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Abstract: In this contribution, we report the results for the characterization of the BB zircon, a newly
developed zircon reference material from Sri Lanka, via secondary ion mass spectrometry (SIMS) and
multiple-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS). The focus of this work
was to further investigate the applicability of the BB zircon as a reference material for micro-beam
analysis, including Li, O, and Hf isotopes. The SIMS analyses reveal that BB zircon is characterized by
significant localized variations in Li concentration and isotopic ratio, which makes it unsuitable as a lithium
isotope reference material. The SIMS-determined δ18O values are 13.81%� ± 0.39%� (2SD, BB16) and
13.61%� ± 0.40%� (2SD, BB40), which, combined with previous studies, indicates that there is no evidence
of conspicuous O isotope heterogeneity within individual BB zircon megacrysts. The mean 176Hf/177Hf
ratio of BB16 determined by solution MC-ICP-MS is 0.281669 ± 0.000012 (2SD, n = 29) indistinguishable
from results achieved by laser ablation (LA)-MC-ICP-MS. Based on the SIMS and MC-ICP-MS data, BB
zircon is proposed as a reference material for the O isotope and Hf isotope determination.

Keywords: zircon; reference material; BB; Li isotopes; Hf isotopes; O isotopes; SIMS; MC-ICP-MS

1. Introduction

Micro-beam analytical techniques, including secondary ion mass spectrometry (SIMS) and laser
ablation multiple-collector inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS), have been
increasingly used by many laboratories world-wide not only for U–Pb geochronology [1–3] but also for
isotope geochemistry [4–8]. For instance, Li isotopes measured by SIMS are recognized as an important
tracer in weathering processes in the crust and crustal recycling into the mantle [7,9], SIMS oxygen isotope
data are applied to constrain petrogenetic conditions/mechanisms, magma sources, and any possible
fluid-wall rock interactions [4,6,10], and hafnium isotopes analyzed via LA-MC-ICP-MS are considered
as important tracers for magmatic processes and the evolution of global reservoirs [5,11]. Due to the
inherent property of providing multi-isotopic information (e.g., U–Pb–Li–O–Hf isotope systems [10,12–14]),
zircon constitutes one of the most important accessory minerals in geosciences. Thus, micro-beam isotopic
analyses of zircon have increased dramatically with applications in tracing magma evolution, metamorphic
reaction, and sedimentary process [1,5,7]. However, a matrix-matched reference material is necessary for
accurate micro-beam isotope measurements to correct for instrument-induced mass bias and to assess
external reproducibility. A number of natural zircons were identified as reference materials by previous
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studies, like SL7 [15], CZ3 [16], SL13 [17], 91500 [18], Temora [19], BR266 [20], GJ-1 [21,22], Mud Tank [23],
M257 [24], Plešovice [25], Sri Lanka [26], OG1/OGC [27], Penglai [28], Qinghu [29], OD-3 [30], M127 [31],
BB [32,33], LGC-1 [34], GZ7/GZ8 [35], LKZ-1 [36], GHR1 [37], and SA01 [38]. However, most of them
are just used as a reference material for U–Pb geochronology, and the homogeneity of Li, O, and Hf
isotopic compositions was not elaborately evaluated [15,17,26,30,34,35]. Additionally, the availability of
most of the natural zircon standards is limited [17,24,26,31,34–36]. Among them, BB zircon, a newly
developed zircon reference material from Sri Lanka, is potentially useful because of its abundance in
quantity (~300g) [33]. Previous studies have identified BB zircon as a reference material suitable for
LA-ICP-MS U–Pb geochronology via LA-(MC)-ICP-MS and (chemical abrasion) isotope dilution thermal
ionization mass spectrometry ((CA)-ID-TIMS), with O and Hf isotopes initially measured using SIMS and
LA-(MC)-ICP-MS, respectively [32,33]. However, Li isotopes, which have great potential for revealing the
incorporation of surface-derived materials into crustal magmas, have not been studied thus far. In addition,
further assessment of BB zircon is required to investigate the suitability of the specimen as a reference
material for calibrating in situ analyses of O and Hf isotopes via SIMS or MC-ICP-MS.

For this purpose, a further comprehensive study of the Li, O, and Hf isotopic characteristics of BB
zircons is reported. We investigate its Li isotopic ratios using SIMS for the first time. In addition to
extensive testing of Hf isotope composition homogeneity of BB zircon by LA-MC-ICP-MS, we determine
the mean Hf isotopic ratio using the solution MC-ICP-MS method for the reliable recommended value.
Furthermore, we assess its O isotope homogeneity using SIMS.

