
Citation: He, Z.; Jia, D.; Zhang, Y.; Qu,

D.; Lv, Z.; Zeng, E. Investigation into

the Heat Transfer Behavior of

Electrostatic Atomization Minimum

Quantity Lubrication (EMQL) during

Grinding. Lubricants 2024, 12, 158.

https://doi.org/10.3390/

lubricants12050158

Received: 26 March 2024

Revised: 26 April 2024

Accepted: 29 April 2024

Published: 30 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

lubricants

Article

Investigation into the Heat Transfer Behavior of Electrostatic
Atomization Minimum Quantity Lubrication (EMQL)
during Grinding
Zhiyong He 1 , Dongzhou Jia 1,2,*, Yanbin Zhang 3, Da Qu 4, Zhenlin Lv 2 and Erjun Zeng 5

1 College of Mechanical Engineering and Automation, Liaoning University of Technology,
Jinzhou 121001, China; 18840118519@163.com

2 School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048, China;
lvzl2002@xaut.edu.cn

3 School of Mechanical and Automotive Engineering, Qingdao University of Technology,
Qingdao 266520, China; zhangyanbin1_QDLG@163.com

4 Engineering Research Center of Mechanical Testing Technology and Equipment (Ministry of Education),
Chongqing University of Technology, Chongqing 400054, China; qd007@cqut.edu.cn

5 Shandong Dongyu Construction Machinery Co., Jining 272000, China; zej@dongyujixie.com
* Correspondence: jia_dongzhou@163.com

Abstract: Electrostatic atomization minimum quantity lubrication (EMQL) technology has been
developed to address the need for environmentally friendly, efficient, and low-damage grinding of
challenging titanium alloy materials. EMQL leverages multiple physical fields to achieve precise
atomization of micro-lubricants, enabling effective lubrication in high temperature, high pressure,
and high-speed grinding environments through the use of electric traction. Notably, the applied
electric field not only enhances atomization and lubrication capabilities of micro-lubricants but
also significantly impacts heat transfer within the grinding zone. In order to explore the influence
mechanism of external electric field on spatial heat transfer, this paper first comparatively analyzes
the grinding heat under dry grinding, MQL, and EMQL conditions and explores the intensity of the
effect of external electric field on the heat transfer behavior in the grinding zone. Furthermore, the
COMSOL numerical calculation platform was used to establish an electric field-enhanced (EHD)
heat transfer model, clarifying charged particles’ migration rules between poles. By considering the
electroviscous effect, the study reveals the evolution of heat transfer structures in the presence of an
electric field and its impact on heat transfer mechanisms.

Keywords: biodegradable lubricant; EMQL; heat transfer mechanism; grinding machining; surface
quality

1. Introduction

The burgeoning growth of sophisticated machinery in the domains of aerospace,
rail transportation, marine engineering, energy, and biomedicine has rendered the high-
efficiency, precision, and low-damage machining of titanium alloy materials that are
challenging to machinery indispensable in the realm of advanced manufacturing technol-
ogy [1,2]. However, the force and heat in the titanium alloy cutting zone increase sharply
during the cutting process (especially grinding) due to the alloy’s low thermal conductiv-
ity, low elastic modulus, and high chemical activity. This can easily result in issues with
fast tool wear and a low material removal rate, which have a serious negative impact
on surface quality and machining accuracy [3–5]. According to researchers’ studies, the
contact length between a titanium alloy chip and a tool is extremely short—less than
one-third that of a steel contact length under identical circumstances [6]. It is the primary
source of temperature and stress concentration close to the cutting edge (within 0.5 mm),
accelerating tool wear and deformation failure. P.A. Dearnley and A.N. Grearson [7]
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specifically examine the titanium alloy cutting zone’s temperature evolution behavior. It
is discovered that because of the cutting zone’s excessively low thermal conductivity,
heat cannot easily pass through the chip and the workpiece to the outside of the cutting
system. This leads to a more significant accumulated temperature phenomenon and,
ultimately, a decrease in the workpiece’s surface quality. It is evident that titanium
alloy has a high requirement for a cutting environment, similar to other conventional
hard-to-machine materials.

The traditional flooding lubrication method involves pouring a significant amount of
cutting fluid (60 L/h) into the cutting zone to provide cooling, lubrication, chip removal,
and rust prevention [8,9]. This method heavily relies on non-renewable resources like
mineral oil, leading to the production of PM10 and PM2.5 suspended particles that pose
risks to human health. Moreover, the cost of environmentally friendly post-processing
of cutting fluid is high, indicating that this method does not align with the principles of
green manufacturing [8,10]. Scholars have proposed various green lubrication processes,
including solid lubrication, cryogenic cutting, and Minimum Quantity Lubrication (MQL).
Cryogenic cutting, for instance, utilizes the phase-change heat absorption and strong con-
vective heat transfer of low-temperature media such as liquid carbon dioxide (LCO2) and
liquid nitrogen (LN2) to achieve rapid cooling in the high-temperature cutting zone. This
method effectively suppresses the thermal softening effect of materials [11–13]. Numerous
studies have demonstrated that utilizing cryogenic cutting, as opposed to traditional lubri-
cation methods, can notably decrease the cutting zone temperature, resulting in a superior
surface quality of the workpiece [14–17].

