

Article

Some New Estimates of Hermite–Hadamard Inequality with Application

Tao Zhang 1,* o and Alatancang Chen 2

- ¹ College of Mathematics Science, Inner Mongolia Normal University, Hohhot 010022, China
- ² Center for Applied Mathematical Science, Inner Mongolia Normal University, Hohhot 010022, China; alatanca@imu.edu.cn
- * Correspondence: zhangtaomath@imnu.edu.cn

Abstract: This paper establishes several new inequalities of Hermite–Hadamard type for $|f'|^q$ being convex for some fixed $q \in (0,1]$. As application, some error estimates on special means of real numbers are given.

Keywords: Hermite-Hardamard inequality; convex function; integral inequalities; special means

MSC: 26A51; 26D15

1. Introduction

For simplicity, in this paper we let $I \subseteq \mathbb{R} = (-\infty, +\infty)$ be an interval.

Definition 1. A function $f: I \to \mathbb{R}$ is convex if

$$f[t\alpha + (1-t)\beta] \le tf(\alpha) + (1-t)f(\beta) \tag{1}$$

is true for any $\alpha, \beta \in I$ and $0 \le t \le 1$. The inequality (1) is reversed if f is concave on I.

Suppose that the function $f: I \to \mathbb{R}$ is convex on $I, \alpha, \beta \in I$ with $\alpha < \beta$, then

$$f\left(\frac{\alpha+\beta}{2}\right) \le \frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} f(x) dx \le \frac{f(\alpha)+f(\beta)}{2}.$$
 (2)

It is well known in the literature as the Hermite-Hadamard inequality.

In [1], Dragomir and Agarwal obtained the following inequalities for the right part of (2).

Theorem 1 (Theorem 2.2 in [1]). *Suppose that* $\alpha, \beta \in I^{\circ}$ *and* $\alpha < \beta$, *the function* $f : I^{\circ} \to \mathbb{R}$ *is differentiable and* |f'| *is convex on* $[\alpha, \beta]$, *then*

$$\left| \frac{f(\alpha) + f(\beta)}{2} - \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} f(x) dx \right| \le \frac{(\beta - \alpha)(|f'(\alpha)| + |f'(\beta)|)}{8}. \tag{3}$$

Theorem 2 (Theorem 2.3 in [1]). *Suppose that* $\alpha, \beta \in I^{\circ}$, $\alpha < \beta$, and p > 1, the function $f: I^{\circ} \to \mathbb{R}$ is differentiable and $|f'|^{\frac{p}{p-1}}$ is convex on $[\alpha, \beta]$, then

$$\left|\frac{f(\alpha)+f(\beta)}{2}-\frac{1}{\beta-\alpha}\int_{\alpha}^{\beta}f(x)\mathrm{d}x\right| \leq \frac{\beta-\alpha}{2(p+1)^{\frac{1}{p}}}\left(\frac{|f'(\alpha)|^{\frac{p}{p-1}}+|f'(\beta)|^{\frac{p}{p-1}}}{2}\right)^{\frac{p-1}{p}}.$$
 (4)

Citation: Zhang, T.; Chen, A. Some New Estimates of Hermite– Hadamard Inequality with Application. *Axioms* **2023**, *12*, 688. https://doi.org/10.3390/ axioms12070688

Academic Editors: Wei-Shih Du, Ravi P. Agarwal, Erdal Karapinar, Marko Kostić and Jian Cao

Received: 5 June 2023 Revised: 8 July 2023 Accepted: 12 July 2023 Published: 14 July 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Axioms 2023, 12, 688 2 of 11

In the literature, the extensions of the arithmetic, geometric, identric, logarithmic, and generalized logarithmic mean from two positive real numbers are, respectively, defined by

$$A(s,t) = \frac{s+t}{2}, \qquad s,t \in \mathbb{R},$$

$$G(s,t) = \sqrt{st}, \qquad s,t \in \mathbb{R}, \quad s,t > 0,$$

$$I(s,t) = \frac{1}{e} \left(\frac{t^{t}}{s^{s}}\right)^{\frac{1}{t-s}}, \qquad s,t > 0,$$

$$L(s,t) = \frac{t-s}{\ln|t| - \ln|s|}, \qquad |s| \neq |t|, \quad st \neq 0,$$

$$L_{n}(s,t) = \left[\frac{t^{n+1} - s^{n+1}}{(n+1)(t-s)}\right]^{\frac{1}{n}}, \qquad n \in \mathbb{Z} \setminus \{-1,0\}, \quad s,t \in \mathbb{R}, \quad s \neq t.$$

It is well known that G(s,t) < L(s,t) < I(s,t) < A(s,t) for s,t>0 with $s \neq t$, for example, see [2].