2. Sample Descriptions

Zircon megacrysts BB were collected from a placer deposit of the Ratnapura gemstone field,
located in the south-western region of the Sri Lanka Highland Complex. Approximately 300 g of BB
zircons, comprising some eighty grains, were acquired and numbered. Cathodoluminescence (CL)
images reveal that BB zircons have no zoning or fine oscillatory zoning (Figure 1). Santos et al. [33]
selected several individual crystals (e.g., BB9, BB12, BB17, BB25, and BB39) to conduct detailed U–Pb
age, O, and Hf isotopic determinations via TIMS, SIMS, and LA-(MC)-ICP-MS. Additionally, U–Pb
LA-MC-ICP-MS and (CA)-TIMS data of five BB zircons (BB38, BB39, BB40, BB41, and BB42) were
reported by Lana et al. [32].
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In this study, Li and O isotopes of two zircon megacrysts BB16 and BB40 were measured by SIMS,
and Hf isotopic measurements were carried out using LA-MC-ICP-MS and solution MC-ICP-MS.

3. Analytical Methods

For the micro-beam analyses, one large BB40 zircon shard (~6 mm in diameter) and six BB16 zircon
shards (five small (0.5–1 mm in diameter) and one large (~3 mm in diameter)) were placed in epoxy
mounts together with Plešovice, Penglai, and Qinghu zircon reference materials. The shards were
ground away and polished to expose their centers for analysis. In this work, the uncertainties of
single analysis are stated as 2 standard errors (2SE), while the uncertainty for the grand mean value is
reported as 2 standard deviations (2SD). The external reproducibility of reference materials was not
propagated into the uncertainties of single measurements or final grand mean values.

3.1. SIMS Li Isotope Analysis

The Cameca IMS 1280HR ion microprobe was used for the Li isotopic measurements of BB
zircons at the Institute of Geology and Geophysics, Chinese Academy of Sciences (IGGCAS) in Beijing,
following the detailed procedures described by Li et al. [39]. A 20× 30µm elliptical spot size was used to
traverse BB zircon shards. 6Li and 7Li were simultaneously detected. One spot measurement comprised
60 cycles with a total measurement time of about 15 min, including pre-sputtering of 30 s, secondary
beam centering of 120 s, and collection for Li isotopic signals of 720 s. Measurements of Li isotopic
ratios and concentrations were corrected according to the recommended values of δ7Li = 2.1%� ± 1.0%�

(2SD) and [Li] = 0.86 ± 0.18 µg g−1 for the M257 zircon standard.

3.2. SIMS O Isotope Analysis

The oxygen isotopic compositions of BB zircon were measured on the same Cameca IMS 1280HR
ion microprobe at the IGGCAS in Beijing, with the similar analytical procedures reported by Li et
al. [28] and Tang et al. [40]. The Gaussian-focused Cs+ primary ion beam was used at 10 kv to sputter
oxygen ion from BB zircon, achieving an intensity of ~1.5 nA with a spot size of about 20 µm on
the sample surface. To compensate for sample charging, a normal-incidence electron gun was used.
Moreover, the nuclear magnetic resonance (NMR) controller was used to stabilize the magnetic field.
During the analysis, 16O and 18O ions were collected synchronously. The attained 18O/16O ratios were
normalized to Vienna Standard Mean Ocean Water (V-SMOW, 18O/16O = 0.0020052) [41]. One spot
measurement involved pre-sputtering of 120 s, secondary beam centering of 120 s, and collection of
oxygen isotopic signals of 60 s, with a total analytical time of about 3 min. The Penglai zircon was
used as the reference material with a recommended δ18O VSMOW value of 5.31%� ± 0.10%� (2SD) [28].
The measurements of secondary zircon reference material Qinghu gave a grand mean δ18O value of
5.37%� ± 0.43%� (2SD, n = 27), identical to the recommended value reported in Li et al. [29]

