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Abstract: In this work, vector-valued continuous functions are approximated uniformly on the unit
hypercube by Shepard operators. If λ denotes the usual parameter of the Shepard operators and
m is the dimension of the hypercube, then our results show that it is possible to obtain a uniform
approximation of a continuous vector-valued function by these operators when λ ≥ m + 1. By using
three-dimensional parametric plots, we illustrate this uniform approximation for some vector-valued
functions. Finally, the influence in approximation by regular summability processes is studied, and
their motivation is shown.
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1. Introduction

The Shepard operators, initially defined by Donald Shepard in 1968 [1], are effectively
employed in a wide array of fields, ranging from mathematics to engineering, and from
geographical mapping systems to mining, owing to their interpolation capabilities as well
as their ability to approximate functions more rapidly. These operators are quite success-
ful not only in scattered data interpolation problems (see [2–8]) but also in the classical
approximation theory (see [9–15]). Recently in [16,17], we investigated the approximation
behavior of the Shepard operators in complex cases. Our main focus in this paper is to use
these operators to approximate vector-valued functions on the unit hypercube and further
enhance this approach through the utilization of regular summability methods.

Firstly, let us introduce the vector-valued Shepard operators that will be employed
throughout this article.

Let m ∈ N and K be the unit hypercube (or, the unit m-dimensional square), i.e.,

K = [0, 1]m = {x = (x1, x2, . . . , xm) ∈ Rm : xi ∈ [0, 1], i = 1, 2, . . . , m}.

Fixed n ∈ N, examine the set given by

Ωn := {k = (k1, k2, . . . , km) ∈ Nm : ki ∈ {0, 1, . . . , n}, i = 1, 2, . . . , m}

and the following sample points of K

xk,n =

(
k1

n
,

k2

n
, . . . ,

km

n

)
with k ∈ Ωn.
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Then, in total, we have (n + 1)m sample points on K. Assume d ∈ N and
f = ( f1, f2, . . . , fd) is a vector-valued function on the set K, where each component fr
(r = 1, 2, . . . , d) is a real-valued function on the set K. Now, if 0 < λ ∈ R, we examine the
following vector-valued Shepard processes:

Sn,λ(f; x) =
∑n

k=0|x− xk,n|−λ
m f(xk,n)

∑n
k=0|x− xk,n|−λ

m

, (1)

where we write ∑n
k=0 for the multi-index summation ∑n

k1=0 ∑n
k2=0 · · ·∑

n
km=0. Here, the

symbol |·|m denotes the usual Euclidean norm on the set K. Observe that Sn,λ(f) is an
interpolatory process at the sample points xk,n, i.e.,

Sn,λ(f; xk,n) = f(xk,n) for k ∈ Ωn.

It is easy to verify that Sn,λ(f) may be written with respect to the components of f as
follows:

Sn,λ(f; x) =
(
S̃n,λ( f1; x), S̃n,λ( f2; x), . . . , S̃n,λ( fd; x)

)
,

where S̃n,λ is given by

S̃n,λ(g; x) :=
∑n

k=0|x− xk,n|−λ
m g(xk,n)

∑n
k=0|x− xk,n|−λ

m

(2)

for real-valued functions g defined on K. It is clear that S̃n,λ(g; x) becomes real valued.
We structure the present paper based on this terminology as follows: Section 2 exam-

ines the approximation characteristics of the vector-valued Shepard operators, employing
both classical convergence and regular summability methods. Section 3 demonstrates our
main approximation theorem through supporting the auxiliary results. Section 4 gives some
significant applications, including the influence in approximating by regular summability
processes. The last section is devoted to the concluding remarks.

2. Approximating by Vector-Valued Shepard Operators

Let C(K,Rd) denote the space of all continuous functions from K into Rd. Now, we
state an approximation result for the vector-valued Shepard operators given by (1).

Theorem 1. Let f ∈ C(K,Rd). If λ ≥ m + 1, we obtain

Sn,λ(f) ⇒ f on K, (3)

with ⇒ denoting the uniform convergence.

Note that the uniform convergence in (3) can be written explicitly with respect to the
components of f:

Sn,λ(f) ⇒ f on K⇔ for each r = 1, 2, . . . , d, lim
n→∞

∥∥S̃n,λ( fr)− fr
∥∥ = 0

⇔ for each r = 1, 2, . . . , d, lim
n→∞

{
sup
x∈K

∣∣S̃n,λ( fr; x)− fr(x)
∣∣} = 0.