Dragomir and Agarwal used Theorem 1 and Theorem 2 to establish the following error estimates on special means:

Theorem 3 (Propositions 3.1–3.4 in [1]). *Suppose that* $s, t \in I^{\circ}$, s < t, $n \in \mathbb{Z}$, then

$$|A(s^n, t^n) - L_n(s, t)^n| \le \frac{n(t-s)}{4} A(|s|^{n-1}, |t|^{n-1}), \qquad n \ge 2,$$
 (5)

$$|A(s^n, t^n) - L_n(s, t)^n| \le \frac{n(t - s)}{2(p + 1)^{\frac{1}{p}}} \left[A\left(|s|^{\frac{(n - 1)p}{p - 1}}, |t|^{\frac{(n - 1)p}{p - 1}}\right) \right]^{\frac{p - 1}{p}}, \quad n \ge 2, \quad p > 1,$$
 (6)

$$|A(s^{-1}, t^{-1}) - L(s, t)^{-1}| \le \frac{t - s}{4} A(|s|^{-2}, |t|^{-2}), \qquad 0 \notin [s, t], \tag{7}$$

$$|A\left(s^{-1},t^{-1}\right) - L(s,t)^{-1}| \le \frac{t-s}{2(p+1)^{\frac{1}{p}}} \left[A\left(|s|^{\frac{-2p}{p-1}},|t|^{\frac{-2p}{p-1}}\right) \right]^{\frac{p-1}{p}}, \quad 0 \notin [s,t], \ p > 1. \quad (8)$$

In [3], Pearce and Pečarić obtained a better upper bound for the inequality (4). Moreover, they obtained a similar inequality on the left part of (2).

Theorem 4 (Theorems 1 and 2 in [3]). *Suppose that* $\alpha, \beta \in I^{\circ}$, $\alpha < \beta$ *and* $q \ge 1$, *the function* $f: I^{\circ} \to \mathbb{R}$ *is differentiable and* $|f'|^q$ *is convex on* $[\alpha, \beta]$, *then*

$$\left| \frac{f(\alpha) + f(\beta)}{2} - \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} f(x) dx \right| \le \frac{\beta - \alpha}{4} \left(\frac{|f'(\alpha)|^q + |f'(\beta)|^q}{2} \right)^{\frac{1}{q}} \tag{9}$$

and

$$\left| f\left(\frac{\alpha+\beta}{2}\right) - \frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} f(x) dx \right| \le \frac{\beta-\alpha}{4} \left(\frac{|f'(\alpha)|^q + |f'(\beta)|^q}{2} \right)^{\frac{1}{q}}. \tag{10}$$

By using Theorem 4, Pearce and Pečarić generalized and improved the error estimates (5)–(8) and obtained the following error estimates on special means:

Theorem 5 (Propositions 1 and 2 in [3]). *Suppose that* $s, t \in \mathbb{R}$, s < t, $0 \notin [s, t]$, $n \in \mathbb{Z}$, $|n| \ge 2$, $q \ge 1$, then

Axioms **2023**, 12, 688 3 of 11

$$|A(s^n, t^n) - L_n(s, t)^n| \le \frac{|n|(t-s)}{4} \left[A(|s|^{(n-1)q}, |t|^{(n-1)q}) \right]^{\frac{1}{q}}, \tag{11}$$

$$|A(s,t)^{n} - L_{n}(s,t)^{n}| \leq \frac{|n|(t-s)}{4} \left[A\left(|s|^{(n-1)q}, |t|^{(n-1)q}\right) \right]^{\frac{1}{q}},\tag{12}$$

$$|A(s^{-1}, t^{-1}) - L(s, t)^{-1}| \le \frac{t - s}{4} \left[A(|s|^{-2q}, |t|^{-2q}) \right]^{\frac{1}{q}}, \tag{13}$$

$$|A(s,t)^{-1} - L(s,t)^{-1}| \le \frac{t-s}{4} \left[A\left(|s|^{-2q},|t|^{-2q}\right) \right]^{\frac{1}{q}}. \tag{14}$$

However, using their method could not obtain the corresponding estimate for q < 1. In this paper, supposing that $|f'|^q$ is convex for some fixed $0 < q \le 1$, we obtain some estimates of (2). Moreover, if q = 1, our results are the same as (9) and (10), respectively. As application, some error estimates on special means are given, then the inequalities (11)–(14) are improved.

2. Main Results

Theorem 6. Suppose that $\alpha, \beta \in I^{\circ}$, $\alpha < \beta$ and $0 < q \le 1$, the function $f: I^{\circ} \to \mathbb{R}$ is differentiable and $|f'|^q$ is convex on $[\alpha, \beta]$.

(i) If
$$0 < q \le \frac{1}{2}$$
, then

$$\left| \frac{f(\alpha) + f(\beta)}{2} - \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} f(x) dx \right| \leq \frac{q(\beta - \alpha)}{2(2q + 1)} \left[\frac{q\left(q + 2^{\frac{1}{q}}\right)}{2(q + 1)} (|f'(\alpha)| + |f'(\beta)|) + (1 - q)\sqrt{|f'(\alpha)f'(\beta)|} \right]. \tag{15}$$

(ii) If $\frac{1}{2} < q \le 1$, then

$$\left| \frac{f(\alpha) + f(\beta)}{2} - \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} f(x) dx \right| \leq \frac{q(\beta - \alpha)}{2(2q+1)} \left[\frac{1 + q \cdot 2^{-\frac{1}{q}}}{q+1} (|f'(\alpha)| + |f'(\beta)|) + \left(1 - 2^{1 - \frac{1}{q}} \right) \sqrt{|f'(\alpha)f'(\beta)|} \right]. \tag{16}$$

Clearly, if q = 1, then (16) is the same as (9).