Furthermore, Hong and Zhao [18] emphasized that low-temperature media can
substantially diminish the chemical reactivity between titanium and tool materials,
preventing damage and failure due to tool overheating, and showing promise in en-
hancing tool longevity. However, challenges such as the high cost of cryogenic cutting,
the extensive equipment requirements, temperature regulation complexities, limited
lubrication capabilities, and susceptibility to microcrack formation in the workpiece
hinder the widespread adoption of low-temperature processing in critical machining
applications [12]. Minimum Quantity Lubrication (MQL) aims to minimize lubricant
usage while still effectively cooling and lubricating the cutting zone, typically using
only 30–100 mL/h per unit of grinding wheel width [19]. This technology has garnered
significant attention in the realm of eco-friendly cooling and lubrication. Numerous
studies have demonstrated that atomized micro-lubricant droplets, propelled by com-
pressed air, can effectively cool and lubricate the cutting zone [20–22]. The issue of
insufficient cooling performance has emerged in micro-lubrication technology due to
the low thermal conductivity of the gas and the limited amount of liquid lubricant,
particularly during the processing of challenging materials like titanium alloys. This
problem has been highlighted in previous studies [23–25]. It is important to note that
traditional MQL systems employ pneumatic atomization, with gas pressures typically
ranging from 0.4–0.6 MPa. While higher gas pressures can enhance droplet transport
and cooling efficiency, they also increase the risk of atomized droplets dispersing into
the environment, posing potential health hazards to operators [26–28].

Scholars have proposed a novel technology called electrostatic atomization mini-
mum quantity lubrication (EMQL) based on empirical evidence. This technology uti-
lizes the combined effects of airflow and electrostatic fields to atomize and transport
micro-lubricants into the cutting zone for cooling and lubrication purposes [29–31].
Bartolomeis [32] highlighted during the fifth CIRP CSI conference in 2020 that EMQL
technology shows great promise for machining challenging materials in the aerospace
industry. Research conducted by Shah and Huang [33,34] demonstrated that the applica-
tion of an electric field can greatly enhance the atomization process of micro-lubricants,
resulting in droplets with smaller average particle size, more uniform distribution, and
improved penetration and adsorption capabilities. Gong and Lee P H [35,36], along
with other researchers, conducted cutting experiments on titanium alloys. Their stud-
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ies demonstrated that utilizing EMQL technology, as opposed to MQL conditions, not
only enhances the surface quality of the workpiece but also notably prolongs the tool’s
service life. The team conducted extensive research on EMQL technology, including the
establishment of a mathematical model for the volume average particle size of atomized
droplets from the electrostatic nozzle based on two-dimensional wave theory. They
also examined the impact of the electrostatic field on the concentration of inhalable
particles PM10/PM2.5 [37]. Furthermore, they conducted EMQL grinding experiments
on titanium alloy, revealing the lubrication mechanism of the charged micro-lubricant
electric traction film in the grinding zone. They determined the optimal electrical and
aerodynamic parameters [5]. Interestingly, their study found that EMQL not only en-
hances atomization characteristics to improve lubrication ability but also appears to
enhance the heat transfer capacity of the cutting zone. Su [38] and other researchers
also noted this intriguing phenomenon in their study. The mechanism by which EMQL
improves the cooling performance in the cutting zone remains undisclosed. To address
this gap, this study conducted titanium alloy grinding experiments under dry, MQL,
and EMQL conditions. Through measuring the grinding temperature and analyzing
the surface quality of the machined surface, it was established that the electric field
applied in EMQL had additional heat transfer effects beyond lubricant heat transfer
in the cutting zone. To delve deeper into the heat transfer phenomenon of the applied
electric field, a mathematical model of the EHD electric field-enhanced heat transfer
temperature field was developed. The study tracked the evolution of the spatial temper-
ature field under the influence of the applied electric field, revealing the enhanced heat
transfer mechanism of the corona ion wind at the oil film and its interface. This research
aims to bridge theoretical gaps and offer theoretical guidance for further exploration of
EMQL technology.

2. Experimental Methodology

In this experiment, soybean oil was used as a micro-lubricant to grind titanium alloys
under dry grinding, MQL and EMQL conditions and the temperature of the grinding zone
then measured, compared, and analyzed the surface quality of the workpiece under various
lubrication conditions.

2.1. Experiment and Measuring Device

The grinding and associated measuring equipment used in this experiment are shown
in Figure 1.