Remark 1. We should note that Farwig in [8] considered the multidimensional Shepard operators
by using n distinct sample points in a compact set A satisfying two conditions of regularity.
However, in (1), taking (n + 1)m sample points in the unit hypercube K, we consider not only
multidimensional but also vector-valued Shepard operators. One can also check that if we take
d = 1 in Theorem 1, then our approximation result is in agreement with Farwig’s theorem in [8].
Indeed, it follows from Theorem 2.3 in [8] (in accordance with our notations, take q = 0, r = 1/n,
s = m, p = λ) that the order of approximation is O((log n)/n) when λ = m + 1 and O(1/n)
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when λ > m + 1, which coincides with our Theorem 1. Here, we will examine the demonstration
of Theorem 1 from a different point of view than Farwig’s method (see Section 3). However, unlike
Farwig’s result, we have not yet proved the existence of the approximation when m ≤ λ < m + 1.
We also give some applications that graphically and numerically illustrate the approximation of
some vector-valued functions (see Section 4).

We now discuss the effects of the regular summability methods to the approximation in
Theorem 1. We first recall some preliminaries on summability. Let A be a matrix A := [ajn]
(j, n ∈ N) and x a sequence x := {xn}. Then, for the A-transformed sequence of {xn}, we
write Ax := {(Ax)j} = ∑∞

n=1 ajnxn, if we obtain convergence for the series, at each j. In
such a case, we write A as a summability (matrix) method. If lim Ax = L, with L ∈ R,
for the sequence x = {xn}, this sequence is said to be A-summable (or A-convergent) to
L (we write A-lim x = L). For a vector-valued functions sequence, this limit can also be
considered. Examine the function sequence {fn} = {( f1,n, f2,n, . . . , fd,n)}. One says {fn} is
(uniformly) A-summable to f = ( f1,n, f2,n, . . . , fd,n) on K if

∞

∑
n=1

ajnfn ⇒ f on K

or, equivalently, for each r = 1, 2, . . . , d,

∞

∑
n=1

ajn fr,n ⇒ fr on K,

which is denoted by fn
A
⇒ f on K. We also write that a matrix summability method A

is regular when A-lim x = L, if lim x = L. By using the well-known Silverman–Toeplitz
result (see, for instance, [18,19]), one can characterize the regularity of a matrix summability
method as follows:

A = [ajn] is regular ⇔



lim
n→∞

ajn = 0 for every j,

lim
j→∞

∞
∑

n=1
ajn = 1,

sup
j∈N

∞
∑

n=1

∣∣ajn
∣∣ < ∞.

(4)

A summability method A = [ajn] is said to be non-negative if ajn ≥ 0 for all
j, n ∈ N. We should note that non-negative regular summability processes are successful in
approximation theory (cfr. [20–26]). Now we apply such methods in approximating by
vector-valued Shepard operators.

From Theorem 1, we deduce that, for each f ∈ C(K,Rd) and λ ≥ m + 1,

Sn,λ(f) ⇒ f on K. (5)

Now, for a fixed non-negative regular summability method A = [ajn], we immediately
check that, for every λ ≥ m + 1,

Sn,λ(f)
A
⇒ f on K,

provided that the transformed operator ∑∞
n=1 ajnSn,λ(f) is well defined for each j. Indeed,

we may write from (1), (4) and (5), for each r = 1, 2, . . . , d,∥∥∥∥∥ ∞

∑
n=1

ajnS̃n,λ( fr)− fr

∥∥∥∥∥ ≤ ∞

∑
n=1

ajn
∥∥S̃n,λ( fr)− fr

∥∥+ ‖ fr‖
∣∣∣∣∣ ∞

∑
n=1

ajn − 1

∣∣∣∣∣→ 0, as j→ ∞,
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since A = [ajn] is non-negative and regular. However, the next modifications give a
motivation for regular summability methods in approximating processes.

Assume that, for each n ∈ N, un : K → Rd and vn : K → K are vector-valued
functions such that

un = (u1,n, u2,n, . . . , ud,n)

and
vn = (v1,n, v2,n, . . . , vm,n)

have bounded components on K. Using the sequences {un} and {vn}, we consider the
following modifications of vector-valued Shepard operators:

S∗n,λ(f; x) =
(
u1,n(x)S̃n,λ( f1; x), . . . , ud,n(x)S̃n,λ( fd; x)

)
(6)

and
S∗∗n,λ(f; x) =

(
S̃n,λ( f1; vn(x)), . . . , S̃n,λ( fd; vn(x))

)
(7)

for x ∈ K, if n ∈ N, λ > 0 and f ∈ C(K,Rd). Introducing the vector-valued test functions

e0 : K→ Rd, e0(x) = 1 = (1, 1, . . . , 1) (8)

and
e1 : K→ K, e1(x) = x = (x1, x2, . . . , xm), (9)

one immediately deduces the following result.

