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Abstract: In this paper, a nonlinear dynamic model of a parallel shaft gear system consisting of two
involute spur gears is developed to investigate the coupling effect between the gradual surface wear
of gear teeth over time and nonlinear dynamic characteristics. A uniform wear model that accounts
for how the volumetric wear of the gear teeth affect their meshing position, backlash, and stiffness is
proposed. Additionally, a nonlinear dynamic model with six degrees of freedom is described that
considers friction, time-varying gear backlash, and time-varying meshing stiffness. The proposed
model significantly changes the mesh stiffness, not only in terms of value but also in terms of contact
ratio. Furthermore, the nonlinear dynamic characteristics of the gear system vary significantly. It is
found that the gradual wear of gear teeth affects the meshing position and further has a significant
impact on the nonlinear dynamic characteristics of the spur gear system. This paper provides a
basis for studying the nonlinear dynamic characteristics of the spur gear system as it experiences the
gradual wear of teeth over time.

Keywords: gear system; wear; nonlinear dynamic characteristics; meshing position

1. Introduction

Gear systems are important components of mechanical transmission systems and are
widely used in various industrial applications for their numerous benefits. However, gear
failures can result in downtime and increased maintenance costs, significantly impacting
industrial productivity. Among the various types of gear faults, wear is the most common,
and directly affects the dynamic characteristics of gear systems. Tooth surface wear gradu-
ally worsens over time, leading to gear system failures and repercussions. Therefore, it is
essential to study the coupling of gear dynamic sand wear to better comprehend how wear
affects gear system performance and to develop more durable and efficient gear systems.

Previous research has extensively investigated nonlinear dynamic behaviors of trans-
mission systems [1–3], with a variety of focus areas. For example, a model of planetary
gear was established that introduced nonlinearity by bearing clearance [4]. Farshidianfar
and Saghafi [5] employed the Melnikov analytical method to establish a model of a gear
transmission system and analyze its bifurcation, considering parameters such as back-
lash, external excitation, and other system characteristics. Additional research proposed
methods to examine different types of bifurcation curves generated by the intersection of
bifurcation diagrams [6], and presented bifurcation diagrams of gear transmission systems
using various parameter settings [7–9]. These studies have contributed valuable insights
into the nonlinear dynamic behavior of spur gear systems.

However, it is worth noting that these studies generally do not consider the effects
of wear, pitting, scoring, and cracking, which are some of the most common types of gear
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failure. In reality, these failures occur gradually during operation over time under severe
conditions [10–12]. It is well known that the lubrication condition [13,14] and interfacial
profile, such as the gear wear profile [15] and bearing profile [16], are crucial factors affecting
the dynamic response of transmission system. Therefore, it is important to expand upon
these previous studies by examining the effects of gear failures, on nonlinear dynamic
behavior. Meng et al. [17] proposed a new modeling method for tooth pitting, based
on a matrix equation that evaluated meshing stiffness. However, these studies have not
generally considered the effects of gear failures, such as wear, pitting, scoring, and cracking.

Wear is one of the most common failures when one surface moves onto another surface
under rolling or sliding conditions [18,19]. Meanwhile, wear also has a significant impact
on fatigue [20]. In recent years, researchers have increasingly focused on the relationship
between gear dynamics and wear, exploring the coupling between these two phenomena.
For instance, Yuksel [21] conducted dynamic response analysis by considering surface wear,
while Archard theory [22] was employed to calculate wear depth distribution. Li et al. [15]
developed a dynamic model of a gear-bearing system based on fractal theory, incorporating
wear depth into the calculation of backlash and stiffness to investigate the interaction
between wear and dynamic characteristics. Shen et al. [23] developed a wear model of
planetary gears and calculated the wear depth of the tooth surfaces in different meshing
cycles (as exhibited in Figure 1). Meanwhile, Zhan et al. [24] conducted experiments on
tooth surface wear (as demonstrated in Figure 2) and further investigated how worn gears
affect transmission errors. Zhang et al. [25] proposed a wear dynamic model that considers
the interaction between wear and dynamic response and takes contact temperature into
account. However, there is still much to learn about how wear influences the dynamic
characteristics of gear systems, and research on the topic is ongoing. Much research has
focused on tooth wear, and some studies have noted that tooth wear does not consider the
change in meshing position after wear.
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Figure 1. Results of theoretical analysis of gear wear depth by Shen et al. [Reproduced with
permission from Shen et al.; published by ELSEVIER, 2021] [23].
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Although gear wear is generally non-uniform, some researchers have studied the im-
pact of uniform wear on gear systems for theoretical discussion. For example, Koffi et al. [26]
analyzed the vibration displacement of plastic gears exhibiting uniform wear and found
that it could lead to significant changes in gear system performance. Feng et al. [27] as-
sumed uniform tooth wear and developed a model to determine the meshing stiffness of a
gear pair with wear, incorporating factors such as tooth geometry and material properties.
Zhou et al. [28] combined the generalized sliding distance model and enhanced coordinate
transformation to propose a prediction model for the adhesive wear of double helical
gears. Their results suggest that uniform wear can actually improve gear wear resistance.
Geng [29] established a nonlinear dynamic model that considers uniform wear to analyze
the bifurcation diagrams, phase diagrams, Poincaré maps, time series, and FFT spectra of a
rigid–flexible gear pair. Sheng [30] proposed a dynamic model to investigate the effects of
uniform wear on gear tooth failures, providing a comprehensive analysis of bifurcation
characteristics in gear systems.

