of Aveiro), where they were flash-frozen at
−80 ◦C, before being freeze-dried.
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2.2. Sample Processing and Analysis

After being freeze-dried, the samples of adult flies were transported to the Chemistry
Department (University of Aveiro), where they were grounded with a porcelain mortar
and pestle. Due to the low amount of flies captured, a biomass of 10 mg was used in each
replicate (n = 2) for the lipid extraction and phospholipids (PLs), whereas to analyse fatty
acid (FA) content, a direct methylation of grounded adult flies was performed, with five
different samples being used (n = 5).

2.3. Lipid Extraction, Phospholipid Identification, and Fatty Acid Analysis

The lipid extraction was performed by adapting the Folch protocol [13], using 10 mg of
the sample, and adding 1 mL of ultrapure water and 3 mL of a 2:1 dichloromethane/MeOH
mixture, vortexed for 30 s. Samples were then incubated on ice for 30 min, with a 30 s vortex
every 5 min. Afterward, the samples were centrifuged for 5 min at 1500 rpm to separate
the organic phase. The organic phase was collected using a micropipette and transferred to
another tube, followed by the addition of 1 mL of a 2:1 dichloromethane/MeOH mixture
to re-extract the aqueous phase; subsequently, it was vortexed and centrifuged again before
transferring the organic phase to the second tube.

After the extraction, the second tube was dried under a nitrogen stream, then resus-
pended with 300 µL of dichloromethane, vortexed, and transferred to a previously dried
and weighted vial, repeating this process two times to transfer the total lipid extract to
the vial. Afterward, the vial was dried under a nitrogen stream, which was weighted to
calculate the weight of the total lipid extract, and stored at −20 ◦C.

Lipid classes were separated and quantified by thin-layer chromatography (TLC)
analysis, according to Christie [14]. To separate PLs, 10 µg of lipid extract (n = 2) was
transferred to a glass tube that was dried on a nitrogen stream. This was followed by
adding 125 µL of 70% perchloric acid and heated at 180 ◦C for 60 min. Phosphate standards
were prepared from a solution of NaH2PO4.2H2O with 100 µg/mL of phosphorous (P).
Standards and samples were re-suspended in 125 µL of 70% perchloric acid. The samples
were heated for 1 h at 180 ◦C in a heating block (Stuart, Staffordshire, UK). Then, 825 µL
of Milli-Q water and 125 µL of 2.5% NaMoO4 were added. H2O was added to the lipid
samples and vortexed again. After this procedure, 125 µL of 10% ascorbic acid was added
to each sample and standard and vortexed again, after which the samples were placed in
boiling water (100 ◦C) for 10 min. Afterward, the absorbance was measured at 797 nm in an
ultraviolet–visible (UV–Vis) spectrophotometer (Multiskan GO, Thermo Scientific, Hudson,
NH, USA). The amount of PLs was calculated by multiplying the quantity of determined
phosphorus (µg) by 25. Two duplicates of two independent measurements were carried
out for each sample. For the separation of PLs, a TLC silica plate was pre-washed in a
solution of chloroform/methanol (1:1, v/v), which was then dried in a fume hood for
15 min, before being sprinkled with 2.3% boric acid, dried again in the fume hood for
15 min, and oven-dried (100 ◦C) for 15 min. After cooling down to room temperature, the
sample containing 30 µg of PLs was applied to the silica plate and placed on a chamber
saturated with chloroform/ethanol/water/triethylamine (30/35/7/35 v/v) to allow the
full migration of PLs. After approximately 3 h, the plate was removed and dried under the
fume hood for 20 min, then sprinkled with primuline (50 µg/mL) acetone/water (80:20),
followed by drying in the fume hood, and then revealed under UV light.

To quantify the different PL classes, the TLC spots were scratched and transferred to a
glass tube. The PLs’ quantification proceeded as described before, adding a step at the end
of transferring the quantification solution to an Eppendorf and centrifuging for 5 min at
1000 rpm before 200 µL of the samples was transferred to a 96-well plate to separate the
PLs from the silica.

For the FA analysis, 30 µg of the samples (n = 5) was transferred to small glass tubes
before adding 1 mL of methyl nonadecanoate (Sigma-Aldrich chemicals, St. Louis, MO,
USA, Lot BCBQ6948V) as an internal standard, followed by vortexing after the addition
of 200 µL of KOH (2M) in MeOH, before adding a saturated solution of NaCl and being
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centrifuged for 5 min at 2000 rpm. The samples were then dried in a nitrogen stream
and resuspended with 100 µL of hexane for injection in the gas chromatography–mass
spectrometry (GC-MS) procedure.