Theorem 2. Assume f ∈ C(K,Rd) and λ ≥ m + 1,:

(i) If un ⇒ e0 on K, then it follows that the sequence {S∗n,λ(f)} is uniformly convergent to f on
K,

(ii) If vn ⇒ e1 on K, then one obtains the sequence {S∗∗n,λ(f)} is uniformly convergent to f on K.

Proof. (i) Let f ∈ C(K,Rd) and λ ≥ m + 1 Then, for each r = 1, 2, . . . , d, we obtain from
(1), (2) and (6) that∣∣ur,n(x)S̃n,λ( fr; x)− fr(x)

∣∣ ≤ |ur,n(x)|
∣∣S̃n,λ( fr; x)− fr(x)

∣∣+ | fr(x)||ur,n(x)− 1|

holds for every x ∈ K and n ∈ N. Since each {ur,n} is bounded and uniformly convergent
to 1 on K, the proof follows from Theorem 1 at once.

(ii) By using a similar idea, for each r = 1, 2, . . . , d, from (7)∣∣S̃n,λ( fr; vn(x))− fr(x)
∣∣ ≤ ∣∣S̃n,λ( fr; vn(x))− fr(vn(x))

∣∣+ | fr(vn(x))− fr(x)|.

Then, we observe that∣∣S̃n,λ( fr; vn(x))− fr(x)
∣∣ ≤ 2ω( fr, δn) + | fr(vn(x))− fr(x)|,

where

δn :=

 O
(

1
n

)
, if λ > m + 1

O
(

log n
n

)
, if λ = m + 1

(10)

(see the proof of Theorem 1 in Section 3). Here, as usual, ω(·, δ), δ > 0, denotes the usual
modulus of continuity defined by

ω(g, δ) = sup
|x−y|m≤δ

|g(x)− g(y)|
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if g is any real-valued bounded function on K. Since each fr is uniformly continuous on K
and vn ⇒ e1 on K, the proof is completed.

Then, the following natural problem arises:

• Can we preserve the approximation in Theorem 2 at “some sense” when un ⇒ e0 or
vn ⇒ e1 fails on K (in the usual sense)?

The next result partially gives an affirmative answer to this problem by using non-
negative regular summability methods.

Theorem 3. Assume A = [ajn] to be a non-negative regular matrix method. Let un
A
⇒ e0 on K. If

f ∈ C
(

K,Rd
)

, for λ ≥ m + 1, then the sequence {S∗n,λ(f)} is uniformly A-summable to f on K.

Proof. Assume f ∈ C
(

K,Rd
)

, x ∈ K, for n ∈ N and λ ≥ m + 1. Then, for each
r = 1, 2, . . . , d, ∣∣∣∣∣ ∞

∑
n=1

ajn
{

ur,n(x)S̃n,λ( fr; x)
}
− fr(x)

∣∣∣∣∣
≤

∞

∑
n=1

ajnur,n(x)
∣∣S̃n,λ( fr; x)− fr(x)

∣∣+ | fr(x)|
∣∣∣∣∣ ∞

∑
n=1

ajnur,n − 1

∣∣∣∣∣
≤ 2Mr

∞

∑
n=1

ajnω( fr, δn) + ‖ fr‖
∣∣∣∣∣ ∞

∑
n=1

ajnur,n − 1

∣∣∣∣∣,
with δn given (10) and Mr, a positive constant, such that |ur,n(x)| ≤ Mr. Since A = [ajn]

is regular, the r.h.s. of the last inequality vanishes as j→ ∞; consequently, S∗n,λ(f)
A
⇒ f on

K.