Several studies have analyzed the dynamic characteristics of gear systems with wear,
which may cause changes to the tooth profile, leading to changes in the meshing point, gear
backlash, contact ratio, meshing stiffness, and transmission error. However, in previous
studies, the meshing position remained unchanged after wear. The innovation of this paper
lies in considering the change in the meshing position caused by uniform wear. In this
paper, we consider the effects of uniform wear on the meshing position, contact ratio, gear
backlash, and meshing stiffness on dynamic responses. Further, we analyze the nonlinear
dynamic characteristics of the gear pair. This paper improves our understanding of the
impact of uniform wear on the nonlinear dynamic behavior of gear transmission systems
and may provide valuable insights for designing and maintaining gear systems.

2. Nonlinear Dynamic Model of the Gear System
2.1. The Gear Backlash Function

The model of the gear pair is presented in Figure 3. The length of the meshing line can
be calculated as follows:

lm =
√

r2
a2 − r2

b2 +
√

r2
a1 − r2

b1 − a sin α0 (1)

where subscripts 1 and 2 represent the driving gear and driven gear, respectively; lm
represents the length of the meshing line; ra and rb represent the radius of the addendum
and root radius, respectively; α0 represents the pressure angle; a represents the center
distance of the gear pair.
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According to the property of the involute, the length of the meshing line is equal to
the tooth profile. Based on the Archard theory [22],

V = kWs/H (2)

where V represents the wear volume; W represents the meshing force; s represents the
relatively sliding displacement; k represents the wear coefficient; H represents the hardness.

The relatively sliding displacement in a meshing period is as follows:

s =
∫ tT

0
|u1 − u2|dt tT = 60ε/(n1z1) (3)

where tT is the operating time; u is the sliding speed on the meshing point; ε is the contact
ratio; n and z are, respectively, the rotational speed and tooth number [26].

The relatively sliding displacement can be derived as x = sn1t/60. The wear depth can
be expressed as follows:

dw = V/(BW lm) (4)

where dW is the wear depth; BW is the tooth width. Based on [31], the gear backlash function
can be obtained as follows:

fm(Y) =


Y − (bm + dw/2)

0
Y + (bm + dw/2)

Y > (bm + dw/2)
−(bm + dw/2) < Y < (bm + dw/2)

Y < −(bm + dw/2)
(5)

where bm is half of the total gear backlash and Y is the dynamic transmission error.

2.2. The Contact Ratio of the Gear Pair

The diagram of the gear with wear is presented in Figure 4. The coordinates of points
A, A1, B, B1, C, C1, O, O1, and E are (x1, y1), (x2, y2), (x3, y3), (x4, y4), (x5, y5), (x6, y6), (x7, y7),
(x8, y8), and (x9, y9), respectively. The coordinates of (x7, y7) are (0, 0).

ra1 = r1 + hamn (6)

where, r1 is the basic circle of the driving gear, ha is the addendum coefficient, mn is the
modulus. The coordinate of point A can be obtained as follows:

αa = arccos(r1 cos α/ra1) (7)

x1 = ra1 sin(αa − α0) (8)

y1 = ra1 cos(αa − α0) (9)

where α0 is the standard pressure angle.
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Therefore, the coordinate of point A1 can be written as (x1-hp, y1), where hp is the wear
depth.

