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Abstract: Osteoarthritis (OA) is the most common degenerative joint disease characterized by enzy-
matic degradation of the cartilage extracellular matrix (ECM) causing joint pain and disability. There
is no disease-modifying drug available for the treatment of OA. An ideal drug is expected to stop
cartilage ECM degradation and restore the degenerated ECM. The ECM primarily contains type II
collagen and aggrecan but also has minor quantities of other collagen fibers and proteoglycans. In
OA joints, the components of the cartilage ECM are degraded by matrix-degrading proteases and
hydrolases which are produced by chondrocytes and synoviocytes. Matrix metalloproteinase-13
(MMP-13) and a disintegrin and metalloproteinase with thrombospondin motifs 4 and 5 (ADAMTS5)
are the major collagenase and aggrecanase, respectively, which are highly expressed in OA carti-
lage and promote cartilage ECM degradation. Current studies using various in vitro and in vivo
approaches show that natural compounds inhibit the expression and activity of MMP-13, ADAMTS4,
and ADAMTS5 and increase the expression of ECM components. In this review, we have summarized
recent advancements in OA research with a focus on natural compounds as potential therapeutics for
the treatment of OA with emphasis on the prevention of cartilage ECM degradation and improvement
of joint health.

Keywords: natural compounds; polyphenols; cartilage matrix; cartilage homeostasis; MMP-13;
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1. Introduction

Osteoarthritis (OA) is the most common degenerative joint disease affecting millions
of people worldwide with increasing prevalence with the growth of the aging population.
The disease involves pathological changes in the whole joint including cartilage, bone,
meniscus, infrapatellar fat pad and synovium which promote the degradation of articular
cartilage extracellular matrix (ECM), mainly type II collagen and aggrecan, and reduced
cartilage ECM synthesis eventually leading to joint dysfunction and disability [1]. The most
common risk factors for the development of the disease include aging, trauma, sex, and
obesity [2]. The clinical symptoms of OA include joint pain, swelling, and morning stiffness.
There is no disease-modifying drug available for the treatment of OA. An ideal drug
candidate is expected to prevent cartilage ECM degradation and promote the synthesis of
degraded ECM to restore joint function.

The articular cartilage is a highly specialized connective tissue comprised chondrocytes
which occupy less than 5% of the space while more than 95% of the cartilage is occupied
by cartilage ECM. Chondrocytes are the primary cell type present in the cartilage and are
responsible for the maintenance of the ECM. The cartilage ECM is composed of a complex
network of biological macromolecules that exist in an aqueous environment that allows
nutrients, growth factors, and cytokines to move freely between chondrocytes and synovial
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fluid [3,4]. Together the chondrocytes and pericellular matrix constitute the chondrons,
the functional unit of cartilage [5]. The biological macromolecules of ECM predominantly
include type II collagen fibers, which make the structural backbone, and proteoglycan,
mainly aggrecan, which interacts with the network of collagen fibers and hyaluronic acid to
form a macromolecular aggregate [3]. In addition to type II collagen, the cartilage ECM also
has smaller quantities of type I, IV, V, VI, IX, and type XI collagens and other proteoglycans
such as decorin, biglycan, and fibromodulin in minor quantities [6,7]. The cartilage ECM
also contains some non-collagen and non-proteoglycan proteins such as fibronectin and
laminin which are believed to provide structural support to the cartilage.

Matrix metalloproteases (MMPs) are a family of metal-dependent proteases and are
highly expressed in OA cartilage [8,9]. They have a variety of roles in cartilage metabolism
but are specifically implicated in ECM degradation as collagenases and proteolytic enzymes.
Specifically, MMP-1, MMP-3, and MMP-13 are hallmarks of OA progression, with MMP-13
showing a strong affinity to the degradation of type II collagen [10–12]. They are produced
by the joint tissue including chondrocytes, synoviocytes, and meniscus in response to
inflammatory cytokines and mechanical stress [13,14]. Targeting the expression of MMPs
in the cartilage of OA models has shown to be a therapeutic strategy, underscoring the
importance of studying compounds that inhibit their release [10,12]. Interestingly, mice
expressing active human MMP-13 in cartilage show OA-like symptoms similar to those
observed in humans [15]. It was reported that cartilage-specific, conditional deletion of
Mmp-13 from a mouse model reduced the progression of surgically induced OA and
improved cartilage matrix synthesis [12]. Pharmacological inhibition of Mmp-13 reduced
the severity of the disease in mouse and rat models [12,16]. The results from these animal
studies demonstrate that MMP-13 is a critical player in OA pathogenesis, suggesting that
MMP-13 inhibition may reduce disease severity.

The ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) fam-
ily is a class of metal-dependent aggrecanases, responsible for the cleavage of proteoglycan
components in cartilage remodeling. ADAMTS4 and ADAMTS5 are of specific impor-
tance in OA as they are the major aggrecanases and degrade the proteoglycans in cartilage
ECM [17,18]. The role of different ADAMTS in OA is not yet fully understood. In animal
model studies, in ADAMTS4 knockout mice, limited effect was seen on the preservation of
aggrecan, while there was marked protective effect on aggrecan in the ADAMTS5 knockout
counterparts [19–21]. Whereas in humans, both ADAMTS4 and ADAMTS5 were reported
to play a pathological role in OA [18,22]. Similar to MMPs, pro-inflammatory cytokines and
mechanical stress, and mitochondrial dysfunction trigger a cascade of downstream events
causing an increase in the expression and activity of ADAMTS5 [8]. The importance of
ADAMTS5 in OA pathogenesis can be understood by the fact that the deletion of Adamts5
reduced the cartilage matrix degradation and severity of OA in a mouse model of surgically
induced OA [21]. Targeting ADAMTS5 using monoclonal antibodies [23–26] and small
molecules [27–30] has been shown to prevent cartilage degradation in animal models;
however, there are several side effects of these antibody treatments [17]. Based on these
results, ADAMTS5 represents a potential target for OA treatment.