However, we understand from the discussion in Section 4.3 that the convergence

vn
A
⇒ e1 on K is not sufficient for the A-summability. In such a case, we need strong

summability. If {fn} is a vector-valued functions sequence from K into Rd, then we write
{fn} =

{
( f1,n, . . . , fd,n)

}
is strongly (uniform) A-summable to f = ( f1, . . . , fd) on K if

lim
j→∞

∞

∑
n=1

ajn| fr,n(x)− fr(x)| = 0, uniformly in x ∈ K

holds for each r = 1, 2, . . . , d. We denote this convergence by fn
|A|
⇒ f on K. The above

definition can be easily modified when the range of fn is K ⊂ Rm. We also observe the
following facts on K:

{fn} is uniformly convergent to f

⇒ {fn} is strongly (uniform) A-summable to f

⇒ {fn} is (uniform) A-summable to f,

where fn and f are vector-valued functions whose components are bounded on K. But
it is easily verified that the converse result is not always true. Then we obtain the next
statement.
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Theorem 4. Assume A = [ajn] to be a non-negative regular matrix method. If vn
|A|
⇒ e1 on K,

then, if f ∈ C
(

K,Rd
)

, λ ≥ m + 1, S∗∗n,λ(f)
|A|
⇒ f, which also implies that the sequence {S∗∗n,λ(f)}

is uniformly A-summable to f on K.

Proof. Assume f ∈ C
(

K,Rd
)

. The uniform continuity of fr (r = 1, 2, . . . , d) on K implies
that each component function fr verifies the following (see [27]): ∀ε > 0, one can find a
constant Mε > 0 s.t.

| fr(y)− fr(x)| ≤ Mε|y− x|m + ε (11)

holds true for each x, y ∈ K. Hence, from (6), (10) and (11), we deduce that for each
r = 1, 2, . . . , d,

∞

∑
n=1

ajn
∣∣S̃n,λ( fr; vn(x))− fr(x)

∣∣ ≤ 2
∞

∑
n=1

ajnω( fr, δn)

+
∞

∑
n=1

ajn{Mε|vn(x)− x|m + ε},

which implies

∞

∑
n=1

ajn
∣∣S̃n,λ( fr; vn(x))− fr(x)

∣∣ ≤ 2
∞

∑
n=1

ajnω( fr, δn) + Mε

m

∑
i=1

∞

∑
n=1

ajn|vi,n(x)− xi|

+ε
∞

∑
n=1

ajn.

If j → ∞, since A is regular, we obtain that the r.h.s. of the last inequality vanishes
for any r = 1, 2, . . . , d. This mean that the sequence {S∗∗n,λ(f)} is strongly (uniform) A-
summable to f on K.

3. Auxiliary Results and Demonstration of Theorem 1

To the aim of demonstrating Theorem 1, the next lemmas are needed.

Lemma 1. Let n ∈ N and x ∈ K such that x 6= xk,n. Then, for each λ > 0,(
n

∑
k=0
|x− xk,n|−λ

m

)−1

= O
(

n−λ
)

holds.

Proof. Define the multi-index k∗ = (k∗1, k∗2, . . . , k∗m) ∈ Ωn by

|x− xk∗ ,n|m = min
k∈Ωn
|x− xk,n|m. (12)

Then, we observe that
|x− xk∗ ,n|λm = O

(
n−λ

)
.

Using this and by the inequality(
n

∑
k=0
|x− xk,n|−λ

m

)−1

≤ |x− xk∗ ,n|λm,

the assertion follows.
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Lemma 2. Let m ∈ N and n ≥ 2 be given. Then, for every j = 1, 2, . . . , m and λ ≥ m + 1,
we have

n

∑
k1,k2,...,kj=2

1(
k2

1 + k2
2 + · · ·+ k2

j

)(λ−1)/2
=

{
O(1), if λ > m + 1
O(log n), if λ = m + 1.

Proof. If m = 1 or m = 2, the proof is clear. Let m ≥ 3. Then, the case of j = 1 is also clear.
Assume now that

j ∈ {2, 3, . . . , m− 1}.

Then, we obtain

n

∑
k1,k2,...,kj=2

1(
k2

1 + k2
2 + · · ·+ k2

j

)(λ−1)/2

≤
∫ n

1

∫ n

1
· · ·

∫ n

1︸ ︷︷ ︸
j times

dx1dx2 · · · dxj(
x2

1 + x2
2 + · · ·+ x2

j

)(λ−1)/2

≤
∫ √jn

1

∫ 2π

0

∫ π

0

∫ π

0
· · ·

∫ π

0︸ ︷︷ ︸
(j−2) times

rj−1 sinj−2 θ1 sinj−3 θ2 · · · sin θj−2

rλ−1 dθ1dθ2 · · · dθj−1dr

≤
∫ √jn

1

∫ 2π

0

∫ π

0

∫ π

0
· · ·

∫ π

0︸ ︷︷ ︸
(j−2) times

1
rλ−j dθ1dθ2 · · · dθj−1dr

= O(1),

since λ ≥ m + 1. Finally, assume that j = m. In this case, using a similar idea, we may
write that

n

∑
k1,k2,...,km=2

1(
k2

1 + k2
2 + · · ·+ k2

m
)(λ−1)/2

≤
∫ √mn

1

∫ 2π

0

∫ π

0

∫ π

0
· · ·

∫ π

0︸ ︷︷ ︸
(m−2) times

1
rλ−m dθ1dθ2 · · · dθm−1dr

=

{
O(1), if λ > m + 1
O(log n), if λ = m + 1,

as stated.

