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Simple Summary: Rearing substrates based on agri-food by-products are ideal for converting
bioactive-rich waste and increasing insect quality. This approach is limited by the need to provide
nutritionally balanced diets for farmed insects. In this study, we evaluated the possible use of tomato
pomace (TP), an agro-industrial waste from tomato processing, as a component in rearing substrate
for Yellow Mealworm (Tenebrio molitor). We compared bran-based diets with tomato pomace (0%, 27%,
41%, and 100%). As brewer’s spent grain and yeast, protein sources are used in mixed diets to ensure
equal protein contents to the diet control. The results showed no difference in larval performance
between diets, except for a longer time of the development in the TP100 diet. Generally, the efficiency
indices worsened in diets with increasing TP. Conversely, lycopene and β-carotene increased in the
harvested larvae, and the fatty acid composition wasimproved, with an increase in polyunsaturated
fatty acids. Maximum qualitative increases were obtained with the TP100 diet. The TP41 diet is the
best balance between larval performance and qualitative improvement. Therefore, tomato pomace
is suitable for the formulation of mealworm diets, even in high dosages when supplemented with
proteins and carbohydrates.

Abstract: Tomato pomace (TP), an agricultural industrial waste product from the tomato processing
industry, is valorized as a rearing substrate for Tenebrio molitor (L.). This study evaluated bran-based
diets with increasing tomato pomace (0%, 27%, 41%, and 100%). Protein sources, such as brewer’s
spent grain and yeast, were used in TP27 and TP41 diets to ensure equal protein contents to the
control diet. Results showed no different for larval and pupal weights between diets; however, the
time of development significantly increases in TP100 compared to all diets. The feed conversion rate
progressively increases from 2.7 to 4.3, respectively, from the control to the TP100 diet. Conversely,
lycopene and β-carotene increase in the larvae. The fatty acid composition improves by increasing
polyunsaturated fatty acids (mainly α-linoleic acid). Although the best nutritional quality was
obtained in T100, the TP41 is the optimal diet for balance between larval performance and qualitative
improvement of larvae. Therefore, tomato pomace is suitable for the formulation of mealworm diets,
even in high dosages, when supplemented with sustainable protein and carbohydrate sources.

Keywords: Yellow Mealworm; edible insects; by-products; rearing substrates; fatty acid; nutraceutical;
antioxidant; lycopene; β-carotene

1. Introduction

The use of by-products as a growth substrate (from here below indicated as “diet”)
allows for reduced production costs in rearing edible insects, and increases their role as
“bioconverters” in the circular economy [1,2]. Moreover, this technique further reduces the
production of greenhouse gases, already low by farmed insects compared to livestock [3].
This approach is mainly focused on the Black Soldier Fly (Hermetia illucens L.; Diptera:
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Stratiomizidae) [4], but can also be transferred to Yellow Mealworm (Tenebrio molitor L.;
Coleoptera: Tenebrionidae) with the choice of suitable by-products and the correct formula-
tion of diets. This choice must also consider the bioaccumulation capacity of heavy metals,
pesticides, and various pollutants by farmed insects [5–8]. The diet affects the growth
performance of T. molitor larvae or mealworms (MLW) [9] and the productivity of their
adults [10]. The diet also impacts the nutritional composition of collected larvae [9,11]. The
latter ability has frequently been thought to enhance the protein content and amino acid
composition [12]. Diet affects the fatty acid (FA) composition [9,13,14] and the nutritional
quality indices [15–17].A diet high in linseed has been shown to increase polyunsaturated
fatty acids (PUFA) [15]. Diets have also been shown to improve calcium content and
produce a beneficial Ca:P ratio [11,18,19].

Recently, the interest of some researchers has focused on increasing antioxidants in
larvae through the diet supplemented with specific agricultural by-products. Some tested
by-products were orange peels [16], mastic and olive leaves, and waste tomato (peels and
seeds) [20].

This approach is limited by the need to provide balanced diets for the farmed insects’
nutritional requirements.

World tomato production is estimated at 189 million tons in 2021 [21] and 39 million
tons of processed tomatoes per year, estimated by the Word Processing Tomato Council [22].

Tomato waste can be used for the production of biofuels [23], but tomato pomace (TP)
is receiving attention to recover valuable components (such as tomato seed oil, protein,
lycopene, dietary fiber, etc.) [24]. Seasonal availability (typically summer) and the shelf-life
of TP can be increased by preliminary drying, preferably sustainable [25]. Tomato pomace
consists of 5–10% of the fresh weight of tomatoes [26], and it is made of peels, seeds, and
residual pulp [27]. The nutritional composition is influenced by the proportions of the
different components and by the transformation process. Generally, its composition is
made up of fiber (53.0%), sugars (25.7%), protein (19.3%), and fat (5.9%) on a dry weight
basis [28]. It is also a source of carotenoids, especially lycopene and β-carotene in the
peel [29].

Classified among the phytochemicals, carotenoids, as well as polyphenols [30], show
marked antioxidant [31] and anti-inflammatory activity [32].

Due to these properties, several studies have associated their use with multiple health
benefits, in particular α- and β-carotene and β-cryptoxanthin as a valuable source of
vitamin A [33], lutein and β-carotene as positive adjuvants in many eye-related diseases,
including cataracts and age-related macular degeneration [34], and finally lycopene and
β-carotene as skin protectors from UV rays [35], adjuvans in the prevention of cancer [36]
and heart health [37].

The inclusion of tomato pomace in animal nutrition has been tested [38] and evaluated
on poultry [39], quail [40], ruminants [41], dairy cows [42], and lamb [26].

The use of this by-product to feed insects has been little investigated, although re-
cently, tomato was tested by H. illucens [43], and TP was included as a supplement (10%
w/w) in diets for T. molitor [44]. A greater supplement would alter the initial nutritional
composition of the diet; therefore, high-dose tomato pomace requires the formulation of
specific isoproteic diets.

This work aims to evaluate four diets, assembled with increasing doses of dried
tomato pomace and different protein sources, evaluating its influence on the larvae’s
growth performance and nutritional quality to optimize their diet.

2. Materials and Methods
2.1. Yellow Mealworms Colony

Mealworms used in this work were reared at the insectarium of CIHEAM-Bari (in the
Apulia region). In rearing, T. molitor adults in oviposition were fed a bran-based diet and
yeast (ratio 95:5).Subsequently, the same boxes were periodically supplemented with only
bran based on the diet eaten by the growing larvae. The wet supplement was distributed
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twice a week with pieces of organic pumpkin (Cucurbita moschata, cv. Butternut) cultivated
at CIHEAM-Bari fields. Rearing and subsequent experiments were conducted in a climatic
room maintained at 28 ± 1 ◦C, 70 ± 5% RH, and 0L:24D photoperiod.