Other proteases and hydrolases involved in OA pathogenesis include cathepsin B,
cathepsin S, and cathepsin K. The cathepsin family of proteases is a group of cysteine
endopeptidases involved in cartilage ECM degradation and are increased in OA cartilage.
Generally, they function to complex with glycosaminoglycan components and cleave
proteoglycan and other ECM basement proteins. Cathepsin B and S exhibit aggrecanase
activity, with cathepsin B cleaving aggrecan near the MMP cleavage site [31,32]. Cathepsin
K, which is implicated in OA, and other arthritic diseases and osteoporosis, cleaves type
II collagen at multiple sites [33,34]. Its clinical utility has been recognized, as cathepsin K
inhibitors are indicated as a possible treatment for OA [35,36].

Natural compounds have been shown to inhibit cartilage ECM degradation by target-
ing the expression and activity of ECM-degrading proteases and suppressing pain, disease
progression and severity in various in vitro, animal models and clinical trial studies. In this
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review we have discussed the role of matrix degrading proteases, primarily focusing on
MMP-13 and ADAMTS5 in cartilage ECM degradation and OA pathogenesis, the major sig-
naling pathways involved and the role of plant derived natural compounds in suppressing
cartilage ECM degradation and promoting ECM synthesis.

2. Matrix Degradation Is Central to Osteoarthritis

Type II collagen and aggrecan are the critical components of articular cartilage ECM [6,37].
While collagen provides the fibrous framework and tensile strength, aggrecan provides
resistance against compressive loading to the cartilage. Aggrecan is a proteoglycan molecule
with abundant side chains of chondroitin sulfate and keratan sulfate and interacts with
hyaluronic acid. The cartilage matrix is a dynamic structure and in normal cartilage,
the health of the ECM is maintained by a balance between synthesis and degradation.
The cleavage of aggrecan in the human OA cartilage occurs at a specific site called the
aggrecanase site by ADAMTS family members prompting the release of aggrecan fragments
in the synovial fluid. Accumulation of aggrecan fragments in the synovial fluid is a
pathological feature associated with cartilage degradation and it serves as an indicator
of disease severity [37]. The catabolic changes in the OA joints culminate in increased
expression of collagenases and aggrecanases inducing cartilage ECM degeneration, which
is a hallmark of OA pathogenesis (Figure 1). In OA joints, there is an imbalance between
the synthesis and degradation of cartilage ECM components [38]. The proinflammatory
cytokines, TNFα, IL-1β, and IL-6 induce the expression of several MMPs, ADAMTSs,
cathepsins, and inflammatory mediators such as COX-2, iNOS, and PGE2 in primary human
chondrocytes and synoviocytes [39–43]. These inflammatory mediators also generate
radical oxygen species (ROS) which directly contribute to ECM degradation; high levels
of ROS cleave collagen and aggrecan, leaving the degradation products in the synovial
fluid to further beget inflammation and protease production [39,44]. The knockout mice
lacking MMP-13 or ADAMTS5 were found to be protected from the development of
experimental OA [12,21]. In addition to the increased expression of MMPs and ADAMTSs
inducing cartilage ECM degradation, the synthesis of aggrecan and type II collagen is also
downregulated in OA cartilage and chondrocytes [45].
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Figure 1. Schematic representation of normal and OA joints depicting cartilage matrix degradation.

3. Signaling Pathways Regulating Matrix Degradation in Osteoarthritis

OA is characterized by a complex meshwork of inflammatory cytokines and mediators
which work in concert to induce cartilage ECM degradation (Figure 2). In response to
mechanical stress, chondrocytes and other tissues of the joint synthesize key proinflam-
matory cytokines such as IL-1β, TNFα, and IL-6 early in OA [41,46,47]. These cytokines
have been the basis of many studies, often used to replicate the effects of OA on different
models [41,48,49]. One of the most important pathways activated in OA and discussed in
this review is NFκB signaling [50]. NFκB undergoes nuclear translocation, binding to DNA
regulatory elements, and shifting the chondrocyte phenotype to a degradative one [51].
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This thereby increases the release and expression of matrix degradative enzymes MMP-1,
MMP-9, MMP-13, ADAMTS4, and ADAMTS5 [43]. NFκB further upregulates the same
key cytokines IL-1β, TNFα, and IL-6, perpetuating an ECM degradation positive feedback
loop [52]. Inhibitors of NFκB have been pursued as potential therapeutic agents of OA,
highlighting their importance both mechanistically and clinically [53].
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Wnt/β-Catenin is another pathway upregulated in OA. Wnt is a glycoprotein that
resides in the extracellular compartment. When bound to its specific receptor, Wnt activates
Frizzled protein and low-density lipoprotein receptor-associated protein [54]. The release
of these proteins inhibits the destruction of β-Catenin from other complexes, allowing it to
translocate and accumulate in the nucleus [55]. It has been seen that baseline Wnt activity
is essential for chondrocyte metabolic homeostasis, increased activity, as seen in OA, can
result in cartilage matrix degradation by associated ECM-degrading proteases [56]. In
β-Catenin overexpressing mice, the expression of Mmp-13, Adamts4, and Adamts5 was
highly upregulated, whereas cartilage thickness was decreased, and ECM degradation was
increased [57]. Wnt/β-Catenin inhibition was shown to reduce cartilage catabolism and
lessen OA disease severity in a mouse model [58].