Corollary 1. Suppose that $\alpha, \beta \in I^{\circ}$ and $\alpha < \beta$, the function $f: I^{\circ} \to \mathbb{R}$ is differentiable and $|f'|^{\frac{1}{2}}$ is convex on $[\alpha, \beta]$, then for any $q \geq 1$, we have

$$\left| \frac{f(\alpha) + f(\beta)}{2} - \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} f(x) dx \right| \leq \frac{\beta - \alpha}{4} \left[\frac{3}{4} A(|f'(\alpha)|, |f'(\beta)|) + \frac{1}{4} G(|f'(\alpha)|, |f'(\beta)|) \right]$$

$$\leq \frac{\beta - \alpha}{4} A(|f'(\alpha)|, |f'(\beta)|)$$

$$\leq \frac{\beta - \alpha}{4} \left[A(|f'(\alpha)|^q, |f'(\beta)|^q) \right]^{\frac{1}{q}}. \tag{17}$$

Proof. Let $q=\frac{1}{2}$ in the inequality (15) and we have the first inequality. Note that $\sqrt{|f'(\alpha)f'(\beta)|} \leq \frac{|f'(\alpha)|+|f'(\beta)|}{2}$, so the second inequality holds. By power–mean inequality, we can obtain the last inequality. \square

Theorem 7. Suppose that $\alpha, \beta \in I^{\circ}$, $\alpha < \beta$ and $0 < q \le 1$, the function $f : I^{\circ} \to \mathbb{R}$ is differentiable, and $|f'|^q$ is convex on $[\alpha, \beta]$.

Axioms 2023, 12, 688 4 of 11

(i) If $0 < q \le \frac{1}{2}$, then

$$\left| f\left(\frac{\alpha+\beta}{2}\right) - \frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} f(x) dx \right| \leq \frac{q(\beta-\alpha)}{2(2q+1)} \left[\frac{q^{2}\left(2^{\frac{1}{q}+1}-1\right)}{2(q+1)} (|f'(\alpha)| + |f'(\beta)|) + (1-q)\left(\left(\frac{1}{3} + \frac{1}{6q}\right)2^{\frac{1}{q}} - 1\right) \sqrt{|f'(\alpha)f'(\beta)|} \right]. \tag{18}$$

(ii) If $\frac{1}{2} < q \le 1$, then

$$\left| f\left(\frac{\alpha+\beta}{2}\right) - \frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} f(x) dx \right| \leq \frac{q(\beta-\alpha)}{2(2q+1)} \left[\frac{q\left(2-2^{-\frac{1}{q}}\right)}{q+1} (|f'(\alpha)| + |f'(\beta)|) + \left(2^{\frac{1}{q}}-2\right) \left(\frac{1}{3} + \frac{1}{6q} - 2^{-\frac{1}{q}}\right) \sqrt{|f'(\alpha)f'(\beta)|} \right]. \tag{19}$$

Clearly, if q = 1, then (19) is the same as (10). If we let $q = \frac{1}{2}$ in the inequality (18), then we have the following.

Corollary 2. Suppose that $\alpha, \beta \in I^{\circ}$ and $\alpha < \beta$, the function $f: I^{\circ} \to \mathbb{R}$ is differentiable, and $|f'|^{\frac{1}{2}}$ is convex on $[\alpha, \beta]$, then for any $q \geq 1$, we have

$$\left| f\left(\frac{\alpha+\beta}{2}\right) - \frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} f(x) dx \right| \leq \frac{\beta-\alpha}{4} \left[\frac{7}{12} A(|f'(\alpha)|, |f'(\beta)|) + \frac{5}{12} G(|f'(\alpha)|, |f'(\beta)|) \right]$$

$$\leq \frac{\beta-\alpha}{4} A(|f'(\alpha)|, |f'(\beta)|)$$

$$\leq \frac{\beta-\alpha}{4} \left[A(|f'(\alpha)|^q, |f'(\beta)|^q) \right]^{\frac{1}{q}}.$$

$$(20)$$

3. Lemmas

Lemma 1 (Lemma 2.1 in [1]). Suppose that $\alpha, \beta \in I^{\circ}$ and $\alpha < \beta$, the function $f : I^{\circ} \to \mathbb{R}$ is differentiable, and $f' \in L[\alpha, \beta]$, then

$$\frac{f(\alpha) + f(\beta)}{2} - \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} f(x) dx = \frac{\beta - \alpha}{2} \int_{0}^{1} (1 - 2t) f'[t\alpha + (1 - t)\beta] dt. \tag{21}$$