We can see that Lemma 2 is also valid if all summations start from 1, which means, for
every j = 1, 2, . . . , m, if λ ≥ m + 1,

n

∑
k1,k2,...,kj=1

1(
k2

1 + k2
2 + · · ·+ k2

j

)(λ−1)/2
=

{
O(1), if λ > m + 1
O(log n), if λ = m + 1

(13)
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holds. Indeed, observe that

n

∑
k1,k2,...,kj=1

1(
k2

1 + k2
2 + · · ·+ k2

j

)(λ−1)/2

=
1

j(λ−1)/2
+

(
j
1

) n

∑
k1=2

1(
k2

1 + j− 1
)(λ−1)/2

+

(
j
2

) n

∑
k1,k2=2

1(
k2

1 + k2
2 + j− 2

)(λ−1)/2

+ · · ·

+

(
j

j− 1

) n

∑
k1,k2,...,kj−1=2

1(
k2

1 + · · ·+ k2
j−1 + 1

)(λ−1)/2

+

(
j
j

) n

∑
k1,k2,...,kj=2

1(
k2

1 + · · ·+ k2
j

)(λ−1)/2

≤ 1
j(λ−1)/2

+
j

∑
t=1

(
j
t

) n

∑
k1,k2,...,kt=2

1(
k2

1 + · · ·+ k2
t
)(λ−1)/2

,

which implies (13).
Then, for any fixed x ∈ K, consider the real-valued function ϕx on the set K by

ϕx(y) := |y− x|m, y ∈ K.

The following lemma will be useful.

Lemma 3. For every λ ≥ m + 1,

S̃n,λ(ϕx; x) ⇒ 0 on K,

where S̃n,λ is given by (2).

Proof. It follows from (2) that

S̃n,λ(ϕx; x) =

n
∑

k=0
|x− xk,n|1−λ

m

n
∑

k=0
|x− xk,n|−λ

m

.

Using the multi-index k∗ = (k∗1, k∗2, . . . , k∗m) ∈ Ωn given by (12), we obtain from
Lemma 1 that

S̃n,λ(ϕx; x) ≤ |x− xk∗ ,n|m + O
(

n−λ
)

∑
k∈Ωn\{k∗}

|x− xk,n|1−λ
m . (14)
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Observe that the multi-index set Ωn\{k∗} contains (n + 1)m − 1 elements. Now, for
i1, i2, . . . , im ∈ {1, 2, . . . , m}, define the following (disjoint) multi-index subsets of Ωn:

Ωn(i1) =
{

k ∈ Ωn : k∗i1 6= ki1 , k∗j = k j for j 6= i1
}

Ωn(i1, i2) =
{

k ∈ Ωn : k∗i1 6= ki1 , k∗i2 6= ki2 , k∗j = k j for j 6= i1, i2
}

...
Ωn(i1, i2, . . . , im−1) =

{
k ∈ Ωn : k∗i1 6= ki1 , k∗i2 6= ki2 , . . . , k∗im−1

6= k∗im−1
, k∗im = kim

}
Ωn(i1, i2, . . . , im−1, im) =

{
k ∈ Ωn : k∗i1 6= ki1 , k∗i2 6= ki2 , . . . , k∗im−1

6= k∗im−1
, k∗im 6= kim

}
.


Since i1, i2, . . . , im ∈ {1, 2, . . . , m}, we have in total

(m
1 ) sets of form Ωn(i1)

(m
2 ) sets of form Ωn(i1, i2) with i1 < i2

...
( m

m−1) sets of form Ωn(i1, i2, . . . , im−1) with i1 < i2 < · · · < im−1

(m
m) sets of form Ωn(i1, i2, . . . , im−1, im) with i1 < i2 < · · · < im.


Also, for each set of such forms,

Ωn(i1) contains n elements

Ωn(i1, i2) contains n2 elements
...
Ωn(i1, i2, . . . , im−1) contains nm−1 elements

Ωn(i1, i2, . . . , im−1, im) contains nm elements.