Among these pivotal signaling pathways exists MAPK, a family of serine-threonine
protein kinases, which may be activated by several factors, including but not limited to
physical stress, infection, inflammation, and extracellular signals. MAPKs have a long
list of downstream targets and proteases. All of these targets may induce transcription
of regulatory genes, but p38 is of special importance due to its mention in the literature
and role as a pathway that also induces translation and stabilized mRNA to do so [59,60].
Phosphorylation cascades are propagated sequentially by kinases MAPKKK (TAK, MLK3,
and ASK), MAPKK (MKK3, MKK6), and MAPK in order to activate p38 [61]. Induction of
MAPK-p38 yielded MMP-1 and MMP-13 release, degrading collagen, while also increasing
IL-1β and TNFα levels [59]. Inhibition of the MAPK-p38 system led to decreased expression
of MMP-3 in multiple models [62,63].

Although the interplay of biochemical pathways in OA is incredibly nuanced and
varies in quantity, with regards to ECM degradation and the targets of the bioactive
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compounds discussed below, NFκB, Wnt/β-Catenin, and MAPK signaling represent the
most relevant.

4. Natural Compounds, Suppressors of Cartilage Matrix Degradation

Flavonoids are bioactive natural compounds that have anti-inflammatory properties,
antioxidant activity, and inhibit cartilage extracellular matrix degradation (Figure 2). Matrix
metalloproteases and ADAMTSs are highly upregulated in the OA joints and responsible for
cartilage ECM degradation [42,44]. Several studies have shown beneficial effects of natural
compounds in OA (Table 1). We have shown that a Butein-rich extract from the flowers of
Butea monosperma and purified Butein was found to suppress the expression of MMP-3, -9,
and -13 [64,65]. In addition to flavonoids, several other classes of natural compounds have
been extensively studied in the context of OA including isoflavones [66,67], terpenes [68,69],
alkaloids [70].

Table 1. List of bioactive natural compounds, the model system of study and their targets.

Compound Model Target/Action Reference

Butein Human chondrocyte Suppression of MMP-3, MMP-9, MMP-13 [64,65]

EGCG AGEs stimulated human chondrocyte,
MIA rat, DMM mouse, guinea pig Suppression of MMP-1, MMP-13, and ADAMTS5 [71–75]

Olive oil

Hydroxytyrosol Surgically induced rabbit and mouse Suppression of MMP-13 and protection of
aggrecan via antioxidant activity [76]

Oleocanthal LPS-induced human chondrocyte Significant suppression in MMP-13, and
ADAMTS5 via MAPK/ NFκB inhibition [77]

Oleuropein Human chondrocyte, guinea pig
Suppression of MMP-1, MMP-13, ADAMTS5, and
increased deposition of Col2A1/proteoglycan via
MAPK/NFκB inhibition

[78–80]

Curcumin
Human cartilage explant, rat primary
chondrocyte, zymosan mouse, DMM
mouse, equine cartilage explant

Suppression of MMP-3, MMP-8, MMP-13,
ADAMTS5 via NFκB inhibition and increased
expression of type II collagen and CITED2.

[81–86]

Honey

Chrysin Human chondrocyte
Suppression of MMP-1, MMP-3, MMP-13,
ADAMTS5 via NFκB inhibition and reduced
HMGB-1 activity

[87]

Fisetin Human chondrocyte, rat Decreased MMP-3, MMP-13, ADAMTS5
expression [88,89]

Resveratrol Human chondrocyte, ACLT rabbit,
DMM mouse, porcine cartilage explant

Suppression of MMP-13 via JNK/ERK-AP-1
inhibition, suppression of MMP-1, MMP-3,
MMP-13, ADAMTS4, ADAMTS5 via NFκB
inhibition, increased expression of type II collagen
and aggrecan via AMPK/mTOR signaling,
activation of SIRT1 and inhibition of HIF-2α

[90–93]

Zingerone Human cartilage explant Suppression of MMP-13 via p38/JNK-MAPK
pathway [94]

Kaempferol Human chondrocyte, rat chondrocyte

Suppression of MMP-1, MMP-3, MMP-13,
ADAMTS4, ADAMTS5 via p38/ERK-MAPK
inhibition, suppression of STAT3, inhibition of
type II collagen degradation

[95,96]

Emodin Human chondrocyte, rat chondrocyte,
ACLT rat

Suppression of MMP-3, MMP-13, ADAMTS4,
ADAMTS5 via NFκB and Wnt/B-catenin
inhibition, preservation of aggrecan and
type II collagen

[97,98]
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Table 1. Cont.