Lemma 2 (Lemma 2.1 in [4]). Suppose that $\alpha, \beta \in I^{\circ}$ and $\alpha < \beta$, the function $f: I^{\circ} \to \mathbb{R}$ is differentiable, and $f' \in L[\alpha, \beta]$, then

$$f\left(\frac{\alpha+\beta}{2}\right) - \frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} f(x) dx = (\beta-\alpha) \int_{0}^{1} M(t) f'[t\alpha + (1-t)\beta] dt, \tag{22}$$

where

$$M(t) = \begin{cases} -t, & t \in \left[0, \frac{1}{2}\right), \\ 1-t, & t \in \left[\frac{1}{2}, 1\right]. \end{cases}$$

The following result can be found in [5]. For the convenience of readers, we provide the proof below.

Axioms **2023**, 12, 688 5 of 11

Lemma 3 (Lemma 2.1 in [5]). *Let* $x, y > 0, r \in \mathbb{R} \setminus \{0\}$.

(i) If $r \ge 2$ or $0 < r \le 1$, then $x^r + (2^r - 2)x^{\frac{r}{2}}y^{\frac{r}{2}} + y^r \le (x + y)^r \le \frac{2^r}{2r}(x^r + (2r - 2)x^{\frac{r}{2}}y^{\frac{r}{2}} + y^r). \tag{23}$

(ii) If
$$1 \le r \le 2$$
 or $r < 0$, then
$$x^{r} + (2^{r} - 2)x^{\frac{r}{2}}y^{\frac{r}{2}} + y^{r} \ge (x + y)^{r} \ge \frac{2^{r}}{2r}(x^{r} + (2r - 2)x^{\frac{r}{2}}y^{\frac{r}{2}} + y^{r}). \tag{24}$$

Each equality is true if and only if r = 1, 2 or x = y.

Proof. It is easy to see that every equality in (23) and (24) holds when r = 1, 2 or x = y, so we suppose that $r \neq 1, 2, y = 1$ and x > 1 in the following.

First, we prove that the left parts of the inequalities (23) and (24) hold, respectively. Let

$$f(x) = (x+1)^r - x^r - (2^r - 2)x^{\frac{r}{2}} - 1, x > 1,$$

$$g(t) = (1+t)^{r-1} - 1 - (2^{r-1} - 1)t^{\frac{r}{2}}, 0 < t < 1.$$

Then

$$f'(x) = rx^{r-1}g\left(\frac{1}{x}\right), \qquad x > 1,$$

$$g'(t) = (r-1)(1+t)^{r-2} - \frac{r}{2}(2^{r-1}-1)t^{\frac{r}{2}-1}, \qquad 0 < t < 1.$$

The following proof is divided into four cases.

(1) If r < 0, then

$$g'(t) = -\left[(1-r)(1+t)^{r-2} - \frac{r}{2}(1-2^{r-1})t^{\frac{r}{2}-1} \right] < 0, \ \ 0 < t < 1.$$

Note that g(1) = 0, so g(t) > 0 (0 < t < 1). It follows that f'(x) < 0 (x > 1). Since f(1) = 0, we have f(x) < 0.

(2) If 0 < r < 1, let

$$h_1(t) = -\left[\ln(1-r) + (r-2)\ln(1+t) - \ln\frac{r}{2} - \ln(1-2^{r-1}) - \left(\frac{r}{2} - 1\right)\ln t\right], \ 0 < t < 1,$$

then $h_1'(t) = -(\frac{r-2}{1+t} - \frac{r-2}{2t}) < 0$. It means that $h_1(t)$ is strictly decreasing on (0,1). Note that

$$h_1(0^+) = \ln \frac{r(1-2^{r-1})}{2(1-r)} + \frac{r-2}{2} \lim_{t \to 0^+} \ln t > 0,$$

 $h_1(1^-) = \ln \frac{r}{1-r} - \ln \frac{2^{r-1}}{1-2^{r-1}} < 0;$

there exists $\xi_1 \in (0,1)$, such that $h_1(t) > 0$ $(0 < t < \xi_1)$ and $h_1(t) < 0$ $(\xi_1 < t < 1)$. Since g'(t) and $h_1(t)$ have the same sign, we obtain g'(t) > 0 $(0 < t < \xi_1)$ and g'(t) < 0 $(\xi_1 < t < 1)$. Note that g(1) = g(0) = 0, and we have g(t) > 0 (0 < t < 1). It follows that f'(x) > 0 (x > 1). Because f(1) = 0, we have f(x) > 0 (x > 1).