2.2. Substrate Composition/Preparation

Four different by-products were used to formulate the tested diets. A local organic
farm (“Antica Enotria”, Cerignola, Italy) supplied tomato pomace as a by-product of the
production of tomato sauce. The pomace consisted mainly of peels and seeds, while the
presence of pulp was scarce. Bran was purchased from the mill (Molino “Cimminelli”,
Montegiordano, Italy) and derived from durum wheat milling. Brewer’s spent grain was
supplied from small local brewers (Brewery “Jazz Beer”, Bernalda, Italy). Zootechnical
yeast, as a protein supplement, was purchased from Zabele Srl (Padova, Italy). By-products
were preliminarily dried at 60 ◦C for 24 h in a food dehydrator (COSORI, mod. CP267-
FD-RXS, Anaheim, CA, USA). Subsequently, matrices were sieved using a 2 mm manual
sieve, and the coarse part was ground, ensuring homogeneity to avoid the influence of
particle size [45]. The nutrient composition was determined on a representative sample
using AOAC methods [46] (Table 1), and further methods will be described below.

Table 1. Nutrient composition of by-products preliminarily conditioned 1.

By-Product Dry Matter (%) Crude Protein
(%)

Crude Fat
(%)

Crude Fiber
(%)

Ash
(%)

Carbohydrate
(%)

Bran 91.2 16.7 6.5 36.1 4.2 30.2
Tomato pomace 92.1 9.5 3.2 67.1 3.9 8.9

Brewer’s spent grain 93.4 24.7 4.8 42.0 2.6 24.0
Yeast 93.0 47.6 2.4 6.8 8.0 13.8

1 values are reported as a percentage on dry matter.

Diets were formulated with bran, different doses of tomato pomace, and brewer’s
spent grain and yeast (Table 2). The control diet (TP0) was composed exclusively of
wheat bran [9,47,48] and according to dietary supplementation used in CIHEAM-Bari
insectarium for the growth phase of the larvae. Two other isoproteic diets were formulated
by integrating bran with tomato pomace and brewer’s spent grain (TP27) or with tomato
pomace and yeast (TP41). Finally, a diet with only tomato pomace (TP100) was tested.
Table 2 reports the macro-nutrient and energy values (calculated by conversion factors in
Regulation (EU) 1169/2011, Annex XIV). All diets were assembled in the form of “cookies”
(5 g of each replica) to avoid self-selection in mixed diets [49] and to facilitate the separation
of an uneaten diet (but aggregated in “cookie”) from frass through the sieve (0.5 mm). The
“cookies” were obtained by integrating and modifying previous procedures [12,50]. The
homogenized by-products were kneaded with Carrageenan 1% (w/w) and water. The diet
was rolled out in a thin layer and dried in an oven at 60 ◦C for 24 h to ensure shelf-life.

Table 2. Diets composition and nutritional values 1 (% DM).

Diet Bran
(%)

Tomato
Pomace

(%)

Brewer’s
Spent Grain

(%)

Yeast
(%)

Protein
Value

(%)

Carbohydrate
(%) p:c 4 Crude Fiber

(%)
Fat
(%)

Energy
(kcal

(100 g)

TP0 2 100.0 - - - 16.7 30.2 1:1.8 36.1 6.5 318.3
TP27 3 50.0 27.0 23.0 - 16.6 23.0 1:1.4 45.8 5.2 296.9
TP41 3 50.0 41.0 - 9.0 16.5 20.0 1:1.2 46.2 4.8 281.4
TP100 - 100.0 - - 9.5 8.9 1:0.9 67.1 3.2 236.6

1 calculated values; 2 TP0 as control; 3 diets with by-product blends (w/w); 4 protein:carbohydrate ratio.
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2.3. Experimental Set-up

At the beginning of the experiment, six-week-old larvae (28 ± 1 mg) were distributed
in groups of 20 larvae [47] in plastic cups (bottom diameter 6 cm). Larvae were fed ad libitum
with their respective diets, and wet supplements were provided twice weekly. Complete
randomization was applied to the experimental design, with 10 replicates/treatment and
20 larvae/replicate.

For each replicate, the weight of the collected larvae, the residual substrate, and the frass
were determined with an analytical scale (Mettler-Toledo, mod. B2002-S; precision ± 0.1 mg).
The collected larvae were starved for 48 h, blanched at 100 ◦C for 5 min, and dried at
60 ◦C for 24 h in a food dehydrator by Purschke et al. [51]. The adoption of these specific
pre-treatments and drying methods guarantees the obtaining of flours with the lowest
degree of browning due to the action of the phenol-oxidase enzyme and greater stability of
the nutritional component [51–55]

Dried larvae, substrate, and frass were stored at−18 ◦C and powdered before chemical
analysis. The latter was performed on three replicas per diet.

2.4. Mealworm Growth Perfomance

At the formation of the first pupa (time of larvae collection), the replica was stopped,
and larval weight (mg) and pupal weight (mg) were measured. At the same time, larval
survival (Equation (1)) and time of development (Equation (2)) were calculated by:

Larval survival (%) = n. initial larvae/n. final larvae and pupae × 100 (1)

Time of development (d) = n. days between start of experiment and emergence of first pupa (2)

The efficiency indices were calculated by feed consumption (FC) (mg larvae−1), ex-
cluding the wet supplement, and by the equations described below:

Feed Conversion Rate (FCR) = FC/WG (3)

where WG represents the larval gained weight at the end of the experiment;

Specific Growth Ratio (SGR) (% day−1) = 100 × (lnFW − lnIW)/days (4)

where FW and IW represent the final and initial fresh larval weight;

Efficiency of Conversion of Ingested feed (ECI) (%) = [WG/FC] × 100 (5)

Efficiency of Conversion of Digested feed (ECD) (%) = [WG/(FC − Frass)] × 100 (6)

were calculated considering WG, FC, and frass as dry weights [56].

