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Abstract: Thalhammerite, Pd9Ag2Bi2S4, is a new sulphide discovered in galena-pyrite-chalcopyrite
and millerite-bornite-chalcopyrite vein-disseminated ores from the Komsomolsky mine of the Talnakh
and Oktyabrsk deposits, Noril’sk region, Russia. It forms tiny inclusions (from a few µm up to about
40–50 µm) intergrown in galena, chalcopyrite, and also in bornite. Thalhammerite is brittle and has
a metallic lustre. In plane-polarized light, thalhammerite is light yellow with weak bireflectance,
weak pleochroism, in shades of slightly yellowish brown and weak anisotropy; it exhibits no internal
reflections. Reflectance values of thalhammerite in air (R1, R2 in %) are: 41.9/43.0 at 470 nm, 43.9/45.1
at 546 nm, 44.9/46.1 at 589 nm, and 46.3/47.5 at 650 nm. Three spot analyses of thalhammerite give
an average composition: Pd 52.61, Bi 22.21, Pb 3.92, Ag 14.37, S 7.69, and Se 0.10, total 100.90 wt %,
corresponding to the empirical formula Pd8.46Ag2.28(Bi1.82Pb0.32)Σ2.14(S4.10Se0.02)Σ4.12 based on 17
atoms; the average of five analyses on synthetic thalhammerite is: Pd 55.10, Bi 24.99, Ag 12.75, and
S 7.46, total 100.30 wt %, corresponding to Pd8.91Ag2.03Bi2.06S4.00. The density, calculated on the
basis of the empirical formula, is 9.72 g/cm3. The mineral is tetragonal, space group I4/mmm, with
a 8.0266(2), c 9.1531(2) Å, V 589.70(2) Å3 and Z = 2. The crystal structure was solved and refined
from the single-crystal X-ray-diffraction data of synthetic Pd9Ag2Bi2S4. Thalhammerite has no exact
structural analogues known in the mineral system; chemically, it is close to coldwellite (Pd3Ag2S)
and kravtsovite (PdAg2S). The strongest lines in the X-ray powder diffraction pattern of synthetic
thalhammerite [d in Å (I) (hkl)] are: 3.3428(24)(211), 2.8393(46)(220), 2.5685(21)(301), 2.4122(100)(222),
2.3245(61)(123), 2.2873(48)(004), 2.2201(29)(132), 2.0072(40)(400), 1.7481(23)(332), and 1.5085(30)(404).
The mineral honours Associate Professor Oskar Thalhammer of the University of Leoben, Austria.

Keywords: thalhammerite; platinum-group mineral; Pd9Ag2Bi2S4 phase; reflectance data;
X-ray-diffraction data; crystal structure; Komsomolsky mine; Talnakh deposit; Noril’sk region; Russia

1. Introduction

Thalhammerite, ideally Pd9Ag2Bi2S4, was observed in the same holotype specimen as kravtsovite,
PdAg2S [1], and vymazalováite, Pd3Bi2S2 [2]. The type sample (polished section) comes from
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vein-disseminated pyrite-chalcopyrite-galena ore from the Komsomolsky mine in the Talnakh
deposit of the Noril’sk district, Russia. The sample was found at coordinates: 69◦30′20′′ N and
88◦27′17′′ E. The mineralization is characterized by lack of Ni minerals and high galena content
and Pt-Pd-Ag bearing minerals in an association of pyrite and chalcopyrite. The host rocks of
pyrite-chalcopyrite-galena ore are diopside-hydrogrosssular-serpentine metasomatites developed
in diopside-monticellite skarns below the lower exocontact of the Talnakh intrusion (the eastern
part of the Komsomolsky mine). Thalhammerite, in pyrite-chalcopyrite-galena ores, occurs in
association with cooperite, braggite, vysotskite, stibiopalladinite, telargpalite, sobolevskite, kotulskite,
sopcheite, insizwaite, kravtsovite, vymazalováite, Au-Ag alloys, and Ag-bearing sulphides, selenides,
sulphoselenides, and tellurosulphoselenides. The mineral was also observed in vein-disseminated
millerite-bornite-chalcopyrite ore from the Talnakh and Oktyabrsk deposits of the Noril’sk region [3].
The host rocks of millerite-bornite-chalcopyrite ore are pyroxene-hornfels at the lower exocontact of the
Kharaelakh intrusion (the western part of the Komsomolsky mine). In millerite-bornite-chalcopyrite
ore, thalhammerite occurs in association with kotulskite, telargpalite, laflammeite, and Au-Ag alloys.