3.3. LA-MC-ICP-MS Hf Isotope Analysis

Micro-beam Hf isotopic analyses for BB16 zircon were conducted on a Thermo Scientific Fisher
Neptune Plus MC-ICP-MS coupled with a Coherent Geolas Pro 193 nm laser ablation system at the
IGGCAS in Beijing (Table 1), which were similar with those reported by Wu et al. [42] and Huang et
al. [43]. The LA system was operated using a beam size of 60 µm for BB and SA01 zircons and 44 µm for
Mud Tank zircon with a repetition rate of 6 Hz and an energy density of ~4.5 J cm−2. Helium was used
as the carrier gas with a flow rate of 640 mL min−1. Aiming to achieving higher sensitivity, additional
nitrogen was added to the carrier gas with a flow rate of 4 mL min−1. One spot measurement comprised
one block of 200 cycles with an integration time of 0.131 s. The Hf isotopic compositions of the gas blank
were not measured because of the extremely low Hf signal. Correction for the isobaric interference
of 176Lu on 176Hf was performed by measuring the intensity of the interference-free 175Lu isotope
(176Lu/175Lu = 0.02655) assumingβLu =βYb. The mean 173Yb/172Yb ratio for the individual spot analysis
was used to calculate the fractionation coefficient (βYb), and the contribution of 176Yb to 176Hf was
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corrected by applying ratios of 176Yb/172Yb = 0.588673 and 173Yb/172Yb = 0.73925. Instrumental mass
bias was corrected based on the normalization to 179Hf/177Hf = 0.7325 using the exponential law [42].
Correction for molecular interferences (e.g., 160Gd16O) was not made due to low light to middle
rare earth element contents in zircon. Zircon reference materials Mud Tank and SA01 analyzed
during the same session gave grand mean 176Hf/177Hf values of 0.282507 ± 0.000032 (2SD, n = 15) and
0.282287 ± 0.000020 (2SD, n = 15), consistent with the reported results [23,38].

Table 1. Typical multiple-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS)
instrument parameters for Hf isotopic composition analysis of BB zircon.

MC-ICP-MS Cup Configuration

Cup L4 L3 L2 L1 C H1 H2 H3 H4

Solution 173Yb 175Lu 176(Lu + Hf + Yb) 177Hf 178Hf 179Hf 180(Hf + Ta + W) 181Ta 183W

Laser 172Yb 173Yb 175Lu 176Hf 177Hf 178Hf 179Hf 180Hf 182W

Instrumentation

Mass spectrometry Thermo Fisher Neptune Plus (MC-ICP-MS)

RF forward power ~1200 W for Laser; ~1100 W for Solution
Interface cones Nickel Standard Sampler cones and “H” Skimmer cones
Sampling mode 1 block of 200 cycles for Laser; 9 blocks of 10 cycles for Solution

Integration times 0.131 s for Laser; 4.191 s for Solution
Background/baseline No baseline was collected
Carrier gas (L/min) ~0.8 for Laser; ~1 for Solution

Laser ablation system Geolas Pro

Fluence ~4.5 J/cm2

Spot size 60 µm for BB16 and SA01; 44 µm for Mud Tank
Ablation duration 26 s

Sampling mode/Repetition rate Static spot ablation/6 Hz
Sample preparation Conventional mineral separation, 1 inch resin mount

Imaging Transmissive and reflected light imaging

Data processing

Reference material information Mud Tank and SA01 used as the quality control standard

Data processing package used For Hf isotope, an in-house Microsoft Excel macro written in VBA (Visual Basic for Applications)
was used for mass fraction correction, interference correction, and uncertainty propagation

3.4. Solution MC-ICP-MS Hf Isotope Analysis

Seven small shards (0.41–1.36 mg each) of BB16 zircon, without any pretreatment, were digested in
a mixture of concentrated HNO3 and HF using stainless steel jacketed Teflon bombs that were placed
in an oven at 220 ◦C for three days. After evaporation, the samples were then re-dissolved in 3 mol L−1

HCl. Separation and purification of the attained solutions for Lu and Hf were carried out by means of ion
exchange columns using Ln Spec resin. Solution Hf isotope measurements were performed on a Thermo
Fisher Scientific Neptune Plus MC-ICP-MS system at the IGGCAS in Beijing. Details of the procedure have
been reported by Yang et al. [44]. Instrumental mass bias was corrected by the measured 179Hf/177Hf and its
natural ratio of 0.7325. The measured 173Yb and 175Lu values were used to correct the possible interferences
of 176Yb and 176Lu on 176Hf, utilizing 176Lu/175Lu = 0.02655 and 176Yb/173Yb = 0.79631 [45]. During the
solution Hf isotopic composition analysis, the Alfa Hf solution (JMC14374) was measured and yielded
176Hf/177Hf values of 0.282193 ± 0.000007 (2SD, n = 6) during the first session and 0.282185 ± 0.000005 (2SD,
n = 6) during the second session, which are consistent with reported values in previous studies [42].
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4. Results and Discussion