Compound Model Target/Action Reference

Carnosol Human chondrocyte
Suppression of MMP-3, ADAMTS4, ADAMTS5,
increased expression of type II collagen and
aggrecan

[99]

Ferulic acid Human chondrocyte, papain rat
Suppression of MMP-1, MMP-3, MMP-13 via
SIRT1/AMPK/PGC-1α inhibition, restoration of
SOX9, upregulation of TIMP-1

[100–102]

Chlorogenic acid
Human chondrocyte, human cartilage
explant, rabbit chondrocyte, ACLT
rabbit, rat chondrocyte

Suppression of MMP-1, MMP-3, MMP-13,
ADAMTS4, ADAMTS5 via NFκB inhibition,
increased expression of type II collagen
and aggrecan

[103,104]

Quercetin Rat chondrocyte Suppression of MMP-1, MMP-3, MMP-9 [105–107]

Morin Human chondrocyte, ACLT rat Suppression of MMP-3, MMP-13 and upregulation
of TIMP-1 [108]

B serrata Human chondrocyte, human cartilage
explant Suppression of MMP-9, MMP-13 [109]

Pycnogenol Human chondrocyte Suppression of MMP-3, MMP-9, MMP-13,
ADAMTS5 via NFκB inhibition [110,111]

Apigenin Human cartilage explant, rabbit
chondrocyte, rat chondrocyte

Blocking IL-1β, TNF-α, and suppression of
MMP-1, MMP-3, MMP-13, ADAMTS4, ADAMTS5 [112]

Icariin Rabbit chondrocytes and OA model,
mouse OA model

Suppression of Mmp-13 and increased Col2a1
levels by targeting Indian Hedgehog and
NFκB pathway

[113–115]

Terpenes

Myrcene/
Limonene Human chondrocyte

Reduced nitric oxide production, induced TIMP-1
and TIMP-3 expression, suppressed MMP-1 and
MMP-13 expression via NFκB, JNK, and p38
inhibition

[116]

Crocin ACLT mouse Suppression of MMP-1, MMP-3, MMP-13 gene
expression via NFκB inhibition [117]

Alkaloids

Piperine Human chondrocyte Suppression of gene expression of MMP-3,
MMP-13, nitric oxide, COX-2 [70,118]

Isoflavones

Puerarin ACLT rat, MIA rat, human
chondrocyte,

Suppression of MMP-3, MMP-13, ADAMTS5
protein expression, reducing levels of IL-1β, IL-6,
TNF-α, and reversing type II collagen degradation
via Nrf2/HO-1 and NFκB inhibition

[119]

Genistein Human chondrocyte, MIA rat
Suppression of MMP-1, MMP-2, MMP-3, MMP-13
protein expression via Nrf-2 mediated
NFκB inhibition

4.1 Green tea polyphenol, Epigallocatechin gallate (EGCG), suppressed MMP-13
expression in advanced glycation end products (AGEs) stimulated human OA chondro-
cytes [71]. The suppressive effect of EGCG was due to the inhibition of p38- and JNK-MAPK
pathways. EGCG also inhibited NFκB activation in primary human OA chondrocytes [71].
An aqueous extract of Java tea (Orthosiphon stamineus) suppressed cartilage ECM degra-
dation in cartilage explants and a monosodium iodoacetate (MIA) induced rat model of
OA [120]. EGCG was reported to increase the thermal stability of the cartilage and de-
creased the release of glycosaminoglycans in a cartilage explant study [75]. Intraarticular
injection of EGCG in an anterior cruciate ligament transection rat model of OA showed
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a significant reduction in cartilage degradation by increasing autophagy and reducing
MMP-13 expression [72]. Intraperitoneal injection of EGCG in a destabilization of medial
meniscus (DMM) surgery-induced OA mouse model was shown to reduce the expression
levels of MMP-13 and ADAMTS5 and protected the cartilage extracellular matrix from
degradation after four and eight weeks of surgery [74]. These mice also showed reduced
OA related pain. Intraarticular injection of EGCG was reported to reduce the severity of OA
in a guinea pig model of spontaneous OA by increasing the expression of type II collagen
and aggrecan and decreasing the expression of MMP-13 [73].

4.2 Olive oil is rich in several natural compounds including hydroxytyrosol, tyrosol,
oleocanthal, and oleuropein, and has been shown to suppress cartilage ECM degradation
and improve joint health in animal models [121]. Administration of water extract of olive
leaves through drinking water increased cartilage healing in a rabbit model of cartilage
injury [122]. A combination of exercise and extra-virgin olive oil supplemented diet was
shown to improve cartilage health in a rat model of OA by upregulating the expression of
lubricin [123]. Hydroxytyrosol functions as a potent antioxidant, preventing the formation
of ROS, and its oral administration was shown to suppress IL-1β-induced expression of
MMP-13 and protected aggrecan degradation in a mouse and rabbit model of surgically
induced OA [76]. In primary human articular chondrocytes, procyanidins, hydroxytyrosol
supplementation reduced expression of many inflammatory mediators, such as TNF-α,
MMP-3, and PGE2, and exhibited anti-IL-1β expression at different dosages [124].

Although there is limited study on the effect of oleocanthal on matrix-degrading
proteases, a study of oleocanthal treatment on lipopolysaccharide-induced OA on human
chondrocyte models sheds light on the topic [68]. Specifically, oleocanthal drastically re-
duced both MMP-13 as well as ADAMTS5 expression in primary human OA chondrocytes.
This effect was mediated by oleocanthal-induced inhibition of the MAPK/NFκB pathway
and its downstream activation of many other inflammatory cytokines such as IL-6, IL-8,
COX-2, and NO [77].