The mineral likely formed under the same conditions as kravtsovite and vymazalováite,
with decreasing temperature [3], most likely below 400 ◦C. Thalhammerite was also observed, in
intergrowths with sobolevskite, in PGE ores from the Fedorov-Pana Layered Intrusive Complex, Russia
(V.V. Subbotin—per. communication). Furthermore, the occurrence of unknown phases corresponding
to Pb- and Tl-analogues of thalhammerite from the Fedorov-Pana Layered Intrusive Complex has
been reported [4].

Both the mineral and name were approved by the Commission on New Minerals, Nomenclature
and Classification of the International Mineralogical Association (IMA No 2017-111). The mineral
name is for Dr. Oskar Thalhammer (b. 1956) Associate Professor at the University of Leoben, Austria
for his contributions to the ore mineralogy and mineral deposits of platinum group elements. The type
specimen is deposited at the Department of Earth Sciences of the Natural History Museum, London,
UK, catalogue no. BM 2016, 150.

2. Appearance, and Physical and Optical Properties

Thalhammerite forms very small inclusions (from a few µm up to about 40–50 µm) in galena,
chalcopyrite (Figure 1), and also in bornite.
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Figure 1. Digital image in reflected plane polarized light showing inclusions of thalhammerite in
galena (gn) in association with (a) chalcopyrite (ccp) and (b) vymazalováite (vym).

The mineral occurs in aggregates (100–200 µm in size) formed by intergrowths of telargpalite,
braggite, vysotskite, sopcheite, stibiopalladinite, sobolevskite, moncheite, kotulskite, malyshevite,
insizwaite, acanthite, aurian silver, kravtsovite, and vymazalováite in association with galena,
chalcopyrite, bornite, millerite, and pyrite.

Thalhammerite is opaque with a metallic lustre. The mineral is brittle. The density calculated
on the basis of the empirical formula is 9.72 g/cm3. In plane-polarized light, thalhammerite is light
yellow with weak bireflectance, weak pleochroism, in shades of slightly yellowish brown and weak
anisotropy. It exhibits no internal reflections.

Reflectance measurements were made in air relative to a WTiC standard on both natural and
synthetic thalhammerite using a J and M TIDAS diode array spectrometer attached to a Zeiss Axiotron
microscope. The results are tabulated (Table 1) and illustrated in Figure 2.

Table 1. Reflectance data for natural and synthetic thalhammerite.

Natural Synthetic
λ (nm)

R1 (%) R2 (%) R1 (%) R2 (%)

400 40.0 41.2 40.6 42.1
420 40.6 41.8 41.3 42.6
440 41.1 42.3 42.0 43.2
460 41.7 42.8 42.6 43.9
470 41.9 43.0 42.9 44.3
480 42.2 43.3 43.1 44.6
500 42.7 43.9 43.8 45.3
520 43.2 44.4 44.6 46.0
540 43.7 44.9 45.3 46.6
546 43.9 45.1 45.6 46.9
560 44.2 45.4 45.9 47.2
580 44.7 45.9 46.4 47.7
589 44.9 46.1 46.7 47.9
600 45.2 46.3 46.9 48.1
620 45.6 46.8 47.3 48.5
640 46.1 47.3 47.7 48.9
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Table 1. Cont.

Natural Synthetic
λ (nm)

R1 (%) R2 (%) R1 (%) R2 (%)

650 46.3 47.5 47.9 49.1
660 46.5 47.8 48.0 49.2
680 47.0 48.3 48.3 49.5
700 47.4 48.9 48.6 49.8

Note. The values required by the Commission on Ore Mineralogy are given in bold.
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Figure 2. Reflectance data for thalhammerite compared to synthetic analogue, in air. The reflectance
values (R%) are plotted versus the wavelength λ in nm.