4.1. SIMS Li Isotope Composition

Twenty-one analyses were conducted on four small and one large BB16 zircon shards. The four
small BB16 zircon shards have consistent δ7Li values within analytical uncertainty and give a grand
mean of 2.3 ± 2.0%� (2SD). The large shard has a large δ7Li value range from −7.5%� to −0.6%�. The 7Li+

count rates of BB16 zircon are low and highly variable (579 to 4874 cps/nA), and the calculated Li
concentrations range from 0.10 to 0.83 µg g−1 (Table 2 and Table S1; Figure 2a). The Li concentrations
and isotopic compositions of BB40 zircon were measured along four traverses, with each traverse
consisting of 19–20 analytical spots (Table 2; Figure 2b). The distance between two spots along the
traverse was roughly equal, and visible cracks were avoided. Traverses 1–2 are perpendicular to
traverses 3–4. The profile of Li isotopic compositions and concentrations, as revealed by traverses 1 and
2, are quite similar, namely nearly flat for the first nine analytical spots of each traverses, then rise for
the subsequent 4–5 analytical spots, and finally descend for the last 5–6 analytical spots (Figure 3a,b).
Although traverses 3 and 4 are parallel to each other, they give distinct trends in terms of Li isotopic
compositions and concentrations. Traverse 3 shows a nearly monotonic decrease from −1.3%� to
−4.9%� and from 1.10 µg g−1 to 0.78 µg g−1 for the δ7Li values and Li concentrations, respectively.
The δ7Li values along traverse 4 rise dramatically from −7.1%� to −0.6%� and then descend to −4.4%�,
but the corresponding Li concentrations are nearly constant at about 1.0 µg g−1.

There are many factors that can affect the distribution of Li in zircons. Gao et al. [14] invoked
the effect of diffusion to explain the phenomenon that Li contents and Li isotopic ratios are largely
variable in zircon rims but homogeneous in zircon cores, which are distinct from change trends of
Li contents and isotopic ratios in BB zircons. Sliwinski et al. [46] suggested that lithium in zircon
is primarily sequestered within inclusions. However, transmitted light images show that no visible
inclusion was detected in BB zircons. It is unclear which factors control the systemic change in Li
isotopic compositions and concentrations of BB40 zircon at present. The heterogeneity of Li isotopic
compositions and concentrations revealed by this study indicates that BB zircon is unusable as a
reference material for micro-beam Li isotopic analysis. Several zircon reference materials used in U–Pb
geochronology, including 91500, BR266, TEMORA 2, SA01, Plešovice, Penglai, and Qinghu, have been
checked for the homogeneity of Li isotopic compositions, and all of them were shown to have large
ranges in δ7Li values and Li concentrations [14,38,39], which were ascribed to fast diffusion velocity of
Li ion in zircon [14]. At present, only M257 and M127 have been documented to have homogenous Li
isotopic compositions and concentrations [31,39]. However, these two zircon reference materials are
too small in quantity to be widely used. Accordingly, it is still imperative to find more zircon reference
materials with homogenous Li isotopic compositions.
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Table 2. Summary of Li isotopic data by secondary ion mass spectrometry (SIMS) for BB zircons.

Sample Analysis Numbers
δ7Li (%�) a 7Li+ Count Rate (cps/nA) Li (µg g−1)

Mean 2SD Max Min Mean Max Min Mean Max Min

BB16

Small Shard1 5 2.6 0.6 3.0 2.2 4705 4874 4577 0.80 0.83 0.78
Small Shard2 4 1.6 2.7 3.0 −0.1 930 1213 703 0.16 0.21 0.12
Small Shard3 3 2.8 0.6 3.1 2.4 2785 3430 2179 0.47 0.58 0.37
Small Shard4 3 2.3 2.2 3.7 1.1 3585 4369 2438 0.61 0.74 0.41
Large Shard 6 −5.2 4.4 −0.6 −7.5 755 977 579 0.13 0.17 0.10

BB40

Traverse 1 19 −4.4 4.6 0 −8.5 5658 7311 3423 0.96 1.2 0.58
Traverse 2 19 −4.9 4.5 −1 −10.2 5810 8068 3357 1.03 1.4 0.59
Traverse 3 19 −3 2.2 −1.3 −4.9 5396 6460 4584 0.92 1.1 0.78
Traverse 4 20 −3.2 3.2 −0.6 −7.1 5718 7115 5227 1.01 1.3 0.92

a: δ7Li (%�) = δ7Lim − IMF, δ7Lim = [(7Li/6Li)m/12.039) − 1] × 1000; IMF = δ7Lim(M257) − 2.1.
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4.2. SIMS O Isotope Composition