2.4. Microbiological Analysis

The microbiological analysis was performed in a private laboratory, following the lab-
oratory internal methods validated by AOAC PTM.018.04 for Enterobacteriaceae enumera-
tion of colony-forming units per gram (CFU/g), which uses the method ISO 21528-2:2017
as reference [15], ISO 16649-2:2001 for E. coli enumerating of CFU/g [16], and the method
certificate by AFNOR BRD 07/11-12/05 for Salmonella sp. detection which uses the ISO
6579-1:2017 as reference [17]. A composite sample of approximately 4720 wild-caught F.
maritima adult flies, corresponding to a biomass of 26 g FW, was analysed. Considering the
small size of each specimen, the whole adult fly body was used.

3. Results
3.1. Lipid Content, Classes, and Phospholipids

The total fat content of adult flies was 13.2% of their total dry weight (DW). Total lipids
are formed by triacylglycerols (TG, 60–75%), free fatty acids (FFA, 20–35%), cholesterol
(1–6%), and PLs (1–4%). The TLC (Table 1 and Figure 1) allowed for the identification
of the main PL classes, and the results showed that the most abundant PL class was
phosphatidylethanolamine (PE), followed by phosphatidylcholine (PC).
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Table 1. Quantification of phospholipids. Data are expressed as mean values of two replicates.

µg/mg Lipid % of Total Phospholipids

Cardiolipin (CL) 4.9 8.3
Phosphatidic acid (PA) 1.1 2.0
Phosphatidylcholine (PC) 10.0 17.1
Phosphatidylethanolamine (PE) 35.7 60.8
Phosphatidylinositol (PI) 3.4 5.8
Phosphatidylserine (PS) 3.4 5.8



Insects 2024, 15, 163 5 of 11

3.2. Fatty Acids’ Relative Abundance

The GC-MS analysis showed that the most abundant FA was palmitoleic acid (C16:1
n-7), followed by oleic acid (C18:1 n-9). Regarding the amount of LC-PUFAs, such as
eicosapentaenoic acid (C20:5 n-3) or arachidonic acid (C20:4 n-6), these were present in a
considerably lower amount. The n-6/n-3 ratio was 0.5 ± 0.1 (Table 2). A chromatogram
with identified peaks can be visualized in Figure 2.

Table 2. FA profile of Fucellia maritima, quantified by GC-MS, expressed as relative abundance (%).
Values are the means of five replicates ± standard deviation (SD).

Fatty Acids Relative Abundance (%) ± SD

C12:0 (Lauric acid) 0.0 ± 0.0
C14:0 (Myristic acid) 0.1 ± 0.4
C15:0 (Pentadecanoic acid) 0.4 ± 0.1
C16:0 (Palmitic acid, PA) 14.9 ± 1.9
C17:0 (Heptadecanoic acid) 0.2 ± 0.1
C18:0 (Stearic acid) 2.4 ± 0.5
SFA 18.8 ± 0.7
C14:1 n-5 (Myristoleic acid) 0.9 ± 0.1
C15:1 (Pentadecanoic acid cis-10) 0.1 ± 0.1
C16:1 n-7 (Palmitoleic acid) 34.9 ± 4.3
C17:1 (Heptadecanoic acid cis-10) 1.2 ± 0.4
C18:1 n-9 (Oleic acid) 30.4 ± 2.3
MUFA 66.9 ± 1.2
C18:2 n-6 (Linoleic acid) 3.4 ± 1.3
C18:3 n-3 (α-Linolenic acid) 3.4 ± 1.9
C20:4 n-6 (Arachidonic acid) 1.1 ± 0.3
C20:5 n-3 (Eicosapentaenoic acid) 6.1 ± 1.2
PUFA 14.0 ± 1.1
n-6 PUFAs 4.5 ± 0.9
n-3 PUFAs 9.5 ± 1.2
n-6/n-3 ratio 0.5 ± 0.1
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3.3. Microbiological Analysis

The microbiological analysis revealed a total count of 9.1 CFU/g of Enterobacteriaceae
and 270 CFU/g of E. coli, while Salmonella sp. was not detected in a sample of 25 g FW.

4. Discussion

To the best knowledge of the authors, the present study is the first-ever profiling of the
lipid content of the seaweed fly F. maritima. The adult flies used in this study were captured
in the wild overflying beach wrack, which contained mainly the brown macroalgae Fucus
sp., but also the invasive freshwater hyacinth Eichhornia crassipes.