3. Chemical Composition

Electron probe micro-analyses (EPMA) on grains of thalhammerite were obtained using a WDA
Inca Wave 500 (Oxford Instruments NanoAnalysis, High Wycombe, UK) installed on an SEM Lyra 3GM
(Tescan), with analytical conditions of 20 kV, 10 nA, and counting times of 30 s (on peak positions)/
2 × 15 s (background on the left and right positions). The spectra were collected on PbMα, BiMα,
PdLα, AgLα, SKα, and SeLα lines with standards of pure Se, Pd, Ag, Bi, synthetic PbTe, and natural
FeS2. Other elements were below the detection limit.

EPMA on synthetic thalhammerite were obtained using a CAMECA SX-100 electron probe
microanalyzer in wavelength-dispersive mode with an electron beam focussed to 1–2 µm.

Pure elements and ZnS were used as standards and the radiations measured were BiMα PdLα,
AgLα, and SKα, with an accelerating voltage of 15 kV, and a beam current of 10 nA measured on the
Faraday cup.

EPMA compared with literature data are given in Table 2. The empirical formulae calculated
on the basis of 17 apfu are Pd8.46Ag2.28(Bi1.82Pb0.32)Σ2.14(S4.10Se0.02)Σ4.12 for thalhammerite and
Pd8.91Ag2.03Bi2.06S4.00 for its synthetic analogue, with the ideal formulae Pd9Ag2Bi2S4.

Table 2. Electron-microprobe analyses of natural and synthetic thalhammerite.

wt % Pd Ag Pb Bi S Se Total

Thalhammerite

52.80 14.57 2.60 22.56 7.75 0.07 100.35
53.40 14.29 3.05 22.09 7.62 0.03 100.47
51.64 14.25 6.12 21.98 7.70 0.19 101.87

average 52.61 14.37 3.92 22.21 7.69 0.10 100.90
13/B-92 * 53.85 12.51 24.84 7.90 99.1

52.77 12.27 1.77 24.29 7.45 0.57 99.12
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Table 2. Cont.

wt % Pd Ag Pb Bi S Se Total

Thalhammerite

1/K-92 * 53.85 12.8 24.24 7.89 99.01
52.77 11.83 25.73 7.99 99.53
54.08 12.21 25.34 7.95 101.21

Synthetic Sample

Exp37 54.18 13.69 25.02 7.59 100.48
54.74 12.91 25.04 7.50 100.19
54.66 12.46 25.90 7.39 100.42
56.14 12.01 24.70 7.36 100.21
55.78 12.67 24.27 7.44 100.16
55.10 12.75 24.99 7.46 100.29

average 55.10 12.75 24.99 7.46 100.30

* Sluzhenikin and Mohkov [2].

4. Synthetic Analogue

The small size of thalhammerite embedded in galena (bornite) prevented its extraction and
isolation in an amount sufficient for the relevant crystallographic and structural investigations.
Therefore, these investigations were performed on the synthetic Pd9Ag2Bi2S4.

The synthetic phase of Pd9Ag2Bi2S4 was prepared in an evacuated and sealed silica-glass tube in
a horizontal furnace in the Laboratory of Experimental Mineralogy of the Czech Geological Survey in
Prague. To prevent loss of material to the vapour phase during the experiment, the free space in the
tube was reduced by placing a closely-fitting silica glass rod against the charge.

The temperature was measured with Pt-PtRh thermocouples and is accurate to within ±3 ◦C.
A charge of about 300 mg was carefully weighed out from the native elements. We used, as starting
chemicals, palladium (99.95%), silver (99.999%), bismuth (99.999%), and sulphur (99.999%). The starting
mixture was sealed and annealed, quenched, and then ground in an agate mortar under acetone and
reheated to 350 ◦C for 134 days. The sample was quenched by dropping the capsule in cold water.