Profile analyses, comprising forty-six oxygen isotopic measurements, were conducted across
six BB16 zircon shards. The δ18O values determined on the six shards (13.81%� ± 0.27%� (2SD),
13.72%� ± 0.33%� (2SD), 13.84%� ± 0.42%� (2SD), 13.83%� ± 0.52%� (2SD), 13.85%� ± 0.32%� (2SD),
and 13.81%� ± 0.38%� (2SD)) are consistent within analytical uncertainty and form a Gaussian
distribution with a grand mean of 13.81%� ± 0.39%� (2SD, n = 46; Figure 4). Forty δ18O values obtained
from two profiles across the BB40 glass shard range from 13.28%� to 13.96%� and form a Gaussian
distribution with a grand mean of 13.61%� ± 0.40%� (2SD, n = 40; Figure 3c). No systematic trend is
identified along the length of the profile.
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before being used as oxygen reference materials. Details of SIMS oxygen isotope data are shown in
Table S2.

Table 3. Summary of O isotope ratios by SIMS for BB zircons.

Reference Material Number of Analysis δ18O (%�) References

BB16 46 13.81 ± 0.39%� (2SD) This study
BB40 40 13.61 ± 0.40%� (2SD) This study
BB9 31 13.50 ± 0.56%� (2SD) Santos et al. [33]
BB12 29 13.43 ± 0.32%� (2SD) Santos et al. [33]
BB25 19 12.74 ± 0.34%� (2SD) Santos et al. [33]
BB39 30 12.83 ± 0.20%� (2SD) Santos et al. [33]
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4.3. Solution and LA-MC-ICP-MS Hf Isotope Data

A total of eighty-four Hf isotope measurements by LA-MC-ICP-MS were undertaken to investigate
the homogeneity of Hf isotopes on six BB16 zircon shards (Table 4). They show very low 176Yb/177Hf
ratios between 0.000603 to 0.002679. There is no visible correlation between the measured 176Hf/177Hf
and 176Yb/177Hf ratios (Figure 6), suggesting an accurate correction of isobaric interferences of 176Yb
on 176Hf. Fourteen Lu–Hf isotopic analyses on BB16 zircon shard1 were conducted, and the measured
176Hf⁄177Hf values range from 0.281650 ± 0.000015 (2SE) to 0.281705 ± 0.000017 (2SE), with a grand
mean of 0.281673 ± 0.000025 (2SD, n = 14). Likewise, 14 random Lu–Hf isotopic measurements were
carried out on BB16 zircon shard 2, 3, 4, 5, and 6, respectively, and the results are listed in Table 4.
As shown in Figure 7b,c, all the eighty-four measured 176Hf/177Hf ratios form a Gaussian distribution
and give a grand mean of 0.281672 ± 0.000025 (2SD; six shards).
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Although the LA-MC-ICP-MS measurements have documented the homogeneity of Hf isotopic
compositions, it is notable that no solution Hf isotope analysis has been carried out in previous
studies. In this study, seven aliquots of BB16 zircons were dissolved for the chemical purification
of Hf. Results of solution Hf isotope analyses by MC-ICP-MS are listed in Table 4. Twenty-nine
MC-ICP-MS measurements were conducted on the seven aliquots of purified Hf solution in two
sessions, which resulted in 176Hf/177Hf values of 0.281659 ± 0.000010 (2SE) to 0.281684 ± 0.000008
(2SE). In session 1, the measured 176Hf/177Hf values form a grand mean of 0.281670 ± 0.000012 (2SD,
n = 14). Session 2 comprised fifteen measurements on the same seven aliquots of Session 1 and
achieved a grand mean 176Hf/177Hf ratio of 0.281669 ± 0.000012 (2SD, n = 15). Overall, the grand
mean for all twenty-nine solution MC-ICP-MS measurements is 0.281669 ± 0.000012 (2SD, n = 29;
Figure 7a). The obtained 176Hf/177Hf isotopic ratios in the two sessions are identical within analytical
uncertainty. Therefore, the mean 176Hf/177Hf ratio of 0.281669 ± 0.000012 (2SD) determined by solution
MC-ICP-MS measurements is taken to be the best estimate of the Hf isotope compositions of BB zircon.
Complete data are given in Table S3.