The experiment used a K-P36 CNC precision surface grinding machine Shanghai
Silaifulin Co., Ltd. (Shanghai, China) and a CBN grinding wheel with a particle size of
80#. The experiment provides a gas-liquid two-phase fluid for the electrostatic nozzle (self-
made) through the Bluebe (Fuji, Japan) micro-lubrication system. The electrostatic nozzle is
connected with a high-voltage DC power supply Dongguan Hongda Spraying Machinery
Co., Ltd. (Dongguan, China) through the high-voltage cable to realize the high-voltage
power supply, and the maximum voltage can reach 60 kV. The surface tension of soybean oil
was measured by a BZY-201 surface tension meter. The dynamic viscosity of pure soybean
oil was measured by a DV-2T viscometer produced by Brookfield Company (New York,
NY, USA). The conductivity of pure soybean oil was measured by a DDS-307A conductivity
measuring instrument produced by Shanghai Leici Company (Shanghai, China). The
droplet charge-mass ratio of soybean oil under the condition of 0.3 MPa pressure and 30 kV
was measured by a custom Faraday bucket and an EST111 picoammeter. The temperature
measurement of the grinding zone adopts the clamped thermocouple method, and the
thermocouple signal collector model is MX 100.
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Figure 1. Grinding machining and measuring equipment.

2.2. Experimental Materials

The EMQL base oil used in the experiment is soybean oil, the workpiece material is
(α + β) titanium alloy (20 mm × 20 mm × 30 mm), and the grade is Ti-6Al-4V, as shown in
Figure 2.

Lubricants 2024, 12, 158 5 of 18 
 

 

 
Figure 2. Experimental materials. 

The main physical properties of titanium alloy Ti-6Al-4V are shown in Table 1: 

Table 1. Physical property of Ti-6Al-4V [39–41]. 

Thermal 
Conductivity 

(W/m·K) 

Specific 
Heat 

(J/kg·K) 

Density 
(g/cm3) 

Elastic 
Modulus 

(GPa) 

Poisson 
Ratio 

Yield 
Strength 

(MPa) 

Tensile 
Strength 

(MPa) 
7.955 526.3 4.42 114 0.342 880 950 

The main components of soybean oil are fatty acids, including saturated fatty acids 
(SFA), myristic acid (C14:0), palmitic acid (C16:0), stearic acid (C18:0) and arachidic acid 
(C20:0); monounsaturated fatty acids (MUFA), oleic acid (C18:1) and arachidonic acid 
(C20:1); polyunsaturated fatty acids (PUFA), linoleic acid (C18:2) and linolenic acid 
(C18:3), as shown in Table 2, and the rest are types of components that are not detected. 
Relevant studies have shown that polar groups such as -COOH, -COOR, etc., in soybean 
oil and metal surface molecules rely on van der Waals forces to form a physical adsorption 
film, which can play a role in lubrication and friction reduction. In addition, there is also 
chemical adsorption between soybean oil and metal surface, also known as the metal sa-
ponification reaction, forming a chemical adsorption film. It also has a certain role in lu-
brication and friction reduction, so soybean oil is an ideal biodegradable MQL base oil 
[42,43]. 

The surface tension of soybean oil at room temperature was 32.17 mN/m, the dy-
namic viscosity was 61.14 cP, the conductivity of soybean oil was 0.54 mS/m, and the drop-
let charge–mass ratio of soybean oil was 0.2634 mC/kg under the pressure of 0.3 MPa and 
the voltage of 30 kV. 

Table 2. Contents of various fatty acids in soybean oil. 

C14:0 C16:0 C18:0 C18:1 C18:2 C18:3 C20:0 C20:1 SFA MUFA PUFA 
0.06 10.30 3.78 22.30 50.84 5.90 0.29 0.36 14.92 22.87 57.83 

2.3. Experimental Parameters 
The lubrication parameter settings under three working conditions are shown in Ta-

ble 3: 
  

Figure 2. Experimental materials.

The main physical properties of titanium alloy Ti-6Al-4V are shown in Table 1:

Table 1. Physical property of Ti-6Al-4V [39–41].

Thermal
Conductivity
(W/m·K)

Specific
Heat

(J/kg·K)

Density
(g/cm3)

Elastic
Modulus

(GPa)

Poisson
Ratio

Yield
Strength

(MPa)

Tensile
Strength

(MPa)

7.955 526.3 4.42 114 0.342 880 950



Lubricants 2024, 12, 158 5 of 17

The main components of soybean oil are fatty acids, including saturated fatty acids
(SFA), myristic acid (C14:0), palmitic acid (C16:0), stearic acid (C18:0) and arachidic acid
(C20:0); monounsaturated fatty acids (MUFA), oleic acid (C18:1) and arachidonic acid
(C20:1); polyunsaturated fatty acids (PUFA), linoleic acid (C18:2) and linolenic acid (C18:3),
as shown in Table 2, and the rest are types of components that are not detected. Relevant
studies have shown that polar groups such as -COOH, -COOR, etc., in soybean oil and
metal surface molecules rely on van der Waals forces to form a physical adsorption film,
which can play a role in lubrication and friction reduction. In addition, there is also chemical
adsorption between soybean oil and metal surface, also known as the metal saponification
reaction, forming a chemical adsorption film. It also has a certain role in lubrication and
friction reduction, so soybean oil is an ideal biodegradable MQL base oil [42,43].