(3) If 1 < r < 2, let

$$h_2(t) = \ln(r-1) + (r-2)\ln(1+t) - \ln\frac{r}{2} - \ln(2^{r-1}-1) - \left(\frac{r}{2}-1\right)\ln t$$

Axioms **2023**, 12, 688 6 of 11

then $h'_2(t) = \frac{r-2}{1+t} - \frac{r-2}{2t} > 0$. It means that $h_2(t)$ is strictly increasing on (0,1). Note that

$$h_2(0^+) = \ln \frac{2(r-1)}{r(2^{r-1}-1)} - \frac{r-2}{2} \lim_{t \to 0^+} \ln t < 0,$$
 $h_2(1^-) = \ln \frac{r-1}{r} - \ln \frac{2^{r-1}-1}{2^{r-1}} > 0;$

there exists $\xi_2 \in (0,1)$, such that $h_2(t) < 0$ $(0 < t < \xi_2)$ and $h_2(t) > 0$ $(\xi_2 < t < 1)$. Since g'(t) and $h_2(t)$ have the same sign and g(1) = g(0) = 0, we have g(t) < 0 (0 < t < 1). It follows that f'(x) < 0 (x > 1). Note that f(1) = 0, and we have f(x) < 0 (x > 1).

(4) If r > 2, then $h_2'(t) = \frac{r-2}{1+t} - \frac{r-2}{2t} < 0$. It means that $h_2(t)$ is strictly decreasing in (0,1). Note that $h_2(0^+) > 0$, $h_2(1^-) < 0$, and there exists $\xi_3 \in (0,1)$, such that $h_2(t) > 0$ $(0 < t < \xi_3)$ and $h_2(t) < 0$ $(\xi_3 < t < 1)$. Since g'(t) and $h_2(t)$ have the same sign and g(1) = g(0) = 0, we have g(t) > 0 (0 < t < 1). It follows that f'(x) > 0 (x > 1). Then by f(1) = 0, we have f(x) > 0 (x > 1).

Next, we derive that the right parts of the inequalities (23) and (24) are true, respectively. Let

$$L(x) = (x+1)^{r} - \frac{2^{r}}{2r}(x^{r} + (2r-2)x^{\frac{r}{2}} + 1), \qquad x > 1,$$

$$l(t) = r(t+1)^{r-1} - 2^{r-1} - 2^{r-1}(r-1)t^{\frac{r}{2}}, \qquad 0 < t < 1.$$

Then

$$L'(x) = x^{r-1}l\left(\frac{1}{x}\right), \qquad x > 1,$$

$$l'(t) = 2^{r-2}r(r-1)t^{\frac{r}{2}-1}\left[\left(\frac{t+1}{2\sqrt{t}}\right)^{r-2} - 1\right], \qquad 0 < t < 1.$$

If 0 < r < 1 or r > 2, then l'(t) > 0. Note that l(1) = 0, we have l(t) < 0 (0 < t < 1), and L'(x) < 0 (x > 1). Then by L(1) = 0, we have L(x) < 0 (x > 1), so the right parts of the inequalities (23) holds.

If r < 0 or 1 < r < 2, then l'(t) < 0. Note that l(1) = 0, we have l(t) > 0 (0 < t < 1) and L'(x) > 0 (x > 1). Then by L(1) = 0, we have L(x) > 0 (x > 1), so the right parts of the inequalities (24) holds.

The proof is complete. \Box

Lemma 4. Suppose that $\alpha, \beta \in I^{\circ}$, $\alpha < \beta, 0 < q \le 1, 0 < t < 1$, the function $f: I \to [0, +\infty)$ is positive, and f^q is convex on $[\alpha, \beta]$.

(i) If $0 < q \le \frac{1}{2}$, then

$$f[t\alpha + (1-t)\beta] \le q2^{\frac{1}{q}-1} \left[t^{\frac{1}{q}} f(\alpha) + (1-t)^{\frac{1}{q}} f(\beta) + \left(\frac{2}{q} - 2 \right) (t(1-t))^{\frac{1}{2q}} \sqrt{f(\alpha)f(\beta)} \right]. \tag{25}$$

(ii) If $\frac{1}{2} \le q \le 1$, then

$$f[t\alpha + (1-t)\beta] \le t^{\frac{1}{q}} f(\alpha) + (1-t)^{\frac{1}{q}} f(\beta) + (2^{\frac{1}{q}} - 2)(t(1-t))^{\frac{1}{2q}} \sqrt{f(\alpha)f(\beta)}.$$
 (26)

Proof. Since f^q is convex and q > 0, we have

$$f[t\alpha + (1-t)\beta] \le [tf^q(\alpha) + (1-t)f^q(\beta)]^{\frac{1}{q}}.$$

If $0 < q \le \frac{1}{2}$, then $\frac{1}{q} \ge 2$, by the right-hand side of the inequalities (23), then

Axioms 2023, 12, 688 7 of 11

$$\left[tf^{q}(\alpha) + (1-t)f^{q}(\beta)\right]^{\frac{1}{q}} \leq q2^{\frac{1}{q}-1} \left[t^{\frac{1}{q}}f(\alpha) + (1-t)^{\frac{1}{q}}f(\beta) + \left(\frac{2}{q}-2\right)(t(1-t))^{\frac{1}{2q}}\sqrt{f(\alpha)f(\beta)}\right].$$

Thus, the inequality (25) is valid. If $\frac{1}{2} \le q \le 1$, then $1 \le \frac{1}{q} \le 2$, by the left-hand side of the inequalities (24) we have

$$[tf^{q}(\alpha) + (1-t)f^{q}(\beta)]^{\frac{1}{q}} \leq t^{\frac{1}{q}}f(\alpha) + (1-t)^{\frac{1}{q}}f(\beta) + (2^{\frac{1}{q}}-2)(t(1-t))^{\frac{1}{2q}}\sqrt{f(\alpha)f(\beta)}.$$

Hence, the inequality (26) is valid.