Due to the coordinate of point C1 being (−0.5hp, y1), the equation of A1B1 can be
written as follows:

−0.5hpx + y1y = r2
1 cos2 α0 (10)

The equation of the circle can be expressed as follows:

x2 + y2 = r2
1 cos2 α0 (11)

Substituting Equation (10) into Equation (11) yields the following:

x2
4y2

1 + (r2
1 cos2 α0 + 0.5hpx4)

2
= y2

1r2
1 cos2 α0 (12)

(
2y1y4 − 2r2

1 cos2 α0

hp
)

2

+ y2
4 = r2

1 cos2 α0 (13)

The coordinate of point B1 can be obtained via Equation (13). The length of A1B1 can
be calculated via the following:

A1B1 =
√
(x4 − x1 + hp)

2 + (y4 − y1)
2 (14)

The equation of B1O1 can be obtained as follows:

y1x + 0.5hpy = p (15)

The value of P can be solved by substituting the coordinates of point B1. The abscissa
of point O1 is −0.5hp, and the ordinate can be solved using the equation. Therefore, the
length of B1O1 can be derived as following:

B1O1 =
√
(x4 + 0.5hp)

2 + (y4 − y8)
2 (16)

The length of A1O1 can be obtained via the Pythagorean theorem. Based on the sine
theorem,

α′a1 = arcsin
A1B1

A1O1
(17)

According to the similar triangle theorem, the meshing angle under wear can be
obtained as follows: 

A1C1
B1O1

= A1D
B1D

A1D + B1D = A1B1

α′ = arccos A1C1
A1D

(18)

Therefore, the contact ratio of the gear pair after wear can be calculated via the following:

ε′ = [z1(tan α′a1 − tan α′) + z2(tan α′a2 − tan α′)]/2π (19)

where z1 and z2 are, respectively, the tooth number of the driving gear and driven gear;
α′ is the meshing angle with wear; α′a1 and α′a2 are, respectively, the pressure angle of
addendum of the driving gear and driven gear with wear.

2.3. The Meshing Stiffness of the Gear Pair with Wear

The uniform cantilever beam model of the spur gear tooth with uniform wear is shown
in Figure 5. According to Figure 5, the arc angle of the gear α′2 can be derived using O1E.
The coordinate of the point O1 is calculated in the previous section, and the abscissa and
ordinate of the point E can be obtained as follows:
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
x2

9 + y2
9 = r2

1 cos2 α0

x9 = r1 cos α0 sin α2

α2 = π/(2z1) + invα0

α′2= arcsin r1 cos α sin α2−dw cos α1
r1 cos α

(20)

where α is the standard pressure angle, α2 is the arc angle of the gear without wear, and z1
is the tooth number of the driving gear.
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The method to derive the meshing stiffness is in accordance with [32], and the axial
compressive stiffness, bending stiffness and shear stiffness can be expressed, respectively,
as follows:

1
ka

=
∫ d

0

sin2 α′1
EAx

dx (21)

1
kb

=
∫ d

0

[x cos α′1 − (h − 0.5dw cos α′1) sin α′1]
2

EIx
dx (22)

1
ks

=
∫ d

0

1.2 cos2 α′1
GAx

dx (23)

where Ix, E, G, and Ax are, respectively, the area moment of inertia, Young’s modulus,
shear modulus, and area of the section; x is the distance between the contact point of the
meshing force and section in Figure 2. α′1 is marked in Figure 2. They can be calculated via
the following:

Ax = (2hx − dw cos α)BW (24)

Ix =
1
12

(2hx − dw cos α)3BW (25)

G =
E

2(1 + v)
(26)

α′1 ≤ A1B1

r1 cos α
− α′2 (27)
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The parameters in the above equations can be derived via the following:

d = r1 cos α[(α′1 + α′2) sin α′1 + cos α′1 − cos α′2] (28)

h = r1 cos α[(α1 + α2) cos α − sin α1] (29)

hx = r1 cos α[(α2 − α) cos α + sin α] (30)

x = d − r1 cos α[cos α − (α′2 − α) sin α − cos α′2] (31)

dx = r1 cos α(α − α′2) cos αdα (32)

Therefore, the bending stiffness, shear stiffness, and axial compressive stiffness can be
calculated based on the above equations.

1
kb

=
∫ α′2

−α′1

12


[(r1 cos α((α′1 + α′2) sin α′1 + cos α′1 − cos α′2)−
r1 cos α(cos α − (α2 − α) sin α − cos α2)) cos α′1−
((r1 cos α((α1 + α2) cos α1 − sin α1))− 0.5dw cos α′1) sin α′1]

2


EB(2(r1[(α2 − α) cos α + sin α])− dw)

3 r1(α − α′2) cos αdα (33)

1
ks

=
∫ α′2

−α′1

2.4r1(1 + v) cos2 α′1 cos α(α − α′2)

EB{2r1[(α2 − α) cos α + sin α]− dw}
dα (34)

1
ka

=
∫ α′2

−α′1

r1 sin2 α′1(α − α′2) cos α

EB(2(r1[(α2 − α) cos α + sin α])− dw)
dα (35)

The stiffness with a consideration of the gear fillet foundation deflection, kfi (i = 1, 2),
and the Hertzian contact stiffness, kh, can be obtained based on [30], and these have no
relationship with wear.