5. X-ray Crystallography

5.1. Single-Crystal X-ray Diffraction

A small fragment of synthetic Pd9Ag2Bi2S4 was mounted on a glass fibre and examined using
a Rigaku Super Nova single-crystal diffractometer with an Atlas S2 CCD detector utilizing MoKα
radiation, provided by the microfocus X-ray tube and monochromatized by primary mirror optics.
The ω rotational scans were used for collection of three-dimensional intensity data. From a total of
3659 reflections, 221 were classified as unique observed with I > 3ρ(I). Corrections for background,
Lorentz effects and polarization were applied during data reduction with the CrysAlis software.
Empirical absorption correction was performed using the same software yielding Rint = 0.034.
The crystal structure was solved with a charge-flipping method using the program Superflip [5] and
subsequently refined by the full-matrix least-squares algorithm of JANA2006 program [6]. Because of
the similarity of atomic number of Pd and Ag (46 and 47, respectively), it is nearly impossible to
distinguish between these atoms from single-crystal (MoKα radiation) diffraction data. The refinement
indicated five metallic positions, which one of them was assigned as Bi. The remaining metallic sites
show multiplicities 2:8:8:4. Considering the empirical chemical composition Pd8.91Ag2.03Bi2.06S4.00

(Z = 2) and coordination environment of the 4e site, which was very different from the others (see
structure description), the 4e site was refined as Ag position. Next, refinement cycles included
all anisotropic displacement parameters, which revealed too large a value for Pd(2) position
(Ueq(Pd2) = 0.0146 Å2 cf. 0.0082 and 0.080 Å2 for Pd(1) and Pd(3), respectively). Refinement of
occupancy factors yielded 0.88 occupancy for the Pd(2) position; other positions were found to be fully
occupied. Final refinement in the I4/mmm space group for 21 parameters converged smoothly to the
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R = 0.0310 and wR = 0.0815 for 221 observed reflections. Details of data collection, crystallographic
data, and refinement are given in Table 3.

Table 3. Crystallographic data for the selected crystal of synthetic thalhammerite, Pd9Ag2Bi2S4.

Crystal Data

Chemical formula (idealized) Pd9Ag2Bi2S4
Space group I4/mmm (No. 139)

a [Å] 8.0266(2)
c [Å] 9.1531(2)

V [Å3] 589.70(2)
Z 2

Crystal size (mm) 0.034 × 0.027 × 0.013

Data Collection

Diffractometer SuperNova
Temperature (K) 293

Radiation MoKα (0.7107 Å)
Theta range (◦) 5.08–27.62

Reflections collected 3659
Independent reflections 226

Unique observed reflections [I > 3(σ)] 221

Index ranges
−10 < h < 10
−10 < k < 10
−11 < l < 11

Absorption correction method Empirical

Structure Refinement

Refinement method Full matrix least-squares on F2

Parameters/restrains/constrains 21/0/0
R, wR (obs) 0.0310/0.0815
R, wR (all) 0.0318/0.0817

Largest diff. peak and hole (e−/Å3) 1.20/−5.20

Atom coordinates and displacement parameters are listed in Table 4. Table 5 shows selected
bond lengths.

Table 4. Fractional coordinates and anisotropic displacement parameters (Å2) for synthetic thalhammerite.

Atom Pd(1) Pd(2) * Pd(3) Ag Bi S

Wyckoff
Position 2a 8f 8j 4e 4d 8h

x 1/2 1/4 1/2 1/2 1/2 0.2081(4)
y 1/2 1/4 0.2027(2) 1/2 0 0.2081(4)
z 1/2 1/4 0 0.1810(2) 1/4 0

U11 0.0069(8) 0.0104(8) 0.0077(7) 0.0098(6) 0.0090(4) 0.0071(12)
U22 0.0069(8) 0.0104(8) 0.0097(7) 0.0098(6) 0.0090(4) 0.0071(12)
U33 0.0109(13) 0.0051(10) 0.0077(7) 0.0082(9) 0.0079(6) 0.012(2)
U12 0 0.0017(6) 0 0 0 −0.0018(15)
U13 0 0.0011(4) 0 0 0 0
U23 0 0.0011(4) 0 0 0 0
Ueq 0.0083(6) 0.0086(5 0.0084(4) 0.0106(4) 0.0086(3) 0.0087(9)

* Refined with 0.88 occupancy.