4. Derivation of Theorem 6 and 7

The derivation of Theorem 6: (i) If $0 < q \le \frac{1}{2}$, then by the inequalities (21) and (25),

$$\begin{split} & \left| \frac{f(\alpha) + f(\beta)}{2} - \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} f(x) \mathrm{d}x \right| \\ \leq & \frac{\beta - \alpha}{2} \int_{0}^{1} |1 - 2t| |f'[t\alpha + (1 - t)\beta]| \mathrm{d}t \\ \leq & \frac{(\beta - \alpha)q2^{\frac{1}{q} - 1}}{2} \int_{0}^{1} |1 - 2t| \left[t^{\frac{1}{q}} |f'(\alpha)| + (1 - t)^{\frac{1}{q}} |f'(\beta)| + \left(\frac{2}{q} - 2 \right) (t(1 - t))^{\frac{1}{2q}} \sqrt{|f'(\alpha)f'(\beta)|} \right] \mathrm{d}t. \end{split}$$

Note that

$$\begin{split} & \int_0^1 |1 - 2t| (1 - t)^{\frac{1}{q}} dt \\ &= \int_0^1 |1 - 2t| t^{\frac{1}{q}} dt \\ &= \int_0^{\frac{1}{2}} (1 - 2t) t^{\frac{1}{q}} dt - \int_{\frac{1}{2}}^1 (1 - 2t) t^{\frac{1}{q}} dt \\ &= \frac{q(1 + q \cdot 2^{\frac{-1}{q}})}{(q + 1)(2q + 1)}, \end{split}$$

and

$$\begin{split} &\int_0^1 |1-2t|(t(1-t))^{\frac{1}{2q}} \mathrm{d}t \\ &= \int_0^{\frac{1}{2}} (1-2t)(t(1-t))^{\frac{1}{2q}} \mathrm{d}t - \int_{\frac{1}{2}}^1 (1-2t)(t(1-t))^{\frac{1}{2q}} \mathrm{d}t \\ &= \frac{2q}{2q+1}(t(1-t))^{\frac{1}{2q}+1} \mid_0^{\frac{1}{2}} - \frac{2q}{2q+1}(t(1-t))^{\frac{1}{2q}+1} \mid_{\frac{1}{2}}^1 \\ &= \frac{q \cdot 2^{\frac{-1}{q}}}{2q+1}, \end{split}$$

so (15) is valid.

Axioms 2023, 12, 688 8 of 11

(ii) If $\frac{1}{2} < q \le 1$, then by (21) and (26), we have

$$\begin{split} & \left| \frac{f(\alpha) + f(\beta)}{2} - \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} f(x) dx \right| \\ \leq & \frac{\beta - \alpha}{2} \int_{0}^{1} |1 - 2t| |f'[t\alpha + (1 - t)\beta]| dt \\ \leq & \frac{\beta - \alpha}{2} \int_{0}^{1} |1 - 2t| \left[t^{\frac{1}{q}} |f(\alpha)| + (1 - t)^{\frac{1}{q}} |f(\beta)| + (2^{\frac{1}{q}} - 2)(t(1 - t))^{\frac{1}{2q}} \sqrt{|f(\alpha)f(\beta)|} \right] dt \\ = & \frac{q(\beta - \alpha)}{2(2q + 1)} \left[\frac{1 + q \cdot 2^{-\frac{1}{q}}}{q + 1} (|f'(\alpha)| + |f'(\beta)|) + \left(1 - 2^{1 - \frac{1}{q}}\right) \sqrt{|f'(\alpha)f'(\beta)|} \right]. \end{split}$$

so (16) is valid.

The derivation of Theorem 7: (i) If $0 < q \le \frac{1}{2}$, then by (22) and (25) we can derive that

$$\begin{split} & \left| f \left(\frac{\alpha + \beta}{2} \right) - \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} f(x) dx \right| \\ & \leq (\beta - \alpha) \int_{0}^{1} |M(t)| |f'[t\alpha + (1 - t)\beta]| dt \\ & \leq (\beta - \alpha) q 2^{\frac{1}{q} - 1} \int_{0}^{1} |M(t)| \left[t^{\frac{1}{q}} |f'(\alpha)| + (1 - t)^{\frac{1}{q}} |f'(\beta)| + \left(\frac{2}{q} - 2 \right) (t(1 - t))^{\frac{1}{2q}} \sqrt{|f'(\alpha)f'(\beta)|} \right] dt. \end{split}$$