2.5. Carotenoids Analysis

Carotenoids were extracted from feed, mealworms, and feces. According to Leni et al. [43],
extraction was conducted with some modifications. A total of 400 mg of homogenized
sample was mixed with 10 mL of hexane/ethanol/acetone (50:25:25) extraction mixture
containing 0.1% (w/v) L-ascorbic acid. After stirring at 200 rpm for 1 h on ice and under
subdued light (Universal Table Shaker 709), the samples were centrifuged at 2800 rpm
at 4 ◦C for 20 min (Heraeus Laborfuge 400R–Thermo Fisher Scientific, Asse, Belgium),
and the supernatant was separated from the pellet. The separation and quantification of
lycopene and β-carotene were conducted according to Anthon and Barret [57], with some
modifications. Distilled water (1.5 mL per 10 mL of extract) was added to the extract to
cause phase separation. After stirring for 1 min under subdued light, the samples were
centrifuged at 2800 rpm at 4 ◦C for 10 min, and the upper hexane phase was recovered and
used for spectrophotometric carotenoid quantification (Multiscan Go Spectrophotometer).
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Samples were read at 503 and 444 nm. The concentration of lycopene and β-carotene was
calculated using the following Equations (7) and (8):

Lycopene (mg/kg) = (6.95 × Abs503 nm − 1.59 × Abs444 nm) × 0.55 × 537 × V/W (7)

β-Carotene (mg/kg) = (9.38 × Abs444 nm − 6.70 × Abs503 nm) × 0.55 × 537 × V/W (8)

where:

• 0.55 = the final hexane layer volume ratio to the volume of mixed solvents added for
hexane:acetone: ethanol (2:1:1);

• W (mg) = the weight of sample analyzed;
• V (mL) = the volume of mixed solvents added;
• 537 = the molecular weights of lycopene and β-carotene (g/mol);
• 6.95, 1.59, 9.38, and 6.70 = numerical coefficients obtained by solving the Lambert–Beer

equations, which link the value of the concentrations of lycopene and β-Carotene to the
absorbance and the respective ε (molar extinction coefficients) to the two established
wavelengths (444 nm and 503 nm) [57].

2.6. Lipid Analysis in Mealworms

The defatting process of mealworm powder (MLWP) was performed according to
Gkingali et al. [58] with some modifications. In brief, a three-step extraction procedure
using n-hexane removed the fat and any brown lipophilic melonoidins from the MLWP [59].
The sample was first mixed with n-hexane at a ratio of 1:5 (w/v). The mixture was then
shaken for 1 h at 150 rpm (25 ◦C) using a rotary shaker (Universal Table Shaker 709). After
centrifuging the resultant slurry at 8500 rpm for 10 min at 10 ◦C, the organic phase in the
supernatant was decanted. The supernatant was separated from the sediment and stored
separately. The process was repeated twice, adding more hexane to the sediment each
time. Supernatants were collected in a pre-weighed round-bottom flask, and the n-hexane
was evaporated using a rotary evaporator (Rotary Evaporator InstrumentsKentron-Strike
202, Steroglass s.r.l., Perugia, Italy). The final sediment was left at room temperature to
eliminate any remaining solvent. The resultant defatted larvae powder (DLP) and lipid
extract were kept in a freezer at −18 ◦C until used. The oil extraction yield (or crude fat %)
was calculated according to Equation (9) [60]:

Oil extraction yield (%) = [mass of extracted fat(g)/solids of the initial sample (g)] × 100 (9)

Lipids extracted from MLWP were directly trans esterified by producing fatty acid
methyl esters (FAME) by applying the technique described by Tasselli et al. [61]. The
separation of FAMEs was carried out using an Agilent GC7890A gas chromatograph fitted
with a split–splitless injector and a flame ionization detector (FID) at the settings specified
by Di Fidio et al. [62]. The retention times of the fatty acids were compared to FAME
standards (Merk Life Science S.r.l, Milano, Italy), and their percentage was estimated using
the combined area of the present peaks.

2.7. Nutritional Quality Indices

The fatty acid profile data were processed, deriving the following nutritional quality indices.
The atherogenicity index (IA) evaluates the atherogenic potential of FAs by relating

the total quantity of saturated fatty acids (SFA) and the total quantity of unsaturated fatty
acids (UFA) present in the matrix/food. Except for stearic acid (C18:0), SFAs are considered
pro-atherogenic, as they encourage lipids to adhere to cells of the immune and circulatory
system [63]. UFAs, on the other hand, are attributed to an antiatherogenic effect as they
prevent plaque formation and lower cholesterol, phospholipids, and fatty acid esterase
levels [64].

The thrombogenicity index (IT) evaluates the tendency to form blood clots in blood
vessels. It correlates the pro-thrombogenic FAs, in particular lauric acid (C12:0), myristic
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acid (C14:0) and palmitic acid (C16:0), and anti-thrombogenic monounsaturated fatty acids
(MUFA) and PUFAsω-3 andω-6 [65].

Indices of atherogenicity (IA) and thrombogenicity (IT) were calculated using
Equations (10) and (11) previously described by Ulbricht and Southgate [66]:

IA =
C12 : 0 + (4 × C14 : 0) + C16 : 0

PUFA(∑ n− 6 + ∑ n− 3) + C18 : 1 + ∑ MUFA
(10)

IT =
C14 : 0 + C16 : 0 + C18 : 0

(0.5 × C18 : 1) +
(
0.5 × ∑ MUFA) + (0.5 × n− 6) + (3 × n− 3) + n−3

n−6
(11)

The hypocholesterolemic/hypercholesterolemic (HH) ratio characterizes the relation-
ship between hypocholesterolemic and hypercholesterolemic FAs. The HH ratio may
more correctly depict the impact of the FA composition on cardiovascular disease than the
PUFA/SFA ratio [67], and was calculated as reported by Santos-Silva et al. [68] using the
following Equation (12):

HH =
(C18 : 1, cis− 9) + ∑ PUFA

C14 : 0 + C16 : 0
(12)

The unsaturated index (UI) indicates the degree of unsaturation of the lipid component
and is calculated as the sum of the percentage of each UFA multiplied by the number of
double bonds contained by the various FAs. This index more fully reflects the proportion
of UFAs with different degrees of unsaturation in the total composition of FAs present in
the sample and their influence on the degree of fluidity of cell membranes [69,70]. The UI
was calculated using the following Equation (13) previously described to Chen et al. [67]:

UI = [(1 × %monoenoics) + (2 × %dienoics) + (3 × % trienoics) + (4 × % tetraenoics) + (5 × % pentaenoics)
+ (6 × % hexaenoics)]

(13)

The calculated oxidability (Cox) value analyzes the fatty acid composition’s effect on
the lipid fraction’s oxidative stability. In particular, it evaluates the percentage of C18 UFAs
in the matrix/food [71]. The calculated oxidizability (Cox) index was calculated using
Equation (14) previously described to Fatemi et al. [72]:

Cox Index =
(1 × C18 : 1) + (10.3 × C18 : 2) + (21.6 × C18 : 3)

100
(14)

2.8. Protein Analysis

Alkaline protein extraction was performed on the DLP samples using the protocol
made by Zhao et al. with minor modifications [73]. One g of sample was treated with 15 mL
of 0.250 M NaOH at 40 ◦C under agitation for 1 h in a thermostatic orbital shaker (model
420 series Forma, Thermo Fisher Scientific, Asse, Belgium) and centrifuged at 8500 rpm
for 30 min at 4 ◦C. The extraction procedure was repeated three more times in total. The
alkaline conditions applied in this type of extraction have the advantage of reducing any
browning of the extract obtained [74]. The supernatant and gel layer from all extractions
were pooled and used for the quantification.