Table 5. Selected bond distances (Å) in the thalhammerite crystal structure.

Pd(1) 4 × S 2.362(3) Ag 4 × Pd(3) 2.905(1)
2 × Ag 2.919(2) 4 × Pd(2) 2.9073(4)

Pd(2) 2 × S 2.3372(7)
2 × Bi 2.8378(1) Bi1 4 × Pd(3) 2.808(1)
2 × Ag 2.9073(4) 4 × Pd(2) 2.8378(1)

4 × Pd(3) 3.0670(2)
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Table 5. Cont.

Pd(3) 2 × S 2.343(3)
2 × Bi 2.8080(8)
2 × Ag 2.905(2)

4 × Pd(2) 3.0670(2)

It should be noted that the refined tetragonal structure model of thalhammerite is only a
substructure. As was revealed by subsequent Rietveld refinement (see below), the powder X-ray
diffraction pattern of synthetic thalhammerite shows at medium and high diffraction angles a
few very weak unindexed peaks and very subtle peak splitting, which cannot be fitted using the
tetragonal model. Attempts to refine the structure from single-crystal data in rhombic subgroups of
I4/mmm (i.e., Fmmm, Immm) led to negligible lowering of R-factors (e.g., from 0.0313 to 0.0293) with a
rapid increase of the refined parameters and correlations between them. Refinements in monoclinic
subgroups failed. Additionally, neither of these low-symmetry models describe all peak splitting
observed in powder diffraction patterns of synthetic thalhammerite. Therefore, we proposed only the
tetragonal average substructure of thalhammerite, leaving some aspects of the structure unclear.

5.2. Powder X-ray Ddiffraction

The powder XRD pattern of synthetic thalhammerite was collected in the Bragg-Brentano
geometry on a Bruker D8 Advance diffractometer equipped with the LynxEye XE detector and
CuKα radiation. The data were collected in the range from 10◦ to 100◦ 2θ with a step size of 0.005◦

2θ and 2 s counting time per step. The structure model obtained from a single-crystal XRD study of
synthetic thalhammerite was used as a starting structural model in the subsequent Rietveld refinement.
The FullProf program [7] was used and the pseudo-Voigt function was used to generate the shape of
the diffraction peaks. The refined parameters include those describing peak shape and width, peak
asymmetry, unit-cell parameters, the occupancy parameter of the Pd(2) position, and six isotropic
displacement parameters.

In total, 17 parameters were refined. No fractional coordinates were refined. The final cycles of
Rietveld refinement converged to the agreement factors Rp = 0.077 and Rwp = 0.115. The refinement
indicated 7 wt % Pd3Bi2S2 (I213) impurity in the investigated sample.

Figure 3 depicts two details of final Rietveld plot showing weak, however discernible, peak
splitting at middle and high diffraction angles of 2θ (i.e., above 50◦). Attempts to index all observed
diffractions in the powder pattern in the large and/or lower symmetry unit-cell remained unsuccessful
and, therefore, the structure refinement was limited to the tetragonal substructure. Table 6 presents
powder diffraction data for thalhammerite.
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6. Structure Description

The tetragonal substructure of thalhammerite contains three Pd, one Ag, Bi, and S sites,
respectively. All sites, except the Pd(2) position, were found to be fully occupied. Its crystal structure
is shown in Figure 4.Minerals 2018, 8, x 8 of 14 
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6.1. Coordination of Cations

The Pd(1) position is in the centre of regular square of S atoms with Pd(1)-S distances of 2.362(3) Å.
The coordination is perfectly planar. Similar coordination was observed in vysotskite, PdS [8], which
shows similar Pd–S separation of 2.34 Å. Such coordination geometry is typical for low-spin 4d8 Pd2+

cation in normal sulfides with M:S ratio equal to or smaller to one [9]. The Pd(1) coordination is further
completed by two Ag atoms at 2.919(2) Å lying perpendicular to the [M(1)S4] squares.