The lipid content (13.2%, DW) was considerably lower compared to insect species
commercially available, such as black soldier fly (BSF) prepupae, with an average lipid
content of 35.3% [18], Tenebrio molitor ranging from 22.3% to 30.0% [19], and slightly lower
than Musca domestica, ranging from 16.1% to 21.2% [20]. This lower lipid content is closer
to that displayed by other species of seaweed flies, such as Coelopa frigida (12.1% to 19.7%)
and C. pilipes (14.2% to 16.8%) [7]. This value is also similar to other coastal fly species
Machaerium maritimae, at 12.0% [6]. The lower levels of fats in F. maritima might be an
indication of high protein content, as it occurs in other insects species [21]. For instance,
when supplemented with a diet rich in protein, T. molitor shows a higher protein content
with a lower fat content than when supplied with a control diet [22].

The two most abundant PLs were PEs (60.8%) followed by PC (17.1%). Usually, in
terrestrial edible insects, the most abundant PL class is PC, with, for instance, values going
up to 66% of total PLs in silkworm (Bombyx mori), and 58% in the field cricket Gryllus
assimilis [23]. PEs are commonly most abundant in freshwater insects, like Diamesa tonsa
and Pseudodiamesa branickii with 90% and 80% of total PLs, respectively [24]. Additionally,
another species of Diptera, the flesh fly Sarcophaga similis, also displays a higher value of
PEs compared to PC [25]. The same occurs in Hermetia illucens, black soldier fly (BSF),
with up to five times more PEs than PC [26]. Species of the genus Drosophila also show a
higher value of PEs (up to 67%) when compared to PC (17%) [27]. The previous authors
suggest that the higher value of PEs is related to cold resistance adaptations, where the
abundance of PEs is higher than PC in species from temperate regions in comparison to
tropical regions [24,25,27]. Considering that F. maritima, as most members of the family
Anthomyiidae, is essentially a Palearctic species, the much higher abundance of PEs
compared to PC could be an adaptation to colder weather, as this is a species that is active
even during the winter [10,28].

Supplementation with PEs in the diets of zebrafish, Danio rerio, can increase egg
diameter and larval survival rate, making this phospholipid important for aquafeed for-
mulation [29]. Moreover, the addition of PEs to the diet of the large yellow croaker (Larim-
ichthys crocea) was shown to alleviate damage in intestinal cells when using a diet rich in
SFAs [30]. The second most abundant PL in F. maritima, PC, is recognized for its role in lipid
metabolism, liver function, and transport of lipids in the body. Supplementing a diet low
in fish meal with PC can significantly increase lipid digestibility, subsequently eliminating
excessive gut mucosal lipid accumulation in Atlantic salmon (Salmo salar L.) [31]. The
presence of PC and PEs in high levels suggests that F. maritima meal may have beneficial
properties related to lipid metabolism if included in aquafeeds.

The GC-MS analysis showed that the most abundant FA was palmitoleic acid (C16:1
n-7), which is known to have strong antibacterial activity, and its concentrated oil has been
successfully used to inhibit the growth of the fish pathogen Streptococcus agalactiae [32].
The second most abundant FA, oleic acid (C18:1 n-9), is commonly found in many animal
and vegetable oils, including olive oil. The role of this FA in aquaculture organisms
remains mostly unexplored. However, one study found that supplementing the diet of
European sea bass (Dicentrarchus labrax) with oleic acid can decrease feed intake and
increase feed efficiency [33]. The third most abundant FA was palmitic acid (C16:0). This is
the most common FA found in animals, plants, and microorganisms. When used in low
concentrations, C16:0 shows great potential to reduce the mortality caused by the viral
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pathogen Spring Viremia of Carp Virus (SVCV), in D. rerio [34]. These three FAs are also
the most abundant in other seaweed flies, namely C. frigida and C. pilipes [7].

In terrestrial insect species, such as BSF, the most abundant FAs are usually lauric acid
(C12:0), a saturated fatty acid (SFA), followed by C16:0 or stearic acid (C18:0), depending
on the substrate used to feed the larvae, which can influence the FA profile [35–37]. For
instance, Ameixa et al. [38] showed that BSF fed with olive pomace displayed a higher
composition of monosaturated oleic FA (18:1). In M. domestica, the most abundant fatty
acids are C16:1 n-7, C16:0, or C18:1 n-9, also varying according to the substrate used [39],
whereas in T. molitor, the most abundant fatty acids are oleic (C18:1 n-9), linoleic acid (C18:2
n-6), and palmitic C16:0 [19].

Among the PUFAs, alpha-linoleic acid (C18:3 n-3) was the most abundant, followed by
C18:2 n-6. Both PUFAs are essential fatty acids (EFAs) for freshwater fish, as in these fishes
the FA C18:3 n-3 can be elongated and desaturated into C 20:5 n-3 and docosahexaenoic acid
(C22:6 n-3) [40]. Moreover, F. maritima possesses a C18:3 n-3/C18:2 n-6 ratio close to 1, which
is essential for the optimal growth of freshwater fish like the grass carp Ctenopharyngodon
idella [41].