Note that

$$\int_{0}^{1} |M(t)| (1-t)^{\frac{1}{q}} dt$$

$$= \int_{0}^{1} |M(t)| t^{\frac{1}{q}} dt$$

$$= \int_{0}^{\frac{1}{2}} t^{\frac{1}{q}+1} dt + \int_{\frac{1}{2}}^{1} (1-t) t^{\frac{1}{q}} dt$$

$$= \frac{q^{2}(1-2^{-\frac{1}{q}-1})}{(q+1)(2q+1)'}$$

and

$$\begin{split} &\int_0^1 |M(t)| (t(1-t))^{\frac{1}{2q}} \mathrm{d}t \\ &= \int_0^{\frac{1}{2}} t^{\frac{1}{2q}+1} (1-t)^{\frac{1}{2q}} \mathrm{d}t + \int_{\frac{1}{2}}^1 t^{\frac{1}{2q}} (1-t)^{\frac{1}{2q}+1} \mathrm{d}t \\ &= -\frac{q \cdot 2^{-\frac{1}{q}-1}}{2q+1} + B\left(\frac{1}{2q}+1, \frac{1}{2q}+2\right) \end{split}$$

where the beta function is

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt, \ x > 0, \ y > 0.$$

Clearly, B(x,x) is decreasing on $(0,+\infty)$ and $\frac{1}{2q} \ge 1$, then

$$B\left(\frac{1}{2q}+1,\frac{1}{2q}+2\right) = \frac{1}{2}B\left(\frac{1}{2q}+1,\frac{1}{2q}+1\right) \le \frac{1}{2}B(2,2) = \frac{1}{12}.$$

Thus, (18) is valid.

Axioms 2023, 12, 688 9 of 11

(ii) If $\frac{1}{2} < q \le 1$, then by (22) and (26), we can induce that

$$\begin{split} & \left| f \left(\frac{\alpha + \beta}{2} \right) - \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} f(x) dx \right| \\ \leq & (\beta - \alpha) \int_{0}^{1} |M(t)| |f'[t\alpha + (1 - t)\beta]| dt \\ \leq & (\beta - \alpha) \int_{0}^{1} |M(t)| \left[t^{\frac{1}{q}} |f(\alpha)| + (1 - t)^{\frac{1}{q}} |f(\beta)| + (2^{\frac{1}{q}} - 2)(t(1 - t))^{\frac{1}{2q}} \sqrt{|f(\alpha)f(\beta)|} \right] dt \\ \leq & \frac{q(\beta - \alpha)}{2(2q + 1)} \left[\frac{q\left(2 - 2^{-\frac{1}{q}}\right)}{q + 1} (|f'(\alpha)| + |f'(\beta)|) + \left(2^{\frac{1}{q}} - 2\right) \left(\frac{1}{3} + \frac{1}{6q} - 2^{-\frac{1}{q}}\right) \sqrt{|f'(\alpha)f'(\beta)|} \right]. \end{split}$$

Thus, (19) is valid.

5. Applications

In this section, we will use Corollary 1 and Corollary 2 to establish some error estimates on special means, then the inequalities (11)–(14) are improved.

Proposition 1. Suppose that $s, t \in \mathbb{R}$, $s < t, 0 \notin [s, t]$, $n \in \mathbb{Z}$, $n \ge 3$ or $n \le -2$, then

$$|A(s^{n},t^{n}) - L_{n}(s,t)^{n}| \leq \frac{|n|(t-s)}{4} \left[\frac{3}{4} A(|s|^{n-1},|t|^{n-1}) + \frac{1}{4} G(|s|^{n-1},|t|^{n-1}) \right], \tag{27}$$

$$|A(s,t)^{n} - L_{n}(s,t)^{n}| \leq \frac{|n|(t-s)}{4} \left[\frac{7}{12} A(|s|^{n-1},|t|^{n-1}) + \frac{5}{12} G(|s|^{n-1},|t|^{n-1}) \right].$$
 (28)

Proof. Let $f(x) = x^n$, $x \in [s, t]$, $n \in \mathbb{Z}$, $n \ge 3$ or $n \le -2$, then

$$\left(|f'(x)|^{\frac{1}{2}}\right)'' = \frac{\sqrt{|n|}(n-1)(n-3)}{4}|x|^{\frac{n-5}{2}} \ge 0.$$

Thus, $|f'(x)|^{\frac{1}{2}}$ is convex on [s,t]. It follows that (27) and (28) hold by using Corollary 1 and Corollary 2, respectively. \Box

Remark 1. For any $q \ge 1$, by the inequalities (17) and (20), we have

$$\frac{|n|(t-s)}{4} \left\lceil \frac{3}{4} A\Big(|s|^{n-1},|t|^{n-1}\Big) + \frac{1}{4} G\Big(|s|^{n-1},|t|^{n-1}\Big) \right\rceil \leq \frac{|n|(t-s)}{4} \left[A\Big(|s|^{(n-1)q},|t|^{(n-1)q}\Big) \right]^{\frac{1}{q}},$$

and

$$\frac{|n|(t-s)}{4} \left\lceil \frac{7}{12} A \Big(|s|^{n-1}, |t|^{n-1} \Big) + \frac{5}{12} G \Big(|s|^{n-1}, |t|^{n-1} \Big) \right\rceil \leq \frac{|n|(t-s)}{4} \left[A \Big(|s|^{(n-1)q}, |t|^{(n-1)q} \Big) \right]^{\frac{1}{q}}.$$

Thus, for $n \ge 3$ or $n \le -2$, we obtain an improvement of the inequalities (11) and (12), which is an improvement of the inequalities (5) and (6).