The Pd(2) (refined to 0.88 occupancy of Pd) and Pd(3) sites form complex polyhedron. Both Pd
positions are coordinated by two S atoms at distances 2.3372(7) and 2.343(3) Å, a value very close
to the Pd–S distance of 2.334(4) Å observed for the zig-zag chains in the structure of kravtsovite,
PdAg2S [1]. Whereas the S–Pd(2)–S group is perfectly linear, the S–Pd(3)–S shows a bonding angle
of 177.9(1)◦. Pd(2) is further coordinated by two Bi (2.8378(1) Å), two Ag (2.9073(4) Å), and two
Pd(3) (3.0670(2) Å) atoms. Pd(3) also shows two Bi (2.8080(8) Å), two Ag (2.905(2) Å), and four Pd(3)
(3.0670(2) Å) short contacts.

Ag site is surrounded by nine Pd atoms (Figure 5) forming a mono-capped tetragonal antiprismatic
coordination. The Ag–Pd distances are in the range of 2.905(1) Å to 2.919(2) Å, comparable to those
observed in lukkulaisvaaraite (Pd–Ag: 2.891(4)–3.037(4) Å; [10], where Ag atoms display tetragonal
antiprismatic coordination.

As is shown in Figure 5, the Bi atom is coordinated by eight Pd atoms to form a bi-capped trigonal
prism with Bi–Pd bond distances ranging from 2.808(1) to 2.8378(1) Å, values slightly shorter than
those observed in structure of monoclinic PdBi (2.84–2.95) Å; [11]. There are no short (<3.5 Å) Bi–S
contacts in the thalhammerite crystal structure. This contrasts with the environment of Bi in structure
of chemically-related vymazalováite, Pd3Bi2S2 [2,12], where Bi atoms show one additional S contact at
3.22(3) Å.
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Table 6. X-ray powder diffraction data of thalhammerite (CuKα radiation, Bruker D8 Advance,
Bragg-Brentano geometry). Only reflections with I(obs) ≥ 1 are listed.

I(obs) h k l d(meas) d(calc)

11 1 0 1 6.0364 6.0338
11 1 1 0 5.6790 5.6767
13 0 0 2 4.5752 4.5736
8 2 0 0 4.0155 4.0140

18 1 1 2 3.5620 3.5615
24 2 1 1 3.3428 3.3420
2 2 0 2 3.0181 3.0169
9 1 0 3 2.8510 2.8504

46 2 2 0 2.8393 2.8383
21 3 0 1 2.5685 2.5684

100 2 2 2 2.4122 2.4117
61 1 2 3 2.3245 2.3241
48 0 0 4 2.2873 2.2868
29 1 3 2 2.2201 2.2197
2 2 3 1 2.1637 2.1634

17 1 1 4 2.1213 2.1212
40 4 0 0 2.0072 2.0070
3 3 3 0 1.8923 1.8922
8 4 0 2 1.8377 1.8378

15 2 3 3 1.7981 1.7982
18 2 2 4 1.7805 1.7807
23 3 3 2 1.7481 1.7485
4 1 3 4 1.6991 1.6991
2 4 2 2 1.6711 1.6710
5 1 4 3 1.6413 1.6410
1 2 1 5 1.6299 1.6300
4 4 3 1 1.5814 1.5814
1 5 1 0 1.5743 1.5744
8 0 3 5 1.5102 1.5103

30 4 0 4 1.5085 1.5085
9 1 1 6 1.4723 1.4724

13 4 4 0 1.4193 1.4192
7 4 4 2 1.3554 1.3554

12 2 2 6 1.3431 1.3431
9 2 5 3 1.3395 1.3393
1 3 5 2 1.3185 1.3184

19 3 1 6 1.3070 1.3070
7 1 5 4 1.2969 1.2968
9 6 2 0 1.2694 1.2693
3 1 2 7 1.2279 1.2279

18 6 2 2 1.2231 1.2231
1 1 6 3 1.2113 1.2112

10 4 4 4 1.2059 1.2058
11 3 3 6 1.1872 1.1871
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6.2. Modular Description

The thalhamerite crystal structure forms a three-dimensional framework. It contains features
typical for intermetallic compounds (e.g., complex crystallochemical environment of metals) and,
therefore, cannot be presented using a traditional cation-based coordination polyhedra approach.