The determination of crude protein content was performed according to Kotsou et al. [16]
with modifications. In total, 10 µL of the appropriately diluted supernatants pooled was
transferred to the wells of a 96-well plate, and 200 µL of diluted Bradford Reagent was
added and then shaken for 30 s in a plate reader. The plate was incubated for 10 min at
room temperature in the dark. The absorbance was measured at 595 nm with a Multiscan
Go Spectrophotometer. A standard calibration curve was prepared using bovine serum
albumin. Due to the selective operating conditions adopted and the dilutions made to the
sample, the extracts obtained generated a background measurement provided by the sam-
ple <1%, a negligible overestimate for a possible correction of the protein values obtained.
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2.9. Statistical Analysis

Larval performance data were initially submitted for normality and homogeneity
of variance tests. A one-way ANOVA was applied at FC, FCR, SRG, and ECI values,
followed by a Tukey–Kramer HDS test post-hoc to identify the differences between the diets.
Alternatively, the non-parametric Kruskal–Wallis test and pairwise multiple comparisons
with Bonferroni correction were applied to the other measured parameters. Significance
was assumed at p < 0.05. All data were statistically processed by SPSS software version
26.0 (IBM Corporation, Armonk, NY, USA). The three replicas’ qualitative and quantitative
analysis data are shown as the mean values ± standard deviation (SD).

3. Results
3.1. Larval Performances

Larval survival was close to 100% in all diets tested. No statistically significant
differences were found between diets (H = 1.05; df = 3; p = 0.788), including the tomato
pomace diet (TP100) (Figure 1).
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Figure 1. Larval performances on different diets: (A) Survival larvae; (B) Time of development;
(C) Larval weight; (D) Pupal weight. TP0 as control. The mean ± standard deviation (n = 10) with
the same letter is not significantly different at α = 0.05 (ANOVA and Tukey–Kramer HDS test).

Values of larval time of development showed significant differences between diets
(H = 21.23; df = 3; p < 0.000). The presence of tomato pomace increased the time of
development by 5–6 days in the TP27 and TP41 diets, but these longer periods were not
significantly different compared to the 32 days of the control diet (TP0). In contrast, the
TP100 diet recorded times of development double (+33.4 days) that of the control and
significantly longer than the other diets.

At harvest, the mean larval weight was not significantly different between diets
(H = 6.41; df = 3; p = 0.093). The lowest weight (91.0 mg) was achieved by the TP100
diet (although on larvae collected later), and the larvae of the TP41 diet achieved the
highest weight (109.0 mg). The analysis of the weights of the first pupa showed significant
differences between diets (H = 12.61; df = 3; p < 0.006), although significant differences
were found only between the TP41 (127.0 mg) and TP100 (101.0 mg) diets (Figure 1).
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3.2. Efficiency Indicators

Generally, the utilization efficiency of the tested diets decreased with increasing doses
of tomato pomace in the diets. The feed consumption was significantly different in the
presence of tomato pomace (F = 7.8; df = 3, 36; p < 0.001) and significantly higher in TP41
and TP100 than in TP0 (Table 3). The feed conversion rate was significantly different
between diets (F = 73.2; df = 3, 36; p < 0.001) with minimum values (FCR= 2.7) in the control,
without tomato pomace, and progressively increasing until reaching the maximum in T100
(FRC = 4.3) (Table 3).

Table 3. Efficiency indicators of diets tested 1.

Diet FC
(mg Larvae 1) FCR SRG

(% day−1)
ECI
(%)

ECD
(%)

TP0 2 181.1 ± 44.7 c 2.7 ± 0.2 d 4.9 ± 0.7 a 15.4 ± 1.1 a 34.6 ± 3.3 c

TP27 222.5 ± 29.6 bc 3.2 ± 0.1 c 4.1 ± 0.4 b 13.1 ± 0.5 b 42.8 ± 4.5 b

TP41 291.1 ± 38.5 a 3.8 ± 0.3 b 4.3 ± 0.4 b 10.8 ± 0.7 c 30.0 ± 6.3 c

TP100 245.7 ± 80.3 ab 4.3 ± 0.4 a 2.5 ± 0.7 c 9.8 ± 1.0 d 65.9 ± 12.7 a

1 Efficiency indicators: FC (feed consumption); FCR (feed conversion rate); SGR (specific growth ratio); ECI
(efficiency of conversion of ingested feed); ECD (efficiency of conversion of digested feed). 2 TP0 as control. The
mean ± standard deviation values with the same letter within columns are not significantly different (Tukey–
Kramer HDS test for FC, FCR, SRG, and ECI; Pairwise multiple comparisons with Bonferroni correction for ECD)
at α = 0.05.

The specific growth ratio significantly differed between diets (F = 34.1; df = 3, 36;
p < 0.001). The highest values were obtained with the control diet (4.9%), while slightly
lower values were recorded with the two diets mixed with tomato pomace (TP27 and TP41).
The TP100 diet achieved significantly lower values (2.5%).

The efficiency of conversion of ingested feed significantly differed between diets
(F = 85.8; df = 3.36; p < 0.001). The ECI values decreased significantly as the amount of
tomato pomace increased in the tested diets (Table 3).

The efficiency of conversion of digested feed significantly differed between diets
(H = 27.3; df = 3; p < 0.001). There was no significant difference between the TP0 and
TP41 diets, while the TP27 diet showed significantly higher ECD values (42.8%). Finally,
significantly higher values than all other diets were obtained in the TP100 diet, with an
ECD of 65.9% (Table 3).

3.3. Lycopene and β-Carotene Quantification

The values of carotenoids, lycopene and β-carotene, present in feed (diets), stored in
mealworms, and excreted with frass, are shown in Table 4. In feed, the addition of tomato
pomace shows a proportional increase in the amount of lycopene and β-carotene compared
to the control: from 2.66 ug/g TP0 to 179.75 ug/g TP100 for lycopene, from 0.30 ug/g TP0
to 241.5 ug/g TP100 for β-carotene. Furthermore, an inversion of the lycopene/β-carotene
ratio between feeds is also evident. While the TP0 diet shows a lycopene/β-carotene ratio
>1 (8.8), all the supplemented feeds (TP27, TP41, and TP100) show a value <1 (~0.5). Values
referring to the larvae highlighted a general tendency toward accumulating both analyzed
carotenoids. In the TP41 and TP100 diets, compared to TP0, there are incremental signals of
both lycopene (0.61 ug/g and 1.19 ug/g against 0.08 ug/g) and β-carotene (2.56 ug/g and
7.28 ug/g versus 1.43 ug/g). However, the larvae are richer in β-carotene than in lycopene.
In larvae, the increase of both carotenoids is evident only at TP27 (maximum at TP100),
unlike the progressive increase observed in diets. The lycopene content in frass varies from
0.70 ug/g in the TP0 to 39.67 ug/g in the TP100, while the β-carotene content varies from
12.09 ug/g in the TP0 to 147.46 ug/g in the TP100; so as seen for the larvae, the frass is
richer in β-carotene than in lycopene.
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Table 4. Lycopene and β-Carotene quantification 1.