Table 2. Contents of various fatty acids in soybean oil.

C14:0 C16:0 C18:0 C18:1 C18:2 C18:3 C20:0 C20:1 SFA MUFA PUFA

0.06 10.30 3.78 22.30 50.84 5.90 0.29 0.36 14.92 22.87 57.83

The surface tension of soybean oil at room temperature was 32.17 mN/m, the dynamic
viscosity was 61.14 cP, the conductivity of soybean oil was 0.54 mS/m, and the droplet
charge–mass ratio of soybean oil was 0.2634 mC/kg under the pressure of 0.3 MPa and the
voltage of 30 kV.

2.3. Experimental Parameters

The lubrication parameter settings under three working conditions are shown in
Table 3:

Table 3. Lubrication parameters under different lubrication conditions.

Lubrication Conditions Lubrication Parameters

Dry cutting -

MQL Liquid flow rate: 60 mL/h; Pressure: 0.3 MPa; Nozzle angle: 15◦; Jet
distance: 30 mm

EMQL Liquid flow rate: 60 mL/h; Pressure: 0.3 MPa; Nozzle angle: 15◦; Jet
distance: 30 mm; Voltage: 30 kV

Table 4 displays the other grinding parameters that are consistent in each group, with
the exception of the lubrication condition, to ensure experiment consistency.

Table 4. Grinding parameters.

Grinding Parameter Values

Grinding wheel speed vs. (m/s) 30
Feed rate VW (m/min) 3.5
Grinding depth ap (µm) 10

Cutting mode Rectangular path plane grinding

3. Results and Discussion
3.1. Grinding Temperature Analysis

Experimental measurements of the grinding zone’s temperature were made under
dry grinding, MQL, and EMQL conditions. Figure 3 illustrates the clamped thermocouple
method of measurement.
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Figure 3. Thermocouple clamp measurement method.

The single temperature peak curve measured under the three working conditions is
shown in Figure 4a. The single temperature peaks obtained under dry grinding, MQL
and EMQL conditions are 408.2 ◦C, 299.3 ◦C, and 180.4 ◦C, respectively. As illustrated in
Figure 4b, ten temperature curve peaks are gathered for mean processing for each working
condition, and the initial temperature value is subtracted to determine the mean temper-
ature rise under each working condition. The mean temperature rise of the workpiece
surface under dry grinding condition is 375.4 ◦C, under an MQL condition is 241.6 ◦C,
and under an EMQL condition is 138.2 ◦C. It is evident that in dry grinding conditions,
there is no cooling medium to assist in the machining process. As a result, a significant
amount of grinding heat will build up in the grinding zone and cannot be rapidly dis-
persed to the surrounding area. Furthermore, in dry grinding conditions, there is more
friction between the abrasive wheel and the workpiece, increasing the amount of heat
produced in the grinding zone. A thorough investigation reveals that the grinding zone’s
temperature is highest when grinding is dry. In the case of MQL, the rise in the grinding
zone’s temperature is greater than that of EMQL. The reason is that only the quick flow of
compressed air during the MQL process can facilitate heat transfer in the grinding zone.
Despite having a higher heat transfer capacity than dry grinding, MQL still has a certain
shortfall in this area because of the gas’s low thermal conductivity. The surface temperature
rise of the workpiece under EMQL condition is only 36.8% of that under dry grinding
conditions, which shows that the external electric field has an obvious heat transfer effect
on the grinding zone. Compared with the other two types of processing conditions, the
EMQL method is ideal for the heat transfer capacity of the grinding zone.
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3.2. Surface Quality Evaluation