Oleuropein is the most prevalent bioactive compound of olive oil, and derives much of
its potency from its metabolite, hydroxytyrosol [125]. Oleuropein inhibited IL-1β-induced
activation of NFκB and MAPK pathways and reduced MMP-1, MMP-13, and ADAMTS5
expression, and also inhibited cartilage matrix degradation in primary human OA chondro-
cytes [78]. Oleuropein suppressed connexin43 activity in OA chondrocytes and restored
matrix protein synthesis, by increasing the deposition of COL2A1 and proteoglycan, while
also reducing matrix protein degradation [126]. In a guinea pig model of spontaneous OA,
an oleuropein or rutin-enriched diet significantly suppressed cartilage degradation and
OA progression [80]. Oral administration of oleuropein (50 mg) in a randomized clinical
trial including 124 subjects showed low pain in a subset of patients with high pain at the
beginning of the treatment [79].

4.3 Curcumin, found in turmeric is one of the most studied natural compounds.
Curcumin has strong anti-inflammatory and antioxidant activity and has been reported
to have chondroprotective activity using various in vitro and in vivo models [127–130].
Curcumin suppressed the expression of MMP-13 and increased the expression of type II
collagen by inhibiting the NFκB pathway in rat primary chondrocytes [85]. Curcumin
treatment reduced MMP-3 levels and inhibited aggrecan degradation in the equine cartilage
explant model [81,82]. In another study, curcumin was found to suppress IL-1β induced
MMP-3 expression in human cartilage explant [83]. Oral gavage administration of curcumin
was found to increase the expression of type II collagen and decrease the expression of
MMP-8 and MMP-13 in a rat model of zymosan-induced OA [84]. Oral administration of
curcumin was found to reduce the expression of Mmp-13 and Adamts5 and increased the
expression of chondroprotective transcription factor CITED2 and slowed the progression
of disease in a DMM-induced OA mouse model [86]. The application of topical curcumin
nanoparticles was found to reduce OA-related pain in the mice [86]. In a 3-month human
clinical trial study, supplementation of bio-optimized curcumin capsules to OA patients
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reduced knee pain, serum levels of COL2A1 degradation products and improved global
assessment of OA activity and severity score [131].

4.4 Honey has long been part of human history and has cultural significance as a
therapeutic agent dating back to before modern civilization. Honey, which is a viscous
sugar solution, is also high in natural compounds with therapeutic actions. Honey has
a wide range of clinical applications such as wound healing, dermatological issues (ul-
cerations, eczema, psoriasis), gut microbiome improvement, and hormone signaling in
oncogenesis [132,133].

Of special importance is chrysin, a natural flavonoid compound found in honey that
has strong anti-inflammatory properties. Human OA chondrocytes treated with chrysin
showed a significant decrease in the degradation of aggrecan and type II collagen and
reduction in IL-1β induced MMP-1, -3, and -13 and ADAMTS5 expression via NFκB in-
hibition [87]. In another study, chrysin was shown to reduce high-mobility group box
chromosomal protein (HMGB-1) expression in human OA chondrocytes leading to de-
creased MMP-13 levels [134]. In addition to chrysin, other flavonoids found in honey, such
as Fisetin, butein, and luteolin may also serve as a countermeasure to ECM degradation as
reported in various in vitro and in vivo studies [64,88,89,132].

4.5 Resveratrol is a polyphenolic compound found in grapes and has been shown to
have chondroprotective activity in various pre-clinical and clinical studies [135,136]. Intraar-
ticular injection of resveratrol was reported to have protective effects in the anterior cruciate
ligament transection (ACLT) induced rabbit model of OA [137]. In addition, resveratrol
also suppressed AGEs-induced expression of MMP-13 by inhibiting the JNK/ERK-AP-1
pathway and blocked the degradation of type II collagen in a porcine cartilage explant
model [138]. Resveratrol was shown to increase the expression of type II collagen and
suppress the expression of MMP-1, -3, and -13 and ADAMTS4 and ADAMTS5 in rabbit
chondrocytes through the inhibition of the NFκB pathway [91]. Intraarticular injection of
resveratrol increased the expression of aggrecan and type II collagen and suppressed the
expression of MMP-13 and ADAMTS5 in a DMM-induced OA mouse model by inducing
autophagy through AMPK/mTOR signaling pathway [93]. In another study, intraartic-
ular injection of resveratrol activated SIRT1 and suppressed IL-1β-induced expression
of HIF-2α in human chondrocytes and slowed the progression of experimental OA in a
mouse model of OA [92]. Oral administration of resveratrol prevented the development of
high-fat diet-induced OA in the C57BL6 mouse model [90]. In another study, resveratrol
was shown to slow the progression of OA in a diabetic mouse model [139]. Clinical trials
of resveratrol supplementation have been less conclusive; in a randomized clinical trial
of 110 OA patients, 55 were given meloxicam with adjuvant oral 500mg resveratrol once
daily for 3 months and 55 were given meloxicam with placebo. Using Western Ontario and
McMaster Universities Osteoarthritis Index (WOMAC) scoring, the treatment group saw
significant clinical improvement in pain, stiffness, and physical function [140]. However,
another clinical trial with similar parameters (50 administered meloxicam with 150mg
resveratrol, 32 administered meloxicam with placebo) noted no significant change in clini-
cal relief via WOMAC scoring. Further, the same study found differences in IL-1β, TNF-α,
and IL-6 serum level were weakly correlated between the two groups [141].