The Hertzian contact stiffness (kh) and the stiffness of the gear fillet foundation deflec-
tion were calculated in accordance with the method proposed by Chen and Shao [33]. kh
and kf can be expressed as follows:

1
kh

=
4(1 − ν2)

πEW
(36)

1
k f

=
cos2 α

EB

{
L(

u f

s f
)

2
+ M(

u f

s f
) + P(1 + Q tan2 α)

}
(37)

The expressions of these parameters were derived by Xie et al. [34].
Consequently, time-varying meshing stiffness can be calculated based on the above

equations.
1

km
=

1
kb1

+
1

ks1
+

1
ka1

+
1

k f 1
+

1
kb2

+
1

ks2
+

1
ka2

+
1

k f 2
+

1
kh

(38)

where α0 is the standard pressure angle, α1 is the pressure angle at any point, α2 is the
corresponding arc angle of half tooth, and α is the integral variable.

2.4. Friction Force and Friction Moment

The relative sliding of the gear teeth during the meshing process results in friction
forces. The directions of friction forces varies with the meshing position. Coulomb’s law is
applied to calculate the friction forces

Ff i = µiλiFni (i = 1, 2) (39)

where µi is the friction coefficient; λi is the directional coefficient, which can be de-
rived from [31].
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µi can be described as follows:

µi = 0.05e−0.125 Vi + 0.002
√

Vi (i = 1, 2) (40)

where Vi is the relative sliding between the ith pair of teeth, which can be obtained as follows:

Vi = ω1L1i − ω2L2i (41)

where w1 and w2 are the angular velocities of the driving gear and driven gear, respectively;
L1i and L2i are the friction arms between the ith pair of teeth. The friction arms of the gear
pair can be expressed as follows:

L11 = l sin α′ −
√

r2
a2 − r2

b2 +
t1∫
0
(rbp + x1)w1dt

L12 = l sin α′ −
√

r2
a2 − r2

b2 +
t2∫

t1

(rbp + x1)w1dt

L21 =
√

r2
a2 − r2

b2 −
t1∫
0
(rbp + x1)w1dt

L22 =
√

r2
a2 − r2

b2 −
t2∫

t1

(rbp + x1)w1dt

(42)

where t1, t2 are, respectively, the meshing time in a period of the 1st and 2nd tooth pair.

2.5. Nonlinear Dynamic Model of the Gear Pair

The nonlinear dynamic model of the gear pair was established as follows:

m1
..
x1 + cr1x f1bd(

.
x1) + kr1x f1bm(x1) = −(Ff 1 + Ff 2)

m1
..
y1 + cr1y f1bd(

.
y1) + kr1y f1bm(y1) = −(Fm1 + Fm2)

I1
..
θ1+ = −(Fm1 + Fm2) · rb1 − (Ff 1L11 + Ff 2L12) + T1

m2
..
x2 + cr2x f2bd(

.
x2) + kr2x f2bm(x2) = Ff 1 + Ff 2

m2
..
y2 + cr2y f2bd(

.
y2) + kr2y f2bm(y2) = Fm1 + Fm2

I2
..
θ2 = −(Fm1 + Fm2) · rb2 − (Ff 1L21 + Ff 2L22)− T2


(43)

where subscripts 1 and 2 are, respectively, the driving gear and driven gear. m is the mass.
x, y and θ are the vibration displacement in the x direction, the vibration displacement in
the y direction and the angular displacement, respectively. crx and krx represent the bearing
support damping and the bearing support stiffness in the x direction, respectively. cry and
kry represent the bearing support damping and the bearing support stiffness of the driving
gear in the y direction, respectively. T1 and T2 are the input and output torques, respectively.