Diet

Feed Mealworm Frass

Lycopene
(ug/g)

β-Carotene
(ug/g)

Lycopene
(ug/g)

β-Carotene
(ug/g)

Lycopene
(ug/g)

β-Carotene
(ug/g)

TP0 2 2.7 ± 0.2 d 0.3 ± 0.1 d 0.1 ± 0.1 c 1.4 ± 1.0 bc 0.7 ± 0.0 d 12.1 ± 0.3 d

TP27 22.7 ± 0.8 c 45.3 ± 2.0 c 0.1 ± 0.0 c 1.1 ± 0.2 c 12.4 ± 0.4 c 51.0 ± 0.6 c

TP41 52.4 ± 1.7 b 95.1 ± 0.7 b 0.6 ± 0.3 b 2.6 ± 0.8 b 24.1 ± 0.3 b 76.3 ± 1.2 b

TP100 179.8 ± 2.7 a 241.5 ± 2.5 a 1.2 ± 0.3 a 7.3 ± 0.1 a 39.7 ± 1.6 a 147.5 ± 4.6 a

1 Values are reported on dry matter. 2 TP0 as control. The mean ± standard deviation values (n = 3) with the same
letter within columns are not significantly different at α = 0.05 (ANOVA and Tukey–Kramer HDS test).

3.4. Larval Nutritional Value

Figure 2 shows the fat extracted (% w/w of MLW powder) from larvae fed different
diets enriched with tomato pomace (from 27 to 100%). In our results, the control larvae
(TP0) contained 30.76% crude fat. Adding tomato pomace to the feed in percentages of
27% (TP27) does not generate any difference compared to the control diet. However, when
tomato pomace was present at 41% (TP41) and 100% (TP100), there was a decrease in the
fat content of the larvae. Specifically, TP41 larvae contained 19.6% less fat than control
larvae, while TP100 larvae contained as much as 67.9% less fat. Total fatty acid content
(TFA) analysis also shows a decreasing value trend compared to TP0 (81%). In particular,
TP41 larvae contained about 77% TFA, while TP100 contained 53%, following the trend of
crude fat.

Insects 2023, 14, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 2.The fat and fatty acid content in mealworms fed on different diets. TP0 as control. The 
mean ± standard deviation values (n = 3) with the same letter are not significantly different at α = 
0.05 (ANOVA and Tukey–Kramer HDS test). 

The fatty acid composition of mealworms shows seven fatty acids detected and 
measured in all treatments (Table 5). In TP0 larvae, the main unsaturated fatty acids 
found were oleic acid (OA) (50.2%), followed by linoleic acid (LA) (25%), while of the 
saturated fatty acids (SFAs), the most abundant was palmitic acid (PA) (15%). While in-
troducing a diet supplementation of tomato pomace produced no significant change in 
the amount of SFAs compared to the control, it produced a significant qualitative and 
quantitative change in UFAs. In fact, in diets TP27, TP41, and TP100, there was a de-
creasing trend in the percentage of OA, which fell from 50% (TP0) to 26%, and a simul-
taneous significant increase in PUFAs. The content of LA increases from 25% (TP0) to 
40%, while that of linolenic acid (ALA) varies greatly from 0.4% to 2.7%. The PUFA:SFA 
ratio, calculated to assess our sample’s cardiovascular health benefits, is higher in all 
three case studies (TP27, TP41, and TP100) than in the control TP0 larvae (1.18). Their 
PUFA:SFA ratio shows an increasing trend, with values between 1.4 (TP27) and 2.3 
(TP100). The influence of diet on the ω-6/ω-3 ratio highlights that all larvae fed with to-
mato pomace supplementation significantly reduced their ω-6/ω-3 ratio. The greatest 
70% reduction was obtained with the TP100 diet, followed by 46% of the TP41, compared 
to the TP0, which had an ω-6/ω-3 ratio of 64.3. 

Table 5. Fatty acid profile of the lipid extract of MLW powder fed different diets (% TFA) 1. 

Fatty Acid (%) Diets 
Common Name Lipid Number TP0 2 TP27 TP41 TP100 

Caprilic acid C8:0 n.d. n.d. n.d. n.d. 
Capric acid C10:0 n.d. n.d. n.d. n.d. 
Lauric acid C12:0 n.d. n.d. n.d. n.d. 

Myristic acid C14:0 3.7 ± 0.0 a 3.8 ± 0.0 a 3.4 ± 0.1 b 2.7 ± 0.1 c 
Palmitic acid C16:0 15.6 ± 0.0 a 14.8 ± 0.1 ab 15.3 ± 0.8 a 13.8 ± 0.1 c 

Palmitoleic acid C16:1 1.6 ± 0.2 b 4.2 ± 0.0 a 1.4 ± 0.2 b 1.0 ± 0.0 c 
Stearic acid C18:0 2.9 ± 0.1 c 3.2 ± 0.1 bc 3.4 ± 0.2 b 5.6 ± 0.1 a 
Oleic acid C18:1 50.2 ± 0.2 a 44.7 ± 0.3 b 42.9 ± 0.2 b 26.2 ± 1.5 c 

α-Linoleic acid C18:2n-6 25.7 ± 0.3 d 28.9 ± 0.3 c 32.6 ± 1.0 b 48.1 ± 1.0 a 
α-Linolenic acid C18:3n3 0.4 ± 0.0 c 0.5 ± 0.0 c 1.0 ± 0.1 b 2.7 ± 0.1 a 
Arachidic acid C20:0 n.d. n.d. n.d. n.d. 
Behenic acid C22:0 n.d. n.d. n.d. n.d. 
Erucic acid C22:1 n.d. n.d. n.d. n.d. 

Figure 2. The fat and fatty acid content in mealworms fed on different diets. TP0 as control. The
mean ± standard deviation values (n = 3) with the same letter are not significantly different at
α = 0.05 (ANOVA and Tukey–Kramer HDS test).

The fatty acid composition of mealworms shows seven fatty acids detected and
measured in all treatments (Table 5). In TP0 larvae, the main unsaturated fatty acids found
were oleic acid (OA) (50.2%), followed by linoleic acid (LA) (25%), while of the saturated
fatty acids (SFAs), the most abundant was palmitic acid (PA) (15%). While introducing a
diet supplementation of tomato pomace produced no significant change in the amount
of SFAs compared to the control, it produced a significant qualitative and quantitative
change in UFAs. In fact, in diets TP27, TP41, and TP100, there was a decreasing trend in
the percentage of OA, which fell from 50% (TP0) to 26%, and a simultaneous significant
increase in PUFAs. The content of LA increases from 25% (TP0) to 40%, while that of
linolenic acid (ALA) varies greatly from 0.4% to 2.7%. The PUFA:SFA ratio, calculated to
assess our sample’s cardiovascular health benefits, is higher in all three case studies (TP27,
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TP41, and TP100) than in the control TP0 larvae (1.18). Their PUFA:SFA ratio shows an
increasing trend, with values between 1.4 (TP27) and 2.3 (TP100). The influence of diet
on theω-6/ω-3 ratio highlights that all larvae fed with tomato pomace supplementation
significantly reduced theirω-6/ω-3 ratio. The greatest 70% reduction was obtained with
the TP100 diet, followed by 46% of the TP41, compared to the TP0, which had anω-6/ω-3
ratio of 64.3.