The results of LA-MC-ICP-MS analyses are consistent with the value of the solution MC-ICPMS
results within analytical uncertainty, and indistinguishable within uncertainty from the average value
of 0.281676 ± 0.000009 (2SD, n = 16) reported by Santos et al. [33]. Therefore, the BB16 zircon shards are
fairly homogeneous in Hf isotopes at the 60 × 60 µm sampling size and appear to lack any significant
intra- and inter-shard variations. For individual analyses, see Table S3. Previous studies have also
carried out many LA-MC-ICP-MS Hf isotopic measurements on other BB zircon megacrysts, and they
also yielded very low 176Yb/177Hf ratios and identical 176Hf/177Hf ratios of 0.281668 ± 0.000029 (2SD)
to 0.281684 ± 0.000016 (2SD) [33]. This signifies that all the BB zircon megacrysts have comparable
Hf isotopic compositions. Compared to other widely-used zircon reference materials (Figure 8), BB
zircons have relatively low 176Yb/177Hf ratios, and thus, they can be used as a reference material to
adjust for inter-laboratory bias of the measured 176Hf/177Hf ratios, as suggested by Fisher et al. [47].
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Table 4. Summary of Hf isotope data for BB zircons in this work and Santos et al. [33].

Sample No. Method Analysis
Numbers

176Yb/177Hf 2SD 176Lu/177Hf 2SD 176Hf/177Hf 2SD

This Work

BB16@session1 Solution 14 - - - - 0.281670 0.000012
BB16@session2 Solution 15 0.281669 0.000012
BB16@shard1 LA 14 0.00121 0.00006 0.000044 0.000001 0.281673 0.000025
BB16@shard2 LA 14 0.00178 0.00117 0.000066 0.000043 0.281677 0.000027
BB16@shard3 LA 14 0.00166 0.00130 0.000060 0.000046 0.281672 0.000021
BB16@shard4 LA 14 0.00119 0.00023 0.000044 0.000008 0.281669 0.000016
BB16@shard5 LA 14 0.00097 0.00039 0.000036 0.000016 0.281669 0.000023
BB16@shard6 LA 14 0.00126 0.00013 0.000048 0.000005 0.281674 0.000031

Santos et al.

BB1 LA 7 0.000002 0.00003 0.281670 0.000027
BB2 LA 13 0.000009 0.00015 0.281670 0.000033
BB3 LA 20 0.000004 0.00006 0.281669 0.000023
BB4 LA 5 0.000003 0.00005 0.281684 0.000016
BB5 LA 16 0.000004 0.00006 0.281669 0.000018
BB6 LA 5 0.000002 0.00004 0.281668 0.000029
BB7 LA 7 0.000002 0.00004 0.281678 0.000023
BB9 LA 20 0.000004 0.00007 0.281671 0.000012

BB10 LA 13 0.000010 0.00016 0.281677 0.000014
BB11 LA 12 0.000006 0.00010 0.281676 0.000008
BB12 LA 15 0.000009 0.00015 0.281677 0.000011
BB13 LA 12 0.000003 0.00004 0.281675 0.000009
BB14 LA 9 0.000003 0.00005 0.281678 0.000010
BB16 LA 16 0.000003 0.00005 0.281676 0.000009
BB17 LA 11 0.000003 0.00005 0.281677 0.000006
BB18 LA 16 0.000007 0.00012 0.281675 0.000010
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5. Conclusions

Combining our results with the earlier study by Santos et al. [33] indicates that no systematic
dispersion of O isotopic compositions within single zircon megacrysts is detectable at the analytical
precision of the SIMS analyses (Figures 3c and 4). However, detectable variations have been revealed
among different zircon megacrysts, as shown in Table 3 and Figure 5. We strongly suggest that each
BB zircon needs to be independently assessed for O isotope compositions before it can be used as a
reference material.

Individual BB zircons show significant heterogeneity of Li isotopic compositions and
concentrations, and thus, BB zircon cannot be used as a reference material for micro-beam Li
isotopic determinations.

Beyond providing a detailed characterization via SIMS, this study conducts the testing of Hf
isotope composition homogeneity of BB16 zircon by solution MC-ICP-MS. The result clearly indicates
that the recommended 176Hf/177Hf value is 0.281669 ± 0.000012 (2SD), which is in good agreement
with the statistical mean of LA-MC-ICP-MS analysis in this work and previous work by Santos et
al. [33]. The O isotopic compositions of BB16 zircon were documented to be homogenous by SIMS
analyses. Therefore, we propose that BB16 zircon is a suitable reference material for in situ Hf and O
isotopic measurements of zircon.
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