The non-dimensional time, τ, can be described as τ = wnt. wn is the natural frequency,
wn = (kn/meq)1/2, where meq is the equivalent mass of the gear pair; kn is the average value
of the meshing stiffness. bc is introduced in this process, and is the nominal displacement
scale. The non-dimensional parameters can be calculated as follows:

ξr1x = cr1x/m1wn, ξr1y = cr1y/m1wn, ξm1 = ξm2 = cm/m1wn, ξm3 = ξm4 = cmrb1/I1wn,
ηr1x = kr1x/m1wn

2, ηr1y = kr1y/m1wn
2, ηm1 = km1/m1wn

2, ηm2 = km2/m1wn
2, ηm3 =

km1rb1/I1wn
2, ηm4 = km2rb1/I1wn

2, ηm5 = km1/m2wn
2, ηm6 = km2/m2wn

2, ξm5 = ξm6=
cm/m2wn, ηm7 = km1rb2/I2wn

2, ηm8 = km2rb2/I2wn
2, ξm7 = ξm8 = cmrb2/I2wn, ξr2x =

cr2x/m2wn, ξr2y = cr2y/m2wn, ηr2x = kr2x/m2wn
2, ηr2y = kr2y/m2wn

2, f1 = T1/I1bcwn
2,

f2 = T2/I2bcwn
2, Ω = w1/wn, Ω = w2/wn, E1 = ρ1/bc, E2 = ρ2/bc.

Therefore, Equation (16) can be expressed as
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..
q1 = −(µ1λ1ηm1 + µ2λ2ηm2) fm(q)− (µ1λ1 + µ2λ2)ξm1

.
q − ξr1x

.
q1 − ηr1xq1

..
q2 = −(ηm1 + ηm2) fm(q)− ξm1

.
q − ξr1y

.
q1 − ηr1xq1

..
q3 = −(ηm3 + ηm4) fm(q)− ξm3

.
q − (µ1λ1L11ηm3 + µ2λ2L12ηm4) fm(q)/rbp − (µ1λ1L11 + µ2λ2L12)ξm3

.
q/rbp + f1

..
q4 = (µ1λ1ηm5 + µ2λ2ηm6) fm(q) + (µ1λ1 + µ2λ2)ξm5

.
q − ξr2x

.
q4 − ηr2xq4

..
q5 = (ηm5 + ηm6) fm(q) + ξm5

.
q − ξr2y

.
q5 − ηr2xq5

..
q6 = −(ηm7 + ηm8) fm(q)− ξm7

.
q − (µ1λ1L21ηm7 + µ2λ2L22ηm8) fm(q)/rbg − (µ1λ1L21 + µ2λ2L22)ξm7

.
q/rbg − f2


(44)

where, q1, q2, q3, q4, q5 and q6 correspond to the non-dimensional parameters x1, y1, θ1, x2,
y2 and θ2. The gear backlash function in Equation (5) can be represented as follows:

fm(q) =


q − (bm + dw/2)/bc

0
q + (bm + dw/2)/bc

q > (bm + dw/2)/bc

(bm + dw/2)/bc ≤ q ≤ (bm + dw/2)/bc

q < (bm + dw/2)/bc

(45)

The nonlinear parameters give rise to strong nonlinear characteristics, particularly
when subjected to parametric excitation. Therefore, to investigate the system’s behav-
ior, Equation (45) was solved numerically using a suitable numerical method. Table 1
summarizes the various parameters that characterize the gear system under consideration.

Table 1. Parameters of the gear pair.

Driving Gear Driven Gear

Number of teeth 27 55
Modulus (mm) 2.5
Pressure angle 20◦

Mass (kg) 0.584 2.007
Diameter of the shaft bore

(mm) 35 35

Rotation inertia (kg/m2) 0.00043 0.005487
Contact ratio 1.7002

Initial Gear backlash (µm) 50

3. Numerical Results and Discussion

In this section, the effects of wear on the dynamic responses of the gear system are
proposed. Equation (28) presents a non-dimensional model of the system with varying
parameters, such as meshing stiffness and gear backlash. We analyze the dynamic charac-
teristics of the gear system with wear by conducting numerical calculations based on these
parameters. Specifically, the impact of wear on the system’s performance is evaluated by
comparing the dynamic responses of the worn gear system with those of the unworn gear
system. The numerical calculations use solving methods. To understand the methodology
easily, a flowchart of the current investigation is represented in Figure 6, which outlines
the steps taken to analyze the effects of wear on the dynamic responses of the proposed
gear system.