So, all such sets contain (n + 1)m − 1 elements. We can consider the set Ωn\{k∗} as

the union of all disjoint sets having the above forms, that is,

Ωn\{k∗} =

 m⋃
i1=1

Ωn(i1)

 ∪
 m⋃

i1,i2=1
(i1<i2)

Ωn(i1, i2)



∪ · · · ∪

 ⋃
i1,i2,...,im=1

(i1<i2<···<im)

Ωn(i1, i2, . . . , im)

.
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Then, we may write from (14) that

S̃n,λ(ϕx; x) ≤ |x− xk∗ ,n|m + O
(

n−λ
) m

∑
i1=1

∑
k∈Ωn(i1)

∣∣∣∣xi1 −
ki1
n

∣∣∣∣1−λ

+ O
(

n−λ
) m

∑
i1,i2=1
(i1<i2)

∑
k∈Ωn(i1,i2)

((
xi1 −

ki1
n

)2

+

(
xi2 −

ki2
n

)2
)(1−λ)/2

+ · · ·

+ O
(

n−λ
) m

∑
i1,i2,...,im=1

(i1<i2<···<im)

∑
k∈Ωn(i1,i2,...,im)

|x− xk,n|1−λ
m .

Now we bound the summations on the r.h.s. of the last inequality. We see that

∑
k∈Ωn(i1)

∣∣∣∣xi1 −
ki1
n

∣∣∣∣1−λ

≤ ∑
k∈Ωn(i1)


∣∣∣ki1 − k∗i1

∣∣∣
n

− 1
2n

1−λ

= O
(

1
n1−λ

) n

∑
k1=1

1
kλ−1

1

= O
(

1
n1−λ

)
.

We also obtain

∑
k∈Ωn(i1,i2)

((
xi1 −

ki1
n

)2

+

(
xi2 −

ki2
n

)2
)(1−λ)/2

≤ ∑
k∈Ωn(i1,i2)



∣∣∣ki1 − k∗i1

∣∣∣
n

− 1
2n

2

+


∣∣∣ki2 − k∗i2

∣∣∣
n

− 1
2n

2
(1−λ)/2

≤ O
(

1
n1−λ

) n

∑
k1,k2=1

1(
k2

1 + k2
2
)(λ−1)/2

.

Working similarly, we obtain

∑
k∈Ωn(i1,i2,...,im)

|x− xk,n|1−λ
m = O

(
1

n1−λ

) n

∑
k1,k2,...,km=1

1(
k2

1 + k2
2 + · · ·+ k2

m
)(λ−1)/2

.

Hence, we may write from (14)

S̃n,λ(ϕx; x) = O
(

1
n

)
+ O

(
1
n

) m

∑
j=2

(
m
j

) n

∑
k1,k2,...,kj=1

1(
k2

1 + · · ·+ k2
j

)(λ−1)/2
. (15)

Therefore, using the fact that (13) (see also Lemma 2), we obtain from (15) that

S̃n,λ(ϕx; x) =

 O
(

1
n

)
, if λ > m + 1

O
(

log n
n

)
, if λ = m + 1

(16)

holds true for each n ≥ 2. Now if n→ ∞ on both sides in (16), the proof is completed.

Now we can prove Theorem 1.
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Proof of Theorem 1. Let x ∈ K and f = ( f1, f2, . . . , fd) ∈ C(K,Rd) be fixed. Then, for each
r = 1, 2, . . . , d, we deduce from (2) that

∣∣S̃n,λ( fr; x)− fr(x)
∣∣ = ∣∣∣∣∣∑n

k=0|x− xk,n|−λ
m fr(xk,n)

∑n
k=0|x− xk,n|−λ

m

− fr(x)

∣∣∣∣∣
≤ ∑n

k=0|x− xk,n|−λ
m | fr(xk,n)− fr(x)|

∑n
k=0|x− xk,n|−λ

m

≤ ∑n
k=0|x− xk,n|−λ

m ω
(

fr, |x− xk,n|m
)

∑n
k=0|x− xk,n|−λ

m

.