Alternatively, the structure of thalhammerite can be conveniently described as an arrangement of
two types of building blocks (cuboids) having common S atoms at the corners (Figure 6).

The first block (green in Figure 6) contains the [PdS4] squares forming one face of the block and
Ag atoms in its centre. Pd atoms are approximately located to the midpoints of the longer S-S edges.
The second block (orange in Figure 6) contains Bi atoms in its centre. By analogy with the first block,
the Pd atoms are located to the midpoints of the longer S–S edges. In the thalhammerite structure, two
types of block alternate in a chess-boar fashion within the (001) plane and form chains along the c
axis (Figure 6). It should be mentioned that, neglecting the Ag and Bi atoms, the packing of the green
blocks automatically generates their duals, and the orange block, vice versa.
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6.3. Relation to Other Minerals

The thalhammerite structure represents a unique structure type, and no exact structural analogue
is hitherto known. It is worth noting that its structure merges structure motives typical for polar
chalcogenides and intermetallic compounds. The [Pd(1)S4] square-planar coordination is a hallmark
of Pd-bearing sulfides with an M:S ratio equal to, or slightly smaller than, one. Contrary to that,
(almost) linear coordination of Pd by two S atoms and number of further metal-metal contacts
resulting in complex coordination geometry, can be observed in sulphides with intermetallic behaviour
(e.g., kravtsovite PdAg2S, Vymazalová et al., 2017 [1]).

Another chemically-related mineral, coldwellite, Pd3Ag2S (McDonald et al., 2015 [13]), adopts a
cubic β-Mn-like structure and, hence, differs substantially from that of thalhammerite.

7. Proof of Identity of Natural and Synthetic Thalhammerite

The structural identity between the synthetic Pd9Ag2Bi2S4 and the natural material was confirmed
by electron back-scattering diffraction (EBSD) and Raman spectroscopy.
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7.1. Electron Back-Scattering Diffraction

The structural identity between the natural material and the synthetic Pd9Ag2Bi2S4 was confirmed
by EBSD. A TESCAN Lyra 3GM field emission scanning electron microscope combined with EBSD
system (Oxford Instruments AztecHKL system with NordlysNano EBSD camera) was used for the
measurements. The surface of natural sample was prepared for investigation by broad beam argon ion
milling using Gatan PECS II system operated at 1 kV. The solid angles calculated from the patterns were
compared with our structural model for Pd9Ag2Bi2S4 synthetic phase match containing 12 reflectors
to index the patters. The EBSD patterns (also known as Kikuchi patterns) obtained from the natural
material (>50 measurements on different spots on natural thalhammerite grains) were found to match
the patterns generated from our structural model for Pd9Ag2Bi2S4 synthetic phase, Figure 7.
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The values of the mean angular deviation (MAD, i.e., goodness of fit of the solution) between
the calculated and measured Kikuchi bands range between 0.22◦ and 0.48◦. These values reveal a
very good match; as long as values of mean angular deviation are less than 1◦, they are considered as
indicators of an acceptable fit (HKL Technology, 2004).

7.2. Raman Spectroscopy

The Raman spectroscopy technique was applied to verify the structural identity between the
synthetic Pd9Ag2Bi2S4 and the natural material (Figure 8).
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Raman spectra were obtained using a LABRAM (ISA Jobin Yvon) instrument installed at the
University of Leoben, Austria. A frequency-doubled 100 mW Nd:YAG laser with an excitation of
a wavelength of λ = 532.6 nm was used. The obtained Raman spectra of natural and synthetic
Pd9Ag2Bi2S4 show four discernible absorption bands at the following values: 122, 309, 362, and
483 cm−1 (see Figure 8).
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of the natural and synthetic materials and thereby legitimise the use of the synthetic phase for the
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