4.6 Zingerone, an active ingredient in cooked ginger, has strong anti-inflammatory,
antioxidant and chondroprotective activity [142]. Treatment of cartilage explants and
chondrocytes with zingerone suppressed IL-1β-induced MMP-13 expression and inhibited
cartilage ECM degradation via the suppression of the p38- and JNK-MAPK signaling
pathway [94]. In a randomized clinical trial study with 120 OA patients in the age range
of 50–75 years, topical application of zingerone in nanostructure lipid carrier showed a
significant reduction in OA-related pain in 67% of patients [143]. In other clinical stud-
ies, oral administration of ginger powder supplementation, ginger oil massage, or ginger
extract in a gel preparation was found to be effective in ameliorating joint pain in OA pa-
tients [144–147]; however, further studies with higher sample size are required to determine
its clinical significance.
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4.7 Kaempferol, a natural compound found in many fruits was shown to suppress
IL-1β-induced expression of MMP-1, -3 and -13, and ADAMTS5 in rat chondrocytes via the
inhibition of the p38/ERK-MAPK pathway [95]. Kaempferol was also reported to inhibit
the degradation of type II collagen [95]. In an in vitro study, kaempferol was found to
suppress the levels of STAT3 by upregulating the expression of miR-130a and suppressing
cartilage ECM degradation [148]. In another study, kaempferol was found to suppress
the expression of inflammatory mediators in rat chondrocytes [149]. In a randomized,
double-blind, active-controlled, and parallel-group clinical trial study, an extract from
Elaeagnus angustifolia enriched in Kaempferol was reported to alleviate pain and improved
WOMAC, visual analog scale (VAS), Leguesne’s Pain-Function Index (LPFI), and Patient’s
Global Assessment (PGA) scores in OA patients [96].

4.8 Emodin is a naturally occurring anthraquinone found in various plants and fungi
and has been shown to have antioxidant and anti-inflammatory activities [150]. Emodin
treatment reduced the expression of MMP-3 and -13 and AMDATS4 and ADAMTS5 in
IL-1β stimulated rat chondrocytes through the inhibition of NFκB and Wnt/β-catenin
signaling pathway [97,98]. Emodin treatment also prevented the loss of aggrecan and
type II collagen expression in rat chondrocytes [97]. Intraarticular injection of Emodin
ameliorated the progression of ACLT-induced experimental OA in a rat model [97].

4.9 Carnosol has been shown to have anti-inflammatory and chondroprotective ac-
tivities [151]. Carnosol treatment downregulated the expression of catabolic mediators of
cartilage degradation MMP-3, ADAMTS4, and ADAMTS5 in primary human OA chondro-
cytes [99]. Carnosol was also shown to increase the expression of cartilage ECM component,
type II collagen and aggrecan [99].

4.10 Ferulic acid treatment of primary human OA chondrocytes was shown to sup-
press the expression of MMP-1, -3, and -13, and increased the expression of type II collagen
and aggrecan by activating SIRT1/AMPK/PGC-1α signaling pathway [101]. Ferulic acid
also suppressed the expression of MMP-1 and MMP-13 and restored the expression of
SOX9 in porcine chondrocytes [100]. In another study on human OA chondrocytes, ferulic
acid suppressed the expression of MMP-1, upregulated the expression of tissue-specific
inhibitor of metalloproteinase-1 (TIMP-1) and reduced the severity of experimental OA in
a rat model [102].

4.11 Chlorogenic acid was found to suppress the expression of MMPs in IL-1β stimu-
lated rabbit chondrocytes through the inhibition of NFκB [103]. Chlorogenic acid treatment
was shown to prevent cartilage degradation and slowed the progression of ACLT-induced
OA in rabbits [103]. Chlorogenic acid-enriched butanol extract of WIN-34B suppressed the
IL-1β induced expression of MMP-1, -3, -13, ADAMTS4, and ADAMTS5 in chondrocytes
and reduced the release of glycosaminoglycan and type II collagen [104]. WIN-34B also
upregulated the expression of aggrecan and type II collagen in human chondrocytes and
cartilage explants [104]. Chlorogenic acid-enriched extract of Anthriscus sylvestris leaves
suppressed the expression of MMP-3, -13, and ADAMTS4 and slowed the progression of
disease in a rat model of OA [152].

4.12 Quercetin is a natural compound found in onion that has been shown to have
chondroprotective activity. In a study, the combination of Quercetin and vitamin C when
given intraarticularly did not improve the OA condition in a rat model [153]. However,
intraarticular injection of Quercetin alone mixed in a thermosensitive hydrogel suppressed
the cartilage degradation and slowed the progression of OA in a rat model [107]. In a
randomized, double blind, clinical study, oral administration of Quercetin combined with
glucosamine and chondroitin sulfate for 16 weeks improved cartilage ECM synthesis and
decreased the symptoms of knee pain in patients with symptomatic OA, specifically in
walking and ascending/descending the stairs, when compared to the control group [106].
In another study, a formulation of Quercetin and palmitoylethanolamide was found to
suppress the expression of MMP-1, -3, and -9 in a rat model of OA [105].

4.13 Morin was reported to suppress the expression of MMP-3 and -13 and upreg-
ulated the expression of TIMP-1 in IL-1β stimulated human chondrocytes [108]. More-
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over, oral administration of Morin slowed the progression of ACLT-induced OA in a rat
model [108].

4.14 In an in vitro study using a human cartilage explant model, the B serrata extract
was reported to suppress the cartilage matrix degradation through the inhibition of MMP-
9 and -13 expression [109]. A formulation of acetyl-11-keto-β-boswellic acid enriched
B serrata extract with non-volatile oils of B serrata gum resin (Aflapin) increased the
production of glycosaminoglycans in primary human chondrocytes [154]. The analysis of
11 randomized clinical trials found that B serrata extract significantly reduced pain and
improved joint function but in each study, the number of participants was less than 100
and the quality of the study was overall low [155].