The surface morphology of the workpiece under different lubrication conditions was
observed by a laser confocal microscope. Figure 5 is the typical surface morphology under
three lubrication conditions. From left to right, the color map, intensity map and height
map under the corresponding working conditions are in turn. It can be seen that the
surface quality of the workpiece is very poor under dry grinding conditions, and a large
area of chip adhesion occurs on the surface under high temperatures. The bonding force
between the adhesion layer and the matrix material is insufficient, and it is easy to fall
off under the action of external force. The adhesion layer has a significant impact on the
workpiece’s performance because it will even remove some of the matrix material when
it falls off. Furthermore, the dry grinding surface exhibits very noticeable deep grooves
and large-area bulk material peeling, which contribute to the workpiece’s poor surface
quality. The height map shows that the dry grinding surface’s maximum height difference
in the observation area can reach 40.266 µm. The analysis suggests that the sharp rise in
temperature in the grinding zone during dry grinding of titanium alloy, combined with
its low thermal conductivity, significantly increases the material’s plasticity. This, coupled
with high pressure, leads to continuous chip adhesion between the grinding wheel and
workpiece surface, ultimately forming an adhesion layer. This results in adhesive wear on
the workpiece surface, leading to unsatisfactory surface quality in dry grinding.
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The value of workpiece surface roughness also decreases, and no large area chip
adhesion phenomenon was seen on the surface position under MQL grinding conditions.
However, the workpiece’s surface was clearly contaminated by multiple granular adhe-
sions, and the furrow made by the abrasive machining process lacked regularity. According
to the analysis, under MQL conditions, the high-speed compressed air flow can disturb the
surrounding gas around the grinding zone, thereby removing some of the heat. Further-
more, the heat exchange within the grinding zone is positively impacted by the penetration
of micro-lubricants. As a result, the workpiece’s surface quality and the cooling conditions
of the grinding zone both improve.
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Under the EMQL condition, the surface quality of the workpiece is the highest, the
maximum height difference in the scanning area is only 15.242 µm, the number and size
of adhesion points are reduced, and the distribution of furrows is the most uniform. It is
evident that the workpiece’s surface quality under EMQL conditions is clearly superior to
that under the other two conditions. The analysis demonstrates that the external electric
field intervention improves the micro-lubricant’s atomization characteristics. It can improve
the charged droplets’ ability to migrate and penetrate the grinding zone’s microchannel,
in addition to raising the lubricant’s effective utilization rate [5]. Therefore, the grinding
zone obtains a more ideal cooling and lubrication effect. In comparison to MQL, the heat
accumulation is lower during the machining process, resulting in a surface temperature of
the workpiece that is insufficient to create extensive chip adhesion. As a result, a significant
reduction in adhesion points and layers on the workpiece surface is observed.

The aforementioned study findings unequivocally support the beneficial impact of the
applied electric field on the grinding zone’s heat dissipation. However, more information
is required to fully understand the heat transfer mechanism of the applied electric field in
space. This paper investigates the mechanism of action of charged particles’ heat transfer
behavior through numerical calculation based on the objective reality that such behavior is
difficult to verify through experiments.

4. Model of Electric Field-Enhanced Heat Transfer
4.1. Theoretical Model of Electric Field-Enhanced Heat Transfer

The electric field-enhanced heat transfer process studied in this article belongs to the
category of electrohydrodynamics, which specifically involves the coupling synergies of
two-phase flow field, electric field, and temperature field. Based on the motion pattern
of liquid film and gas-liquid two-phase flow, the physical equation of two-phase flow is
constructed. Considering the applied electric field and the electric field near the electrode,
the physical equation of the electrostatic field is constructed. Furthermore, based on the
two-phase flow and electrostatic field equations and combined with the heat transfer energy
conservation equation, the theoretical model of EHD electric field-enhanced heat transfer
is established.

(1) Governing equation of electrostatic field
When the motion speed of charge is much less than the speed of light, if the dielec-

tric fluid is incompressible, the basic equation of electrohydrodynamics can be obtained
according to Maxwell’s equations and Gauss’s law. The Poisson equation of the electric
field intensity distribution is E at the electrode, which can be expressed as follows:

∇ · εE = qe (1)

where ε is the dielectric constant (F/m) and qe is the charge density (C/m3).
The relationship between electric field intensity E and electric potential V can be

expressed as follows:
E = −∇V (2)

The equation of charge conservation is:

∇ · J +
∂qe

∂t
= 0 (3)

where J is the current density (A/m2) and t is the time (s).
In the corona discharge drift region, the current density consists of the conduction

term, convection term and diffusion term. The conduction term is the current density
generated by the movement of ions under the action of the electric field, the convection
term is the current density generated by ions under the action of the fluid flow, and the
diffusion term is the current density generated by the uneven distribution of ions in space.
The current density equation obtained by combining the above three items is:
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J = qeχE + qeu − Dq∇qe (4)

where χ is the ionic mobility in the electric field, Dq is the ionic diffusion coefficient, and u
is the velocity vector of the flow field. Compared with the conduction term, the convection
term and diffusion term are relatively small and negligible, so Equation (4) can be simplified
as follows:

J = qeχE = σE (5)

where σ is the conductivity of the heat transfer medium (S/m).
When the current is stable in the corona discharge process, the second term of

Equation (3) is zero, and combined with Equation (5), we can obtain:

∇ · J = ∇ · (σE) = E · ∇σ + σ∇ · E = 0 (6)

Then we can get:
σ∇ · E = −E · ∇σ (7)

This can be obtained from Equation (1):

ε∇ · E = qe − E · ∇ε (8)

Combinations (7) and (8), we can get:

qe = E · ∇ε − ε

σ
E · ∇σ (9)

(2) Governing equation of two-phase flow field
Both the gas and liquid phases in the calculation region satisfy the mass conservation

equation:
∇ · u = 0 (10)

The mass conservation equation is also known as the fluid continuity equation, where
u is the velocity vector (m/s), and based on the assumption that the fluid is incompressible,
the internal velocity gradient of each phase is 0.