Table 5. Fatty acid profile of the lipid extract of MLW powder fed different diets (% TFA) 1.

Fatty Acid (%) Diets

Common Name Lipid Number TP0 2 TP27 TP41 TP100

Caprilic acid C8:0 n.d. n.d. n.d. n.d.
Capric acid C10:0 n.d. n.d. n.d. n.d.
Lauric acid C12:0 n.d. n.d. n.d. n.d.

Myristic acid C14:0 3.7 ± 0.0 a 3.8 ± 0.0 a 3.4 ± 0.1 b 2.7 ± 0.1 c

Palmitic acid C16:0 15.6 ± 0.0 a 14.8 ± 0.1 ab 15.3 ± 0.8 a 13.8 ± 0.1 c

Palmitoleic acid C16:1 1.6 ± 0.2 b 4.2 ± 0.0 a 1.4 ± 0.2 b 1.0 ± 0.0 c

Stearic acid C18:0 2.9 ± 0.1 c 3.2 ± 0.1 bc 3.4 ± 0.2 b 5.6 ± 0.1 a

Oleic acid C18:1 50.2 ± 0.2 a 44.7 ± 0.3 b 42.9 ± 0.2 b 26.2 ± 1.5 c

α-Linoleic acid C18:2n-6 25.7 ± 0.3 d 28.9 ± 0.3 c 32.6 ± 1.0 b 48.1 ± 1.0 a

α-Linolenic acid C18:3n3 0.4 ± 0.0 c 0.5 ± 0.0 c 1.0 ± 0.1 b 2.7 ± 0.1 a

Arachidic acid C20:0 n.d. n.d. n.d. n.d.
Behenic acid C22:0 n.d. n.d. n.d. n.d.
Erucic acid C22:1 n.d. n.d. n.d. n.d.

Lignoceric acid C24:0 n.d. n.d. n.d. n.d.
Σ SFA 22.1 ± 0.2 a 21.8 ± 0.0 a 22.1 ± 0.6 a 22.0 ± 0.1 a

Σ MUFA 51.7 ± 0.1 a 48.8 ± 0.3 b 44.3 ± 0.5 c 27.2 ± 1.0 d

Σ PUFA 26.1 ± 0.2 d 29.4 ± 0.2 c 33.6 ± 1.0 b 50.8 ± 1.0 a

Σ UFA 77.9 ± 0.2 a 78.2 ± 0.1 a 77.9 ± 0.6 a 78.0 ± 0.1 a

PUFA:SFA ratio 1.2 ± 0.0 d 1.4 ± 0.0 c 1.5 ± 0.1 b 2.3 ± 0.0 a

MUFA:PUFA ratio 2.0 ± 0.0 a 1.7 ± 0.0 b 1.3 ± 0.0 c 0.5 ± 0.0 d

ω6:ω3 ratio 64.3 ± 3.9 a 57.8 ± 7.3 a 32.6 ± 1.7 b 17.8 ± 0.1 c

1 Values are reported on % total fatty acid (TFA); n.d. (not detectable). 2 TP0 as control. The mean ± standard
deviation values (n = 3) with the same letter within the same line are not significantly different at α = 0.05
(ANOVA and Tukey–Kramer HDS test). Lines with bold characters highlight the parameters most influenced by
the different diets.

3.5. Lipid Quality Indices

Diet had a direct influence on both the Cox index and UI. As shown in Table 6, in all
cases of tomato-fed larvae (TP27, TP41, and TP100), there was a substantial increase in the
Cox index value compared to the TP0 value, equal to 3.2. The TP41 and TP100 diets, in
particular, increased by +25% and +80%, respectively. The UI data also follow an increasing
trend; compared to the control values TP41 and TP100, they show an increase of +7.7% and
+25%, respectively. Among the lipid quality indices related to the incidence of coronary
heart disease, IA, IT, and HH did not appear to be significantly influenced by diet, except
for the TP100 diet. Larvae fed with 100% tomato pomace showed IA and IT decreased
by −20% and −12% compared to the control, and HH increased by +18% compared to
the control.
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Table 6. Lipid quality indices of TFA obtained from MLW fed different diets.

Index 1
Diets

TP0 2 TP27 TP41 TP100

Cox Index 3.2 ± 0.1 d 3.5 ± 0.0 c 4.0 ± 0.1 b 5.8 ± 0.1 a

IT 0.6 ± 0.0 a 0.5 ± 0.0 a 0.5 ± 0.0 a 0.5 ± 0.0 a

IA 0.4 ± 0.0 a 0.4 ± 0.0 a 0.4 ± 0.0 a 0.3 ± 0.0 b

HH 4.0 ± 0.0 b 4.0 ± 0.0 b 4.1 ± 0.2 b 4.7 ± 0.0 a

UI 104.4 ± 0.5 d 108.2 ± 0.1 c 112.5 ± 1.2 b 131.4 ± 1.0 a

1 Indices abbreviations: Cox index (calculated oxidizability value index); IT (indices of thrombogenicity);
IA (index of atherogenicity); HH (hypocholesterolemic/hypercholesterolemic ratio); UI (unsaturation index).
2 TP0 as control. The mean ± standard deviation values (n = 3) with the same letter within the same line are not
significantly different at α = 0.05 (ANOVA and Tukey–Kramer HDS test).

3.6. Crude Protein

Larvae fed on control, TP27, and TP41 diets showed similar crude protein contents
(Figure 3). Their values varied from 47.3% to 49.2%, expressed on the DM of larvae defatted.
In contrast, crude protein in larvae on the TP100 diet decreased by 42%.
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4. Discussion

The nutrient composition is important for the use of by-products in diets. The dried
tomato pomace used in this study is particularly poor in macro-nutrients, probably because
it derives from a very efficient industrial process [28]. Its contents in protein (9.5%), carbohy-
drate (8.9%), and lipids (3.2%) are unfavorable in carbohydrates when compared to optimal
compositions described by Morale-Ramos (20–25%, 65–75%, and 3–12%, respectively) [50]
or by Kröncke and Benning (20–23%, 67–72%, and 9–10%, respectively) [12].