Figure 7 shows the meshing stiffness of the gear pair based on the proposed model
and a previous model for comparison. In this comparison, a previous model is examined
to assess the impact of the proposed model on gear performance. When the meshing point
is taken into consideration, the contact ratio and meshing stiffness of the gear pair show
variation. In Figure 7a, it is shown that there were changes in the contact ratio when the
gear pair was subject to wear, which in turn led to changes in the meshing time within
the single- and double-tooth meshing areas. As shown in Figure 7b, the proposed model
generates changes not only in the meshing stiffness, but also in the meshing periods of
single- and double-tooth regions when compared to the traditional model. These results
suggest that the proposed model better captures the effects of wear on gear performance
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and can more accurately predict the dynamic responses of the gear system when subjected
to wear.
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3.1. Influence of the Excitation Frequency

The excitation frequency is a critical factor governing the dynamic behavior of a gear
transmission system. To assess the impacts of the excitation frequency on the nonlinear
dynamic characteristics of the studied gear system, an excitation frequency range of 0.05–3
was selected. This range of frequency values was selected because it is a common operating
range for gear transmission systems, and can provide insights into how the system responds
to different frequencies. The excitation frequency was plotted on the horizontal axis
and the non-dimensional vibration displacement of the driving gear was plotted on the
vertical axis. We set the initial conditions of the excitation frequency to 0. We present the
results of this analysis in Figure 8, which shows the bifurcation diagram and the spectrum
waterfall diagram at different excitation frequencies. The bifurcation diagram displays the
relationship between the excitation frequency and the system response, while the spectrum
waterfall diagram provides a more detailed analysis of the system’s frequency response
over time. These visualizations provide valuable insights into the nonlinear dynamic
behavior of the gear system and can help to guide the development of more accurate
models for predicting gear system performance.

The behavior of the gear system is highly dependent on the excitation frequency.
When the excitation frequency is less than 0.55, the gear system exhibits a periodic motion,
which is desirable for gear system performance. However, at several excitation frequencies,
we observe the appearance of “frequency jumps”, which indicate that the motion state
of the gear system has become unstable. At an excitation frequency of 0.55, the system
transitions to a quasi-periodic motion. As the excitation frequency increases, the differences
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in vibration displacement at different periods decrease gradually, and the gear system
returns to a period 1 motion state around the excitation frequency of 0.75. When the
excitation frequency is 0.6, as shown in Figure 9, the time series shows that the gear system
has a normal meshing process and a regular motion pattern to a certain degree. Moreover,
the points on the Poincaré map are clustered but not coincident, and the phase diagram
corresponds to the Poincaré map in every period with different trajectories. The FFT
spectrum also has some peaks. These results suggest that the gear system is in quasi-
periodic motion, which provides valuable insights into the nonlinear dynamic behavior of
the gear system and can guide the development of more accurate models for predicting
gear system performance.
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Figure 8. (a) Bifurcation diagram and (b) spectrum waterfall diagram at different excitation frequen-
cies without wear.
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Figure 9. (a) Time series, (b) phase diagram, (c) Poincaré map, and (d) FFT spectrum when excitation
frequencies are 0.6.
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The gear system exhibits periodic motion between excitation frequencies of 0.75 and
0.88, which is ideal for its performance. In Figure 10, regular waves in the time series
indicate normal meshing and consistent motion. The phase diagram has only one closed
curve, suggesting the gear system returns to the same state after each period. The Poincaré
map shows a single point, and the FFT spectrum has peaks at 1, 2, and 3, all pointing to
periodic motion. However, a “frequency jump” occurs at an excitation frequency of 0.89,
which signifies a transition from periodic motion to quasi-periodic motion.
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Figure 10. (a) Time series, (b) phase diagram, (c) Poincaré map, and (d) FFT spectrum when excitation
frequencies are 0.8.

At an excitation frequency of 1.1, as shown in Figure 11, the waves in the time series
are somewhat regular. The phase diagram displays similar shapes in each period but
different trajectories. The Poincaré map has an unenclosed loop, and the FFT spectrum
shows multiple peaks, which indicate the quasi-periodic motion of the system. This motion
can yield insights into the nonlinear dynamics of the gear system and offer guidance for the
development of accurate models that predict its performance. However, further analysis
is necessary to identify any potential issues or concerns resulting from the quasi-periodic
motion in the system at that excitation frequency.

With increasing excitation frequency, the gear system transitions from quasi-periodic
to periodic motion. The system enters a periodic motion regime when the frequency
exceeds 1.44, lasting until w = 2.52. As shown in Figure 12, at w = 2.7, the Poincaré map
reveals two strange attractors, and the FFT spectrum has peaks at 0.5 and 1, indicating
quasi-periodic-2 motion. The system transitions back to the periodic motion regime above
2.82 and remains in it. The Poincaré map shows the intersection of behavior with a specific
hyperplane, providing insights into nonlinear dynamics. The FFT spectrum analyzes
vibration frequencies for a detailed view of system behavior. Stranger attractors suggest
nonlinear complexity and sensitivity to initial conditions. Further analysis is required to
identify any potential concerns from the quasi-periodic-2 motion regime at w = 2.7.
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Figure 11. (a) Time series, (b) phase diagram, (c) Poincaré map, and (d) FFT spectrum when excitation
frequencies are 1.1.
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Figure 12. (a) Poincaré map; (b) FFT spectrum when excitation frequencies is 2.7.