Hence, for any δ > 0,

∣∣S̃n,λ( fr; x)− fr(x)
∣∣ ≤ ω( fr, δ)

∑n
k=0|x− xk,n|−λ

m

(
1 + |x−xk,n|m

δ

)
∑n

k=0|x− xk,n|−λ
m

= ω( fr, δ)

(
1 +

1
δ
S̃n,λ(ϕx; x)

)
holds for each r = 1, 2, . . . , d. Now taking the supremum over x ∈ K, we obtain that

sup
x∈K

∣∣S̃n,λ( fr; x)− fr(x)
∣∣
d ≤ ω( fr, δ)

(
1 +

1
δ

sup
x∈K

S̃n,λ(ϕx; x)

)

for any δ > 0 and each r = 1, 2, . . . , d. Letting δ = δn := sup
x∈K

S̃n,λ(ϕx; x) given by (10), we

observe that ∥∥S̃n,λ( fr)− fr
∥∥ ≤ 2ω( fr, δn) (17)

for each r = 1, 2, . . . , d. Then, taking the limit as n → ∞ in (17), the proof follows from
Lemma 3 and the modulus of the continuity’s properties.

4. Applications and Special Cases

In this section, we first apply Theorem 1. Secondly, we compute the corresponding
approximation errors. Then, to point out the influence of regular summability methods in
approximation, we consider a modification of vector-valued Shepard operators.

4.1. An Application of Theorem 1

As a first application, take d = 3 and m = 2. Now, consider the functions f and g on
K = [0, 1]× [0, 1] given by

f(x) = ( f1(x), f2(x), f3(x)),

g(x) = (g1(x), g2(x), g3(x)),

where, for x = (x, y) ∈ K,

f1(x) = 4 + (3 + cos(2πy)) sin(2πx)
f2(x) = 4 + (3 + cos(2πy)) cos(2πx)
f3(x) = 4 + sin(2πy)

 (18)

and
g1(x) = 8 + (3 + cos(2πy)) cos(2πx)
g2(x) = 3 + sin(2πy)
g3(x) = 4 + (3 + cos(2πy)) sin(2πx).

 (19)
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Then, by Theorem 1, we have, if λ ≥ 3,

Sn,λ(f) ⇒ f on K (20)

and
Sn,λ(g) ⇒ g on K. (21)

If we consider f and g as three-dimensional surfaces parametrized by x and y, we
can produce their three-dimensional parametric plots by using the Mathematica program.
Similarly, we can also produce the corresponding approximations in (20) and (21) by vector-
valued Shepard operators. Such parametric plots are shown in Figure 1 for the values
n = 6, 11, 17 and λ = 5.

(a) n = 6 and λ = 5 (b) n = 11 and λ = 5

(c) n = 17 and λ = 5 (d) f (in red) and g (in green)

Figure 1. Parametric plots of Sn,λ(f) (in red) and Sn,λ(g) (in green) for the values n = 6, 11, 17 and
λ = 5, where f and g are functions given, respectively, by (18) and (19).

4.2. Approximation Errors in Theorem 1

To numerically support the above application, we now compute the componentwise
errors as follows. If λ = 5, examine the corresponding pointwise errors e[r]j given by

e[r]j :=
∣∣(S̃n,5( fr)

)
− ( fr)

∣∣, r = 1, 2, 3,

at the ne = 30× 30 points of a regular mesh of K for n = 20, 50, 80. Here, we consider the
function f = ( f1, f2, f3) defined by (18). Observe that, for each r = 1, 2, 3, e[r]j represents the
componentwise approximation errors at the ne = 30× 30 points. In Tables 1–3, we evaluate
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the (componentwise) maximum e[r]max, mean e[r]mean and mean squared e[r]MS errors defined
respectively by

e[r]max := max
1≤j≤ne

e[r]j , e[r]mean :=
1
ne

ne

∑
j=1

e[r]j and e[r]MS :=

√√√√ 1
ne

ne

∑
j=1

(
e[r]j

)2

for r = 1, 2, 3 and n = 20, 50, 80 (see [6] for such pointwise errors).

Table 1. Approximation errors in the first component.

n e[1]max e[1]mean e[1]MS

20 0.35358 0.10099 0.13239
50 0.12529 0.04051 0.04970
80 0.08197 0.02478 0.03056

Table 2. Approximation errors in the second component.

n e[2]max e[2]mean e[2]MS

20 0.24870 0.09654 0.11228
50 0.13200 0.03767 0.04773
80 0.08747 0.02391 0.03031

Table 3. Approximation errors in the third component.

n e[3]max e[3]mean e[3]MS

20 0.09299 0.03291 0.04278
50 0.03544 0.01313 0.01598
80 0.02172 0.00799 0.00980

4.3. Effects of Regular Summability Methods

In this subsection, we give some applications of Theorems 3 and 4.
Firstly, in the modification (6), by using the test function e0 in (8), define the vector-

valued functions un : K→ Rd by

un(x) :=
{

2e0(x), for n even
0, for n odd

and also examine the Cesàro method C1 = [cjn] given by

cjn =

{
1
j , if n = 1, 2, . . . , j
0, otherwise.