TP’s protein/carbohydrate ratio (p:c) is 1:0.9 and is similar to the 1:1 ratio, considered
the best as it is actively regulated by adults choosing between nutritionally unbalanced
diets [75]. However, these authors tested adults on synthetic diets and reported the
“tendency to prioritize the regulation of carbohydrate intake over that of protein intake” [75].
More specifically, the ratio would be 1:1.6 for males and 1:1.3 for females [76]. All that
would indicate the need to supplement TP with carbohydrates. However, the TP100 diet
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results indicate that protein and carbohydrate deficiency had a more prevalent effect on
their p:c ratio. TP100 larvae had lower protein content than larvae from TP0, TP27, and
TP41 isoproteic diets, in contrast to the expected maximum protein accumulation with a
ratio between 1:1 and 2:1 [75].

The TP100 diet has the lowest energy value (236.6 kcal/100 g), and the TP0 diet has
the highest (318.3 kcal/100 g), but they all have lower energy values than the poorest diet
(353 kcal/100 g) reported by other authors [77]. The low energy value of TP is determined
by the high fiber content (67.1%), considered unfavorable if more than 5–10% in diets for
T. molitor [78].

In our study, the tested diets induced few differences in larval performance. Major and
minor larval and pupal weights were obtained in the TP41 and TP100 diets, respectively;
however, only the pupal weight in the TP41 diet was significantly higher. Much more
important was the significant increase in larval time of development in the TP100 diet
(twice as much as compared to the control). This delay in larval growth is a potential
limitation to the use of pure TP due to the resulting increase in rearing costs. The increase
in larval times of development can be mainly attributed to the low protein content, as there
are no differences between isoproteic diets. This hypothesis agrees with the reduction
inlarval times of development observed in diets richer in proteins [79].

Results on the use of diets have highlighted the significant increase in the FCR value as
the dose of TP increases. This result is expected in TP100 as a remedy to compensate for the
low concentration of nutrients [75]. Furthermore, the increase in FCR values in isoproteic
diets suggests a positive correlation to the fiber content and a negative correlation to the
energy value of the diet. Our FCR values (from 2.7 to 4.3 for TP0 and TP100, respectively)
are slightly higher than some control diets, such as wheat bran and yeast (FCR = 2.3) [47],
chicken feed (FCR = 1.57), and wheat bran (FCR = 2.08) [9]. It is important to point out
that the FCR value (3.8) recorded in the TP41 diet is similar to 3.5 of the commercial diet
for T. molitor used by van Broekhoven et al. [80] with similar protein values (16.5 and
17.1%, respectively).

The tested diets have SRG values in line with the seed-clearing process by-products
values (2.7 to 7.2% day−1) [47] but are lower than the mixed diets (8.2 to 11.9% day−1) [12].
The particularly low value (2.5% day−1) of the TP100 diet is probably influenced by the
long larval time of development.

The ECI values significantly decreased from 15.4% to 9.8% with the increase of the
TP in the diets; they are lower than the control diet used in commercial insect rearing
companies (19%) [80] and chicken feed (almost 22%) [9]. However, we find our results
morecomparable to Kroncke and Benning [12] and Morales-Ramos et al. [81] for a similar
mode of diet administration. Administration through “cookies” greatly reduces self-
selection in mixed diets, thus reducing the possibility of self-reducing the negative impact
of unbalanced diets or fibers. In this case, our ECI values fall within the range 5.5–18.4%
described by Kroncke and Benning [12] and higher than the range 7–10% [81], where the
two best diets have ECI values similar to the TP100 diet (with 9.8%).

The ECD values (30.0 to 65.9%) were higher compared to the values (17 to 20%) found
in larval density tests [82]. The limited knowledge on ECD and the high value of the TP100
diet suggest more studies hypothesizing better conversion of the digested diet if it is poor
in nutrients.

Carotenoids and fatty acid composition evidence the positive influence of tomato
pomace on larval quality. The degree of accumulation of carotenoids observed in the larvae
is very low compared to that contained in the substrate and feces. This reduced efficiency
of larval accumulation against an evident enrichment in frass carotenoids is in agreement
with other data present in the literature on mealworms fed with former foodstuffs [83]
and H. illucens fed with agri-food by-products (ground and coarse tomato) [43]. The use of
commercial β-carotene supplements administered to insects shows larval accumulation
values comparable to our results [84], as well as MLW fed with leaves of Moringa oleifera
(Lam.) [85] or with carrot pomace [86].
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The lycopene content in the larvae appears to be much lower than the β-carotene
content accumulated in the substrate and feces. These data arein agreement with the
reduction inthe mass balance also found for other non-provitamin A carotenoids, such as
zaexanthin and lutein in T. molitor [83] and in H. illucens [43] probably due to bioconversion
phenomena by the insect (β-cyclase and carotene-9′,10′-monooxygenase) [87,88] or by the
gut microbial community [89].

Of great interest is the observation of the effect of diet on the quantity and quality of
lipids and FAs. In the MLW, lipids are second only to proteins in quantity [90]. TP0 larvae
show a crude fat value (~30.8%) that is very comparable with other previously published
data in which there is great variability in its concentration (from 22% to 42%) [16,60,91].
Insects, particularly MLW, have a sophisticated enzymatic kit (Elongase and Desaturase)
that allows them to synthesize de novo fatty acids, particularly PUFAs [15,92,93].

Furthermore, they can modulate the degree of lipid accumulation and change their
profile in FAs depending on the developmental stage, sex, growth environment, and
especially the type of feed used [94–99].

Larvae fed with 100% TP showed a reduction in crude fat percentage compared to
the control. This decrease agrees with many studies showing how caloric restriction,
total carbohydrate intake in the diet, and, in particular, the addition of fatty acid and
carotenoid supplements affect fat synthesis and accumulation in insect larvae and other
animals [76,80,85,100,101]. Low levels of intramuscular fat are found in lamb-fed diets en-
riched in lycopene [102] and in pork-fed diets, rich in linoleic acid [103] and supplemented
with 15% TP [104].

The fatty acid composition of TP0 larvae also confirms it as one of the most abundant
sources of OA, PA, and especially LA compared to other animal sources rich in fatty acids
and especially ω-6 such as chicken fat and egg yolk [105]. LA and ALA are PUFAs defined
as ‘essential’ for the human body, which cannot synthesize them [106] and are essential for
human health and, in particular, for preventing cardiovascular disease, one of the leading
causes of death worldwide [15].

The increase in the amount ofω-3 in feeds due to TP led to a general increase in PUFAs,
especially LA and ALA, and to a decrease in both OA and ω-6/ω-3 ratios in especially
TP41 and TP100 diets (−45%, −70%). Diets high in the ω-3/ω-6 ratio cause an increase
in PUFA and ω-3/ω-6 ratios in larvae [107] and can modulate the activity of both ∆-12
desaturase [17], which convertsω-9 oleic acids intoω-6 linoleic acids [108], and Elongase
(TmElo1 and TmElo2) involved in the synthesis of PUFAs [93].