3.2. Influence of the Gear Wear

The gear system experiences a gradual wear depth increase, resulting in changes
to gear meshing stiffness and gear backlash that can alter the gear system’s bifurcation
characteristics over time. Figure 13 presents bifurcation diagrams comparing the traditional
and proposed models, revealing differences in the models’ ability to capture changes over
time. Bifurcation diagrams provide insights into nonlinear systems and help identify
different modes that influence gear performance. As wear depth increases, the traditional
and proposed models differ significantly in several areas, highlighting the need for an
accurate prediction of wear depth and gear meshing stiffness to capture gear system
behavior. Improved models that account for these variables can more accurately predict
gear system behavior, leading to better gear system design and maintenance strategies.
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Figure 13. Bifurcation diagrams with medium wear: (a) tranditional model; (b) proposed model.

Medium wear can impact the dynamic behavior of the gear system, affecting its phase
diagram, Poincaré map, and FFT spectrum. In Figure 14, we present dynamic responses
for the traditional and proposed models of the gear system with medium wear, excited
at a 0.96 frequency. The traditional model’s phase diagram shows a closed curve with
no intersection points while its Poincaré map has a single point, and the FFT spectrum
has two peaks indicating periodic motion. By contrast, the proposed model’s Poincaré
map displays an unenclosed loop, with the phase diagram matching the Poincaré map’s
different trajectories every period. Its FFT spectrum has multiple peaks, demonstrating
quasi-periodic motion. These results suggest that the proposed model may better capture
the gear system’s behavior. Specific FFT spectrum peaks offer vibration behavior insights
under medium wear. The proposed model’s quasi-periodic motion insights can guide the
development of more accurate models for predicting gear system behavior under varying
wear conditions.
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The differences between the motion states of the traditional and proposed models in
the region of 2.41–2.77 can have significant implications for gear performance. The unstable
area of the proposed model is larger than that of the traditional model, indicating potentially
higher levels of nonlinear behavior or sensitivity to initial conditions. At an excitation
frequency of 2.55, we observe differences in the phase diagrams and Poincaré maps of
the traditional and proposed models, shown in Figure 15. Both Figure 15a,b indicate that
the gear system is in a quasi-periodic-2 motion regime. However, the trajectories in the
phase diagram of the traditional model and proposed model differ. The Poincaré map
in Figure 15a has two strange attractors, while the Poincaré map in Figure 15b has two
Hopf rings, suggesting that the bifurcation types of the two models differ. These diagrams
provide valuable insights into the behavior of the gear system under different excitation
frequencies and models, and help identify key differences that can have significant impacts
on gear performance. Further analysis is needed to determine any specific concerns or
recommendations arising from these differences in behavior, and to develop more accurate
models that can more effectively predict gear system behavior under a range of conditions.
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Figure 15. Phase diagram and Poincaré map of the gear pair: (a) traditional model; (b) pro-
posed model.

Figure 16 presents bifurcation diagrams of the traditional model, showing the effect
of changing the excitation frequency on gear system behavior. These diagrams provide
important insights into the system’s nonlinear dynamics and can help identify key differ-
ences in behavior under different excitation frequencies that are critical for understanding
gear performance. The excitation frequencies shown in Figure 16a,b differ in their range
and order of increase and decrease, and together they illustrate the behavior of the gear
system over a broad range of excitation frequencies. In particular, the ranges of excitation
frequency between 0.42–1.28 and 2.06–2.79 are of significant interest, as they demonstrate
the diverse and complex bifurcation characteristics of the gear system under these condi-
tions. Compared to the bifurcation characteristics in Figure 16a, those in Figure 16b show
higher complexity, indicating that gear system behavior becomes more diverse as excitation
frequency decreases.

In Figure 17, bifurcation diagrams of the traditional model are displayed with varying
excitation frequencies. It is evident that the bifurcation characteristics of the traditional and
proposed models differ, implying that the gear pair’s meshing position has a significant
influence on nonlinear dynamic response.