Proposition 2. *Suppose that* $s, t \in \mathbb{R}$, $s < t, 0 \notin [s, t]$, then

$$|A(s^{-1},t^{-1}) - L(s,t)^{-1}| \le \frac{t-s}{4} \left[\frac{3}{4} A(s^{-2},t^{-2}) + \frac{1}{4} G(s^{-2},t^{-2}) \right],\tag{29}$$

Axioms 2023, 12, 688 10 of 11

$$|A(s,t)^{-1} - L(s,t)^{-1}| \le \frac{t-s}{4} \left[\frac{7}{12} A(s^{-2}, t^{-2}) + \frac{5}{12} G(s^{-2}, t^{-2}) \right]. \tag{30}$$

Proof. Let $f(x) = \frac{1}{x}$, $x \in [s, t]$, then

$$(|f'(x)|^{\frac{1}{2}})'' = \frac{2}{|x|^3} \ge 0.$$

Thus, $|f'(x)|^{\frac{1}{2}}$ is convex on [s,t]. It follows that (29) and (30) hold by using Corollary 1 and Corollary 2, respectively. \Box

Remark 2. For any $q \ge 1$, by the inequalities (17) and (20), we have

$$\frac{t-s}{4} \left[\frac{3}{4} A\left(s^{-2}, t^{-2}\right) + \frac{1}{4} G\left(s^{-2}, t^{-2}\right) \right] \le \frac{t-s}{4} \left[A\left(|s|^{-2q}, |t|^{-2q}\right) \right]^{\frac{1}{q}},$$

and

$$\frac{t-s}{4} \left[\frac{7}{12} A\left(s^{-2}, t^{-2}\right) + \frac{5}{12} G\left(s^{-2}, t^{-2}\right) \right] \le \frac{t-s}{4} \left[A\left(|s|^{-2q}, |t|^{-2q}\right) \right]^{\frac{1}{q}}.$$

Thus, we obtain an improvement of the inequalities (13) and (14), which is an improvement of the inequalities (7) and (8).

Proposition 3. *Suppose that* t > s > 0*, then*

$$\ln I(s,t) - \ln G(s,t) \le \frac{t-s}{4} \left[\frac{3}{4} A\left(s^{-1}, t^{-1}\right) + \frac{1}{4} G\left(s^{-1}, t^{-1}\right) \right],\tag{31}$$

$$\ln A(s,t) - \ln I(s,t) \le \frac{t-s}{4} \left\lceil \frac{7}{12} A\left(s^{-1}, t^{-1}\right) + \frac{5}{12} G\left(s^{-1}, t^{-1}\right) \right\rceil. \tag{32}$$

Proof. Let $f(x) = \ln x$, $x \in [s, t]$, then

$$(|f'(x)|^{\frac{1}{2}})'' = \frac{3}{4}|x|^{-\frac{5}{2}} \ge 0.$$

Thus, $|f'(x)|^{\frac{1}{2}}$ is convex on [s,t]. It follows that (31) and (32) hold by using Corollary 1 and Corollary 2, respectively. \Box

Author Contributions: Conceptualization, T.Z. and A.C.; methodology, T.Z.; validation, T.Z.; formal analysis, T.Z. and A.C.; investigation, T.Z.; resources, T.Z.; writing—original draft preparation, T.Z.; funding acquisition, T.Z. and A.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (No. 11761029, No. 62161044) and the Natural Science Foundation of Inner Mongolia (Grant No. 2021LHMS01008).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Axioms 2023, 12, 688 11 of 11

References

1. Dragomir, S.S.; Agarwal, R.P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. *Appl. Math. Lett.* **1998**, *11*, 91–95. [CrossRef]

- 2. Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite-Hadamard Inequalities and Applications; RGMIA Monographs, Victoria University: Melbourne, Australia, 2000.
- 3. Pearce, C.E.M.; Pečarixcx, J. Inequalities for differentiable mappings with application to special means and quadrature formulae. *Appl. Math. Lett.* **2000**, *13*, 51–55. [CrossRef]
- 4. Kirmaci, U.S. Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula. *Appl. Math. Comp.* **2004**, *147*, 137–146. [CrossRef]
- 5. Zhang, T.; Xi, B.Y.; Alatancang. Compared of generalized heronian means and power means. *Math. Pract. Theory* **2012**, *42*, 235–240. (In Chinese)

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.