Based on Newton’s second law, the principle of keeping the total momentum of gas-
liquid two phases unchanged in the process of motion and considering pressure, viscous
force, gravity and applied electric field force, the momentum conservation equation can be
obtained as follows:

ρ(
∂u
∂t

+ u · ∇u) = ρg −∇P + µ∇2u + Fe (11)

where ρ
∂u
∂t

is the time-varying acceleration term, ρu · ∇u is the displacement change

acceleration term, ρg is the gravitational term, ∇P is the pressure gradient term, µ∇2u is
the viscous force term, and Fe is the electric field force term.

(3) Multi-physics coupling equation
It can be seen from the summary analysis that the process of EHD electric field-

enhanced heat transfer is a coupling heat transfer problem of the flow field, electric field,
and temperature field, in which the influence of the electric field on fluid motion is reflected
in the electric field force term in Equation (11). The force of the particle in the fluid in the
electric field can be expressed as follows:

Fe = qeE − 1
2

E2∇ε +
1
2
∇
[

ρE2(
∂ε

∂ρ
)T

]
(12)

The first term on the right of Equation (12) is the electrophoretic force term (also
known as the Coulomb force term), which represents the force exerted by the electric field
on the free charge in the fluid, the direction of which depends mainly on the direction of
the electric field and the polarity of the free charge. The second term on the right is the
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dielectrophoresis force term, which is the force exerted on the fluid by the electric field
caused by the gradient of the dielectric constant. Due to the large difference in the dielectric
constant between the gas phase and the liquid phase, this force is more obvious at the
gas-liquid two-phase interface. The third term on the right is the electrostrictive force term,
which is mainly caused by the uneven distribution of electric field strength and the change
of dielectric constant density gradient.

When the heat transfer medium is a non-polar fluid, the following relationship exists:

1
2
∇
[

ρE2(
∂ε

∂ρ
)T

]
≈ ε0(εr − 1)(εr + 2)

6
∇E2 +

ε0E2

6
∇[(εr − 1)(εr + 2)] (13)

In this case, the electric field force can be written as a sub-term as follows:

Fe = F1 + F2 + F3 + F4 (14)

Of which:
F1 = qeE = (E · ∇ε −

ε

σ
E · ∇σ)E (15)

F2 = −1
2

E2∇ε (16)

F3 =
ε0(εr − 1)(εr + 2)

6
∇E2 (17)

F4 =
ε0E2

6
∇[(εr − 1)(εr + 2)] (18)

Under the action of electric field strengthening, the convection heat transfer term of the
electric field should be introduced into the fluid energy equation, and the energy equation
can be obtained by ignoring the fluid compression work and viscous dissipation energy:

∂T
∂t

+ u∇T =
λ

ρcp
∇2T +

σE2

ρcp
(19)

where λ is the thermal conductivity (W/(m·K)) and cp is the specific heat capacity at
constant pressure (J/(kg·K)).

4.2. Geometric Model of Electric Field-Enhanced Heat Transfer

The EMQL nozzle used in the research is a contact nozzle. The nozzle can charge more
than just the liquid phase during the spraying process. Simultaneously, it forms a needle
plate electrode structure with the workpiece’s surface as a high-voltage electrode. Conse-
quently, the formation of an ion wind and the corona discharge phenomenon will disrupt
the spatial flow field and enhance its heat transfer efficiency. Make the three-dimensional
geometric model depicted in Figure 6; a receiving plate grounded and positioned at the
bottom of the model has a thickness of H1 = 2 mm. A trapezoidal linear heat source is
positioned in the center of the receiving plate’s upper surface, and the bottom and outer
edges are thermally insulated. It is employed to mimic the steady heat source found in
grinding. An oil film covering the receiving plate is present; its thickness is H2 = 2 mm.
The air domain is situated above the oil film, with a height of H4 = 27 mm and a width
of W = 50 mm. The nozzle electrode is positioned exactly above the heat source, with
H3 = 20 mm separating its bottom from the receiving plate’s upper surface. Two symmetry
planes are placed on the model to lessen the calculation amount; as a result, the actual
calculation amount is only one-fourth of the model’s actual size.