Consequently, we easily observe that un
C1
⇒ e0 on K. Furthermore, for each

f ∈ C
(

K,Rd
)

, if r = 1, 2, . . . , d, we obtain

∞

∑
n=1

cjnur,nS̃n,λ( fr) =
1
j

j

∑
n=1

ur,nS̃n,λ( fr)

=
2
j

[j/2]

∑
n=1

S̃2n,λ( fr),
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where [·] denotes the floor function. Then, from the regularity and Theorem 1, the r.h.s. of

the last inequality converges to fr (for each r = 1, 2, . . . , d) as j → ∞; hence, S∗n,λ(f)
C1
⇒ f

on K.
Secondly, in the modification (7) by using the test function e1 in (9), we consider the

following function sequences:

v′n(x) :=


2e1(x), for x ∈ [0, 1

2 ]
m and n even

0, for x ∈ [0, 1
2 ]

m and n odd
e1(x), otherwise

and

v′′n(x) :=
{

0, for n = k2 (k = 1, 2, . . . )
e1(x), otherwise.

Using again the Cesàro method, we obtain v′n
C1
⇒ e1 on K and v′′n

|C1|
⇒ e1 on K. Indeed,

for the sequence {v′n}, if x /∈[0, 1
2 ]

m, it is clear; and also if x ∈ [0, 1
2 ]

m, then

∞

∑
n=1

cjnv′n(x) =
[j/2]2x

j
⇒ e1(x) = x.

On the other hand, for the sequence {v′′n}, we immediately see that, for every x ∈ K,

∞

∑
n=1

cjn
∣∣v′′r,n(x)− xr

∣∣ = 1
j

j

∑
n=1 (n=k2)

xr ≤
1√

j
→ 0 as j→ ∞,

which gives v′′n
|C1|
⇒ e1 on K.

Now, in (7), we take the sequences {v′n} and {v′′n} instead of {vn}, respectively.
If S∗∗n,λ is constructed with the sequence {v′n}, then we observe that the approximation

S∗∗n,λ(f)
C1
⇒ f on K does not hold for some f ∈ C

(
K,Rd

)
. For example, considering the

function e2(x) =
(

x2
1, x2

2, . . . , x2
d
)
, we obtain, for each x ∈ [0, 1

2 ]
m, that

∞

∑
n=1

cjnS∗∗n,λ(e2; x) =
1
j

j

∑
n=1

Sn,λ(e2; vn(x))

=
1
j

[j/2]

∑
n=1

S2n,λ(e2; 2x)

→ e2(2x)
2

as j→ ∞.

Since e2(2x)
2 =

(
2x2

1, 2x2
2, . . . , 2x2

d
)
6= e2(x) for x ∈ [0, 1

2 ]
m, one can see that

S∗∗n,λ(e2; x)
C19 e2(x) for each x ∈ [0, 1

2 ]
m.

If S∗∗n,λ is constructed with the sequence {v′′n}, then for each f ∈ C
(

K,Rd
)

, if x ∈ K,

∞

∑
n=1

cjn
∣∣S̃n,λ( fr; v′′n(x))− fr(x)

∣∣ = 1
j

j

∑
n=1 (n=k2)

| fr(x)|+
1
j

j

∑
n=1 (n 6=k2)

∣∣S̃n,λ( fr; x)− fr(x)
∣∣

≤ | fr(x)|√
j

+
1
j

j

∑
n=1

∣∣S̃n,λ( fr; x)− fr(x)
∣∣
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holds for each r = 1, 2, . . . , d. Then, from the regularity of C1 and Theorem 1, the r.h.s.
of the above inequality uniformly vanishes as j → ∞. Hence, the sequence {S∗∗n,λ(f)} is

strongly (uniform) C1-summable to f on K for each f ∈ C
(

K,Rd
)

.

5. Concluding Remarks

In this paper, we established the methodology of approximating continuous vector-
valued functions on the unit hypercube using Shepard operators. In order to compute the
approximation error, we employed some known error metrics, including maximum error,
mean error, and mean squared error. Furthermore, we demonstrated both the theoretical
and practical improvements of this approximation by using some techniques from regular
summability methods.

In future work, we plan to consider novel vector-valued Shepard processes for ap-
proximating functions not necessarily continuous (i.e., integrable functions), the famous
Kantorovich operators, interesting in applications for image processing and sampling
theory (see [28–30]).
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