Concerning other biomolecules known to be EFAs for aquafeeds, the most abundant
was EPA (C20:5 n-3), followed by arachidonic acid (C20:4 n-6), both LC-PUFAs. Although
the supplementation of C20:4 n-6 in marine organisms does not necessarily affect their
growth, it can increase the overall health of aquaculture animals, such as fish or sea
cucumbers [42–44]. Moreover, supplementation with C20:4 n-6 can improve reproductive
functions in marine fish, such as gonadal development, spawning performance, egg quality,
hatching rate, and larval quality [45]. On the other hand, C20:5 n-3 is essential for fish
growth, and our results show that F. maritima has a higher value of this FA than the
minimum requirements for freshwater fish [46,47]. Additionally, a level of 6% of C20:5 n-3
is higher than the minimum requirements for the marine fish Florida pompano (Trachinotus
carolinus) [48]. The inclusion of C20:5 n-3 is also important for the overall health and growth
of the Atlantic salmon (Salmo salar) with a minimum requirement of 0.5% C20:5 n-3 of total
FAs for normal growth [49].

The relative abundance of C20:5 n-3 and C18:2 n-6 is close to that recorded for C. pilipes
and C. frigida; nonetheless, F. maritima has a lower value of C20:4 n-6 and a higher value of
C18:3 n-3 when compared to these two species [7]. While for BSF, the values of EFAs are
lower than those of F. maritima when using a control diet, they can increase significantly
when using microalgae or expired fish feeds as feeding substrates [36,37]. Additionally, F.
maritima has a lower n-6/n-3 ratio than T. molitor (0.5 and 17.8 to 64.3, respectively) [50].
The amount of n-3 LC-PUFAs in F. maritima is higher than any other insect species currently
allowed by the EU to be produced as animal feed, namely M. domestica, H. illucens, T. molitor,
Alphitobius diaperinus, Acheta domesticus, Gryllodes sigillatus, G. assimilis, and B. mori [51–53].

It is plausible that F. maritima, as some insect species, can biosynthesize de novo
C20 LC-PUFAs, through the pathway of elongation/desaturation of C18:3 n-3 [54,55].
Nevertheless, it remains uncertain whether F. maritima and other seaweed flies use this
pathway or directly assimilate LC-PUFAs from their marine dietary sources. Therefore,
further studies are needed to analyse if different substrates can modulate the FA profile of
this seaweed fly.

The microbiological analysis showed that wild F. maritima had a lower Enterobac-
teriaceae count than other insect species commercially available, such as mealworms (T.
molitor), locusts (Locusta migratoria), and morio worms (Zophobas morio) [56]. Also, in a
risk assessment from the Netherlands for locusts, lesser mealworms, mealworms, and
mealworm snacks, the concentration of Enterobacteriaceae in 65% of samples exceeded the
criterion for raw materials used in meat preparations (103 CFU/g) [56]. However, higher
counts were found in F. maritima, when compared to other species of flies like BSF, with
7.2 ± 0.5 CFU/g [57]. Even though only one sample was analysed, these values are in
accordance with the Commission Regulation (EC) 142/2011 of the European Union for
insect PAPs, making this species a possible candidate for aquafeed ingredients [12].
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In conclusion, the FA profile of this seaweed fly in the wild presents many biomolecules
of interest for the formulation of aquafeeds, whether for the maintenance of optimal growth
of aquatic animals or the overall health of farmed fish, considering this species’ high level
of C20:5 n-3, an essential FA for optimal fish and shrimp growth. Moreover, F. maritima
contains highly valuable PLs, which are important supplements for aquafeed, especially in
early life stages [58,59]. Additionally, these flies display lower counts of human pathogenic
bacteria when compared to other insect species already used in commercial applications,
and their use may contribute towards the diversification of insect species production for
feed, thus enhancing the resilience of this young industry [8].

However, to fully assess the suitability of F. maritima as a viable aquafeed ingredient,
it is imperative to establish standardized rearing protocols that can be manipulated and
replicated for industrial purposes. In fact, we have already started rearing experiments as
detailed in Lourenço et al. [60]. Furthermore, we recommend additional research exploring
various substrates, such as fish by-products and diverse seaweed species prevalent in beach
wrack. The latter is often considered a marine waste, leading to its disposal in landfills,
incurring on public expenses, and contributing to environmental degradation [61]. By using
different substrates to culture seaweed flies under controlled conditions, it is necessary to
analyse if their protein content and lipid profile are affected. Moreover, as insects’ larvae are
more commonly used for industrial applications, it is also necessary to analyse in the future
the nutritional profile of F. maritima larvae. Considering the pressing need for sustainable
marine aquafeed alternatives, understanding the viability and availability of this potential
ingredient is paramount for advancing the expansion of sustainable aquaculture.
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