The boundary conditions of the model are established based on the multi-physical
field-solving conditions and the model’s true physical meaning. Firstly, according to the
properties of the flow field, the left and right sides and the upper boundary of the air
domain are set as the fluid outlet, and the geometric lower boundary is set as the Navier
sliding wall. The heat source is set to a constant value K0, meaning it never decays and
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always maintains the same temperature. The oil film is set to soybean oil, and the electrode
material is set to copper. The nozzle is set to meet the Dirichlet boundary condition with an
initial voltage of V0, and its value can be set independently based on the model’s calculation
conditions. This further sets the electric field boundary condition. Charge conservation is
applied to all calculation areas other than the nozzle electrode.
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4.3. Current Density Distribution Characteristics Analysis

In EMQL, the workpiece and the charged nozzle are connected to the positive and
negative poles of the DC high-voltage power supply, respectively. In this configuration, the
charged nozzle can be approximated as a curved electrode needle, forming a needle-plate
electrode structure with the workpiece. Due to the significant difference in curvature
between the electrode needle and the flat electrode below, the resulting electric field is non-
uniform, making it prone to corona discharge at the tip of the needle with a small curvature.
Under a 30 kV condition, the spatial current density Y component on the symmetric plane
1 is depicted in Figure 7. Figure 7a–e represent the current density at 10, 20, 30, 40, and
100 ms, respectively. It can be observed that during the initial stage of corona formation, a
substantial amount of space charge accumulates beneath the nozzle electrode and moves
toward the receiving plate. In the region facing the oil film on the nozzle electrode, charges
of opposite polarity are induced and migrate towards the nozzle electrode. At this stage, the
positive and negative charges have not yet been encountered, resulting in a space current
density of up to 10−6 A/m2. Subsequently, at 20 ms, some space charges with different
polarities meet and neutralize each other, leading to a decrease in space current density
and an approximate level of 10−7 A/m2. At 30 ms and 40 ms, the spatial current density
distribution stabilizes, remaining the same as that at 100 ms. Hence, it can be concluded
that the space current density reaches a stable state within 30–40 ms after the corona occurs,
and thereafter, it fluctuates within a small range, which is attributed to random charge
collisions. Figure 7f illustrates the current density model on the symmetric plane 1 at
100 ms. Notably, space charges exhibit faster movement near the nozzle electrode and at
the position directly below the oil film. Due to the notable difference in charge mobility
between the oil film and the surrounding air, a fault in the space current density arises at
the interface between these two phases.
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During the corona discharge process, the corona region is usually accompanied by
complex micro-particle electrochemical reactions such as ionization, recombination, and
adsorption, generating a large number of positive and negative ions. These charged
ions and free electrons continue to accelerate to the ground electrode under the action
of the electric field. Due to the viscous effect, the medium around the motion path can
be obviously disturbed to form ionic wind (electric field-induced secondary flow) and
accompanied by energy transfer, thus destroying the boundary layer between the phase
interfaces. Therefore, it can take away more heat and effectively improve the heat transfer
capacity of the heat transfer medium.

4.4. Study on Temperature Field of Electric Field-Enhanced Heat Transfer

The convective heat transfer model under the condition of an electric field and the
natural convection heat transfer model are constructed in order to further investigate the
impact of space current density change on temperature under the action of an electric
field. The heat transmission capacity of EMQL technology is examined by contrasting the
temperature fields of the two heat transfer modes.

The oil film and air domain temperatures were set to 20 ◦C at room temperature,
whereas the constant temperature heat source temperature was set to 100 ◦C. The tempera-
ture nephogram of oil film heat transfer by natural convection in the absence of an electric
field is shown in Figure 8. It can be seen that the heat transfer efficiency of oil film is very
low without external disturbance. Even when the time reaches 2000 ms, the temperature of
the oil film diffuses to the interface between the oil film and air.