4.15 French maritime pine bark extract (Pycnogenol) has strong anti-inflammatory,
antioxidant and chondroprotective effects in vitro and in vivo [156]. It has been the subject
of multiple clinical studies and trials, making it a unique therapeutic agent. Oral admin-
istration of Pycnogenol inhibited NFκB activity and reduced the secretion of MMP-9 in
serum [157]. In a study involving 67 OA patients (34 control and 33 treatment group), the
application of a Pycnogenol patch on the affected joint reduced the dependence on non-
steroidal anti-inflammatory drugs and improved OA symptoms [158]. These findings were
reaffirmed in another prospective, double-blind clinical trial in which 100 patients (50 in
the control group and 50 in the treatment group) were randomly selected and given 150 mg
Pycnogenol orally for three months. The study discovered that Pycnogenol improved and
alleviated pain levels in the treatment group as determined by WOMAC scoring, and that
the supplementation was well tolerated [159]. The active ingredients of Pycnogenol were
found in the synovial fluid of OA patients administrated orally with pine bark extract
suggesting that Pycnogenol active ingredient can reach the knee joint and show clinical
efficacy [111]. In another randomized controlled trial, 33 OA patients (17 control and
16 treatment group) were given 100mg Pycnogenol orally, twice a day, for three weeks
before knee arthroplasty surgery. Pycnogenol supplementation reduced the expression of
cartilage ECM degrading proteases, MMP-3, and MMP-13 in the cartilage and ADAMTS5
levels in the serum [110]. These results were once again replicated in OA patients who
experienced pain alleviation in a treadmill walk and improved joint function after 3-month
treatment of Pycnogenol tablets. The same study reported a significant decrease in plasma
free radical content, a key player in OA pathogenesis [160].

4.16 Apigenin was reported to inhibit the expression of MMP-1, -3, and -13 and
ADAMTS-4 and ADAMTS5 in IL-1β stimulated rabbit chondrocytes [112]. Apigenin
reduced cartilage degeneration and OA progression in a rat model of OA [112]. In another
in vitro study using cartilage explants, Apigenin was reported to block IL-1β, TNF-α, and
Oncostatin M-induced degradation of proteoglycan [161]. These studies show that plant
polyphenols exert a chondroprotective effect in human cartilage explant, various animal
models of OA, and randomized clinical trials.

4.17 Icariin is the major, effective natural compound isolated from Epimedium and has
been shown in several studies to have chondroprotective activity [162]. Icariin suppressed
NFκB signaling pathway in chondrocytes [114,163]. In a mouse ACLT model, intraarticular
injection of Icariin suppressed Mmp-13 expression, increased Col2a1 expression, and
reduced the severity of OA [113]. In another study, intraarticular administration of Icariin
onto a poly(lactic-co-glycolic acid) (PLGA) scaffold suppressed the progression of OA in a
rabbit model [115].

4.18 The terpene class of natural compounds have been shown to influence cartilage
metabolism. In IL-1β induced human chondrocytes, monoterpenes myrcene and limonene
notedly reduced NFκB, JNK and p38 activation, decreased MMP-1 and MMP-13 expression,
and inhibited nitric oxide production [116]. Myrcene exhibited the strongest effect on these
mediators, also increasing expression of TIMP-1 and TIMP-3. Crocin, an active compound
of the saffron spice, was seen to decrease gene expression of MMP-1, MMP-3, and MMP-13
via NFκB inhibition in ACLT-induced mouse model [117].
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4.19 Alkaloids of note piperine which is a constituent of black pepper, was shown
to significantly reduce gene expression of MMP-3, MMP-13, nitric oxide, and COX-2 in
IL-1β induced human chondrocytes [70]. Although limited data are available on piperine,
a clinical trial of 40 OA patients supplemented with an oral formulation of hyaluronic acid,
chondroitin sulfate, keratin matrix, manganese and piperine saw significant reduction in
pain and no side effects via WOMAC scoring [118].

4.20 The isoflavone family has been studied extensively. Puerarin, found in the
plant Pueraria lobata, was administered to ACLT-induced rats (at both 50 and 100 mg/kg
daily dosages) and compared to a control group. The treatment group showed reduced
protein expression of MMP-3, MMP-13, and ADAMTS5 while also targeting IL-1β, IL-6,
and TNF-α and reversed type II collagen degradation [119]. Similar results of alleviating
ECM degradation have been reproduced but hypothesized to occur through different
mechanisms, such as inhibition of Nrf2/HO-1 and NFκB or upregulation of AMPK/PPAR-
γ [164,165]. Genistein is another isoflavone which is derived from soybeans. In IL-1β
induced human chondrocytes, Genistein reduced the protein expression of MMP-1, MMP-2,
MMP-3, and MMP-13 as well as other catabolic factors such as nitric oxide, COX-2 through
Nrf2 mediated inhibition of NFκB [166]. Another study found genistein treated MIA
induced rats to present with significantly higher chondrocyte counts, but expression of
catabolic proteins yielded mixed results [167].