Our results also agree with other data where MLW are fed feed supplemented with lin-
seed, grape seeds, and winery waste sludge, showing a reduction in MUFA content [15,20].
In contrast, diets with distillery by-products (grape pomace, exhausted grape marcs, grape
skin pulp [20], or sunflower [109]) produced a significant increase in MUFAs and, in par-
ticular, OA, while the inclusion of olive pomace in the feed composition did not affect the
FA composition of body lipids [77]. Our results also agree with improving the quality and
quantity of PUFAs obtained by adding fish oil [110]. All this emphasizes how physiological
mechanisms of MLW adaptation play a key role in the quality of the lipid profile of larvae
on par with diets [80,83,107,111].

Incorporating TP into feeds also increased the wholesomeness of mealworms for
human and animal consumption, as indicated by the lipid indices obtained. The increase
in Cox index emphasizes the positive influence of diets rich in PUFAs on the stability and
shelf--life of by-products obtainable from MLW [16,59,112]. In contrast, the increase in UI,
comparable to some macroalgae (Hypnea esperi, Gracilaria fergusonii, Codium vermilara) [67],
shows the strong impact of diet on increasing the percentage of high-quality PUFAs useful
for reducing the risk of heart disease [113], preventing and managing type 2 diabetes,
insulin resistance [114], osteoarthritis [115], and neurological disorders [116].

The absence of adverse effects on the IA, IT, and HH indices, however, makes these
larvae comparable to other diets applied to MLW [17,85] and other valid novel foods such
as brown seaweed, whose consumption produces the best results for human health as
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it has a positive effect against cardiovascular diseases [117]. It is known that the con-
sumption of foods or meals with low IA and IT values and high HH values can have
hypocholesterolemic [118] and antihypertensive effects [119] and have positive effects on
the cardiovascular system [120].

Therefore, dueto the quality and quantity of its macronutrients and the presence of
carotenoids in TP, the use of an optimal diet based on this by-product can support the
production of mealworms and its products (flour and oil), to be used both as foods [121–123]
and as feed [124–126] with high nutritional value and positive effects on human and animal
health [59,127]. Great attention must be paid to the origin and traceability of by-products
used in diets to avoid accumulating and biomagnifying heavy metals in larvae [128].

5. Conclusions

In this study, among the diets tested, the optimal diet was assembled with wheat
bran (50%), tomato pomace (41%), and yeast (9%). This diet had no negative impact on
larval performance and increased the content of carotenoids and polyunsaturated fatty
acids. Further studies should point to replacing yeast with a cheaper protein source, such
as by-products. Using pure tomato pomace further increases the content of lycopene and
β-carotene in the larvae and doubles the PUFA values. However, this diet doubles the
larval time of development and reduces the protein and fat content of the larvae. Therefore,
the use of the latter diet is conditioned by the economic valorization of larvae with a greater
health value.
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122. Zielińska, E.; Pankiewicz, U. Nutritional, Physiochemical, and Antioxidative Characteristics of Shortcake Biscuits Enriched with
Tenebrio molitor Flour. Molecules 2020, 25, 5629. [CrossRef]

123. Djouadi, A.; Sales, J.R.; Carvalho, M.O.; Raymundo, A. Development of Healthy Protein-Rich Crackers Using Tenebrio molitor
Flour. Foods 2022, 11, 702. [CrossRef]

124. Sharifinia, M.; Bahmanbeigloo, Z.A.; Keshavarzifard, M.; Khanjani, M.H.; Daliri, M.; Koochaknejad, E.; Jasour, M.S. Fishmeal
Replacement by Mealworm (Tenebrio Molitor) in Diet of Farmed Pacific White Shrimp (Litopenaeus Vannamei): Effects on Growth
Performance, Serum Biochemistry, and Immune Response. Aquat. Living Resour. 2023, 36, 19. [CrossRef]

125. Biasato, I.; Gasco, L.; De Marco, M.; Renna, M.; Rotolo, L.; Dabbou, S.; Capucchio, M.T.; Biasibetti, E.; Tarantola, M.;
Sterpone, L.; et al. Yellow Mealworm Larvae (Tenebrio molitor) Inclusion in Diets for Male Broiler Chickens: Effects on Growth
Performance, Gut Morphology, and Histological Findings. Poult. Sci. 2018, 97, 540–548. [CrossRef] [PubMed]

126. Ao, X.; Kim, I.H. Effects of Dietary Dried Mealworm (Ptecticus Tenebrifer) Larvae on Growth Performance and Nutrient
Digestibility in Weaning Pigs. Livest. Sci. 2019, 230, 103815. [CrossRef]

127. Son, Y.-J.; Choi, S.Y.; Hwang, I.-K.; Nho, C.W.; Kim, S.H. Could Defatted Mealworm (Tenebrio molitor) and Mealworm Oil Be Used
as Food Ingredients? Foods 2020, 9, 40. [CrossRef] [PubMed]

128. Naccarato, A.; Vommaro, M.L.; Amico, D.; Sprovieri, F.; Pirrone, N.; Tagarelli, A.; Giglio, A. Triazine Herbicide and NPK Fertilizer
Exposure: Accumulation of Heavy Metals and Rare Earth Elements, Effects on Cuticle Melanization, and Immunocompetence in
the Model Species Tenebrio molitor. Toxics 2023, 11, 499. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3389/fphar.2019.00036
https://doi.org/10.1016/j.foodres.2016.08.007
https://doi.org/10.1590/fst.22420
https://doi.org/10.3390/antiox11020186
https://doi.org/10.1186/s12944-020-01387-4
https://doi.org/10.3390/molecules27196155
https://doi.org/10.3390/molecules25235629
https://doi.org/10.3390/foods11050702
https://doi.org/10.1051/alr/2023013
https://doi.org/10.3382/ps/pex308
https://www.ncbi.nlm.nih.gov/pubmed/29121342
https://doi.org/10.1016/j.livsci.2019.09.031
https://doi.org/10.3390/foods9010040
https://www.ncbi.nlm.nih.gov/pubmed/31906597
https://doi.org/10.3390/toxics11060499
https://www.ncbi.nlm.nih.gov/pubmed/37368599

	Introduction 
	Materials and Methods 
	Yellow Mealworms Colony 
	Substrate Composition/Preparation 
	Experimental Set-up 
	Mealworm Growth Perfomance 
	Carotenoids Analysis 
	Lipid Analysis in Mealworms 
	Nutritional Quality Indices 
	Protein Analysis 
	Statistical Analysis 

	Results 
	Larval Performances 
	Efficiency Indicators 
	Lycopene and -Carotene Quantification 
	Larval Nutritional Value 
	Lipid Quality Indices 
	Crude Protein 

	Discussion 
	Conclusions 
	References