Severe wear of the gear pair can have significant implications for gear performance,
and the bifurcation diagrams presented in Figure 18 can shed light on how the system
behaves under these conditions. The motion states of the traditional and proposed models
differ in several areas of the bifurcation diagram, suggesting potentially significant differ-
ences in gear system behavior under different operating conditions. In Figure 18a, the gear
system is in a quasi-periodic motion in the regions of 0.59–0.72, 0.94–1.48, and 2.53–2.81. In
contrast, in Figure 18b, the gear system is in a quasi-periodic motion only in the regions of
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0.64–0.72 and 2.48–2.87 and changes between quasi-periodic and periodic motion at other
frequencies. The changing behavior of the gear system observed in Figure 18b suggests a
potentially complex dynamic response, which may indicate increased sensitivity to initial
conditions or unstable operating regimes.
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Figure 18. Bifurcation diagrams with severe wear: (a) traditional model and (b) proposed model.
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In Figure 19, the motion state is depicted. Figure 19a,b exhibit quasi-periodic motion,
while Figure 19c,d exhibit periodic motion. The amplitude of the time series in Figure 19a
is notably greater than that in Figure 19c, and the wave patterns in Figure 19a are more
intricate than those in Figure 19c. Additionally, there are more trajectories in Figure 19b
than in Figure 19d.
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Figure 19. (a) Time series and (b) phase diagram of the traditional model, and (c) time series and
(d) phase diagram of the proposed model with the severe wear when the excitation frequency is 0.6.

Figure 20 displays the time series for the traditional and proposed models under severe
wear conditions. It is evident from both Figure 20a,b that the response is quasi-periodic.
However, it is worth noting that the amplitude of the time series in Figure 20b is both larger
and more complex than that in Figure 20a, indicating a more intricate motion state. In
contrast to traditional models, the proposed model accounts for the meshing position and
allows for a more accurate prediction of the system’s response.
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Figure 20. Time series of the gear pair with the severe wear: (a) traditional model and (b) proposed model.

The bifurcation diagrams presented in Figures 21 and 22 are critical for understanding
gear performance under conditions of severe wear, and they build upon the findings
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presented in Figures 16 and 17. Compared to the diagrams presented in Figures 16 and 17,
it is clear that the bifurcation characteristics of the gear system change significantly under
severe wear conditions. Specifically, the motion state becomes more changeable and the
bifurcation characteristics are more complex, particularly when the excitation frequency
decreases. Additionally, Figures 21 and 22 illustrate important differences in the bifurcation
characteristics of the gear system that can be attributed to the influence of meshing position
on the nonlinear dynamic response.
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Figure 21. Bifurcation diagrams of the traditional model with severe wear. (a) w increases and
(b) w decreases.
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parameter. The results reveal that the dynamic responses of the gear system differ 
significantly under different degrees of wear.  

(3) When the excitation frequency decreases, the bifurcation characteristics of the gear 
pair are more complex than those when the excitation frequency increases. When the 
gear teeth are under the different wear conditions, the bifurcation diagrams present 
different characteristics as the excitation frequency increases or decreases. 

(4) The study revealed that the bifurcation characteristics of the gear pair become more 
complex as the excitation frequency decreases. This suggests that the nonlinear dy-
namic behavior of gear systems is highly dependent on the excitation frequency and 
can exhibit significantly different characteristics at different excitation frequencies. 
Furthermore, the study demonstrated that the bifurcation diagrams observed under 
varying degrees of gear wear when the excitation frequency varies also present dif-
ferent characteristics.  
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Figure 22. Bifurcation diagrams of the proposed model with severe wear. (a) w increases and
(b) w decreases.

4. Conclusions

(1) This paper presents a novel nonlinear dynamic model with six degrees of freedom
that considers the effects of uniform wear on the contact ratio, meshing stiffness,
and gear backlash, with wear volume obtained based on the Archard theory. A
significant innovation of this work is its consideration of the change in meshing
position with wear.

(2) This paper analyzes the nonlinear dynamic characteristics of a gear pair under condi-
tions of no wear, medium wear, and severe wear, using a range of analysis techniques
such as bifurcation diagrams, spectrum waterfall diagrams, Poincaré maps, FFT spec-
tra, phase diagrams, and time series with excitation frequency as a control parameter.
The results reveal that the dynamic responses of the gear system differ significantly
under different degrees of wear.
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(3) When the excitation frequency decreases, the bifurcation characteristics of the gear
pair are more complex than those when the excitation frequency increases. When the
gear teeth are under the different wear conditions, the bifurcation diagrams present
different characteristics as the excitation frequency increases or decreases.

(4) The study revealed that the bifurcation characteristics of the gear pair become more
complex as the excitation frequency decreases. This suggests that the nonlinear
dynamic behavior of gear systems is highly dependent on the excitation frequency
and can exhibit significantly different characteristics at different excitation frequencies.
Furthermore, the study demonstrated that the bifurcation diagrams observed under
varying degrees of gear wear when the excitation frequency varies also present
different characteristics.
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