The temperature field of 30 kV electric field-enhanced heat transfer is shown in Figure 9.
It is evident that the heat source is maintained above 100 ◦C at 0 ms at the start of the
computation, and the gas phase and liquid phase regions are unaffected by the electric field.
The distribution of temperatures over space is in line with heat transmission through natural
convection. The induced charges begin to build at the oil film just below the nozzle electrode
and ascend at 10 ms. The flow field and the oil layer around it are disturbed when there is
local negative pressure, and this causes the heat source temperature to disperse quickly. It
is evident that the temperature field diffusion interface has exceeded the initial interface of
the two-phase flow at this time, indicating that the temperature diffusion response speed
is extremely fast under the action of the electric field. The heat transfer intensity at 10 ms
has surpassed the heat transfer intensity of natural convection heat transfer at 2000 ms.
Additionally, a significant temperature gradient is observed at the gas-liquid two-phase
interface due to the difference in thermal conductivity between the gas and liquid phases.
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At 20 ms, the charged particles generated by the electrode collide with the upwardly moving
induced charged particles, triggering a series of complex electrochemical reactions. In this
process, a certain amount of energy is consumed, weakening the negative pressure below
to some extent and consequently reducing the heat diffusion intensity. The central flow
field generated by the nozzle electrode penetrates the central axis at 30 ms. At 40–70 ms, a
double vortex arm structure is formed on both sides of the heat transfer zone and gradually
approaches the nozzle electrode. At this stage, the vortex motion can effectively expand
the heat transfer space. At 80 ms, the heat transfer space of the temperature field has
been extended to the outside of the nozzle electrode, and the heat transfer area presents a
jellyfish shape. During the period of 90–150 ms, the heat transfer zone always maintains
a jellyfish-like structure. However, with the increase of time, an internal eddy current is
formed on both sides of the central flow field, and the eddy current intensity increases
and expands to both sides. At 160 ms, the original jellyfish structure was destroyed due
to the expansion of the internal vortex, and a new butterfly structure was formed. At this
time, the heat transfer zone was separated from the nozzle electrode. Subsequently, the
eddy current intensity continues to increase and gradually expands outward, reaching the
edge of the computational domain at 190 ms. Throughout the development of the heat
transfer zone, the eddy current intensity exhibits an increasing trend, indicating that the
flow field disturbance is increasing, the heat transfer performance in the calculation domain
is gradually improving, and the heat transfer space is gradually increasing. By tracking the
temperature field distribution at 500 ms, 1000 ms, and 2000 ms, it can be observed that due
to the limitation of the calculation boundary and the development of the eddy current, the
eddy current arm reaches the vicinity of the nozzle electrode again at 500 ms, forming an
annular heat transfer structure. Then, the shape remains unchanged, but the thickness of
the vortex arm increases with time, and the accumulated heat in space also increases.
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As shown in Figure 10a, the horizontal measurement line is drawn on symmetrical
plane 1, and the temperature curves at different times on the measurement line are traced as
shown in Figure 10b–d. Figure 10b is the temperature curve on the horizontal measurement
line corresponding to the 50–110 ms time node. It can be seen that with the increase of
time, the temperature influence area continues to expand to both sides, which is consistent
with the development trend of the above vortex arm. Due to the interaction between the
vortex arm and the nozzle electrode at 70 ms and 80 ms, the temperature curve fluctuates
irregularly. The peak temperature increased during 50–90 ms, but decreased slightly at
100 ms and 110 ms. The analysis suggests that it may be due to the expansion of the
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temperature-affected zone. Figure 10c shows the temperature curve on the horizontal
measurement line corresponding to the 120–180 ms time node. This stage corresponds to
the process of the temperature-affected zone from jellyfish to butterfly in Figure 9. It can
be found that the temperature distribution is relatively stable during the transformation
process, and its overall shape has not changed, but it shows the law of moving right as
a whole with time. It can be seen that the temperature in the peak area reaches almost
50 ◦C, which also shows that the electric field has a very obvious improvement in the heat
transfer capacity of the flow field. Figure 10d is the temperature distribution curve on
the horizontal measurement line of the heat transfer stable area. It can be seen that the
temperature distribution in the heat transfer stable area is generally consistent, but the
heat transfer area continues to widen with the increase of time, and the peak temperature
continues to increase. The peak temperature exceeds 60 ◦C at 2000 ms.
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5. Conclusions

Comparative grinding experiments were conducted on titanium alloy Ti-6Al-4V under
dry, MQL, and EMQL conditions. By measuring the grinding temperature and analyzing
the surface quality, the heat transfer capacity of the grinding zone under different operating
conditions was compared and analyzed. Furthermore, the strengthening mechanism of
the applied electric field on the heat transfer of the lubricating oil film in the grinding zone
was explored through numerical simulation.

(1) The average surface temperature rise of the titanium alloy Ti-6Al-4 grinding work-
piece was measured under dry grinding, MQL, and EMQL conditions. The results showed
that the minimum surface average temperature rise was 138.2 ◦C under the EMQL con-
dition, which decreased by 63.2% and 42.8% compared to dry grinding and MQL, respec-
tively. This confirms the effectiveness of EMQL in enhancing heat transfer during the
grinding process.

(2) The surface morphology of the workpiece under the three operating conditions
was compared and analyzed. The results indicate that the surface quality of the workpiece
is optimal under the EMQL condition. The second is the MQL grinding condition, and no
adhesion layer is observed on its surface, but there are obvious multiple granular adhesion
pollutions, and the regularity of the furrows created during the abrasive machining process
is poor. Under the condition of dry grinding, the surface quality of the workpiece is the
worst—a large area of an adhesion layer appears, yet a whole clear furrow can barely
be observed.

(3) Based on the electrostatic field control equation, two-phase flow field control
equation, and multi-physical field coupling equation, a numerical calculation model of
EHD electric field-enhanced heat transfer was constructed. The evolution of current
density distribution and temperature field distribution over time was explored. The results
show that: 1⃝ Compared to natural convection heat transfer, the applied electric field
can significantly improve the spatial heat transfer capacity; 2⃝ After the corona occurs,
the spatial current density will reach a stable state within 30–40 ms, but random charge
collisions will cause the spatial current density to fluctuate within a small range; 3⃝ The
peak temperature of the spatial heat transfer exceeds 60 ◦C at 2000 ms under the action of
the external electric field.
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