5. Conclusions

In summation, this review discussed various plant derived natural compounds that
prevent or reduce cartilage ECM catabolism/degradation in OA and promote ECM synthe-
sis. Through the inhibition of the major inflammatory cytokine IL-1β, which is implicated
in OA pathogenesis, the aforementioned compounds reduce the expression of downstream
activators MMPs and ADAMTSs, while also increasing the expression of aggrecan and
type II collagen and other key players. These results have been supported by in vitro and
in vivo studies using chondrocyte culture, mouse, rat, rabbit, and guinea pig models and
clinical trials (Table 2). Many of these bioactive compounds have a rich historical and
cultural significance as therapeutic agents which predate modern clinical practice. Our
review aims to underscore the utility of such compounds as potential therapeutic agents
for OA. A thorough understanding of the biological process and molecular regulation of
MMP-13 and ADAMTS5, combined with the current stages of development of various
natural compounds, may lead to the identification of future therapeutic strategies. Based on
the current studies on several of the natural bioactive compounds and their bioavailability
in the synovial joints and their anti-inflammatory, antioxidant, and chondroprotective
activity and favorable safety profile, these compounds have the potential to be added
as supplements for OA patients. Future directions may include the study of the clinical
efficacy of the reported natural compounds, with an emphasis on synergism with other
compounds, the optimal route of administration, and adverse effects.

Table 2. Summary of clinical trials.

Reference Sample Size Supplementation Results

[124] n = 20
8 caps, 400 mg each, of grapeseed
and olive extract (hydroxytyrosol
and procyanidins content)

Venous blood collected post-ingestion showed peak
metabolic concentration at 100 min with reduction in
IL-1β and inflammatory cytokines

[79]
n = 124
(62 control,
62 treatment)

One capsule of 50 mg oleuropein
twice a day

Knee injury and Osteoarthritis Outcome Score
(KOOS) determined significantly reduced walking
pain in subjects

[131] n = 22 6 caps, 42 mg each, of
bio-optimized curcumin per day

Significant reduction in Coll2-1 and insignificant
pain alleviation



Life 2023, 13, 102 12 of 20

Table 2. Cont.

Reference Sample Size Supplementation Results

[140]
n = 110
(55 control,
55 treatment)

15 mg meloxicam + 500 mg
resveratrol once daily

Western Ontario and McMaster Universities
Osteoarthritis Index (WOMAC) scores indicated
significant improvement in pain, stiffness, and
physical function

[141]
n = 82
(32 control,
50 treatment)

15 mg meloxicam + 500 mg
resveratrol once daily

WOMAC scoring indicated no significant clinical
relief with minimal difference in IL-1β, TNF-α, and
IL-6 serum level

[145]
n = 120
(60 control,
60 treatment)

One capsule of 500 mg powdered
ginger twice daily

At 3 months, there was a significant reduction in
IL-1β and TNF-α concentrations in the
treatment group

[146]
n = 120
(60 control,
60 treatment)

One capsule of 500 mg powdered
ginger twice daily

At 3 months, there was a significant reduction in
serum nitric oxide and hs-C reactive protein levels in
the treatment group

[147]
n = 68
(34 control,
34 treatment)

Knee massage with ginger oil twice
a week

WOMAC scoring and visual analog scale (VAS)
determined significant clinical relief in pain,
stiffness, and function in treatment group

[96]

n = 99
(33 control,
33 low-dose,
33 high-dose)

Low-dose: 300 mg of Elaeagnus
angustifolia extract with kaempferol
administered as syrup in two doses
per day
High-dose: 600 mg of Elaeagnus
Angustifolia extract with kaempferol
administered as syrup in two doses
per day

WOMAC, VAS, and Leguesne’s Pain-Function Index
(LPFI), and Patient’s Global Assessment (PGA) all
indicated improvement for both dosages after 7
weeks. Low and high dosages exhibited significant
reduction in pain and stiffness while only high dose
exhibited improvement in physical function

[106]
n = 40
(20 control,
20 treatment)

6 tablets of 1200 mg glucosamine
hydrochloride, 60 mg chondroitin
sulfate and 45 mg quercetin
glycosides per day

After 16 weeks, treatment group experienced pain
alleviation with walking and ascending/descending
the stairs, per Japan Orthopaedic Association (JOA)
criteria. Type II collagen levels were preserved,
although not significant

[158]
n = 67
(34 control,
33 treatment)

Pycnogenol patch was applied to
affected joint

Treatment group experienced reduced dependence
on non-steroidal anti-inflammatory drugs, improved
OA symptoms, and significant reduction in
C-reactive protein (CRP) and erythrocyte
sedimentation rate (ESR)

[159]
n = 100
(50 control,
50 treatment)

150 mg Pycnogenol per day with
meals

WOMAC and VAS criteria determined the treatment
group experienced significant reduction in pain by
the first month, while maximum effect was seen by
the second month

[111]
n = 33
(17 control,
16 treatment)

2 capsules of Pycnogenol, 50 mg
each, twice daily

Supplementation was well tolerated and distributed
into the synovial fluid of OA patients

[110]
N = 33
(17 control,
16 treatment)

100 mg Pycnogenol twice a day
Treatment group saw reduced expression of IL-1β,
MMP-3, MMP-13, and ADAMTS5 levels in the
serum after 3 weeks

[160]
n = 55
(26 control,
29 treatment)

2 tablets, 50 mg Pycnogenol each,
per day

After 3 weeks, the treatment group experienced
significant reduction in CRP levels and plasma
free radicals

[118] n = 40 Oral formulation including piperine
given over one month span

After 2 months, participants experienced significant
reduction in pain via WOMAC scoring and no side
effects/good tolerability
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