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Abstract: The Zhengchong gold deposit is located in the central segment of the Jiangnan Orogen in
northeastern Hunan Province, South China. The host rocks of this deposit are the Neoproterozoic
slates of the Lengjiaxi Group and granodiorite. The structures in the Zhengchong gold deposit are
dominated by NE-trending reverse faults, which control the gold-bearing veins. The orebody consists
of NE-trending laminated quartz veins and NW-trending quartz veins. The alteration styles include
silicification, carbonatization, sulfidation, sericitization and chloritization. The Zhengchong gold
mineralization can be divided into four stages: Quartz-pyrite (stage I), quartz-pyrite-arsenopyrite
(stage II), quartz-polysulfide (stage III) and quartz-carbonate (stage IV). Three generations of
hydrothermal pyrite were identified: Disseminated euhedral to subhedral cubes in altered wall-rock
(PyI), euhedral to subhedral cubes inter-grown with arsenopyrite and tetrahedrite in quartz veins
and wall-rock (PyII), and euhedral cubes with microinclusions (native gold, galena, sphalerite,
chalcopyrite, tetrahedrite, and pyrrhotite) or metasomatic textures in sulfide-rich veins or veinlets
(PyIII). PyII and PyIII are arsenian pyrite and represent the main Au-bearing minerals. PyI records
the lowest concentrations of Au; PyII and PyIII record similar amounts of Au, Cu, Pb, Zn, and Bi,
but PyIII is more enriched in Co, Ni, Te, and Se. The substitution of As, Se and Te for S and that of
Co and Ni for Fe occurs by direct-ion exchange. Invisible gold is uniformly distributed within the
arsenian pyrite, and visible gold fills microfractures in PyII or occurs as inclusions in PyIII. Co, Ni,
Cu exhibit positive correlations with Au and a negative correlation between Au + Cu + Co + Ni and
Fe reflect that Fe vacancies may have been a major cause of the precipitation of invisible Au and other
metal elements in pyrite structure. There are systematic trace element differences between the three
generations of pyrite (PyI, PyII, PyIII). The more Co, Ni and Se, Te substitution that occurred for
Fe and S, respectively, the greater the increase in the Co/Ni ratio (<1) and the decrease in the Se/Te
ratio (<10) in stage III, indicating that a more reduced, lower-temperature metamorphic hydrothermal
fluid was present in stage III.

Keywords: pyrite; trace element; gold deposit; Zhengchong; Northeast Hunan Province

1. Introduction

Gold deposits in metamorphic terranes can be classified as orogenic gold deposits or reduced
intrusion-related gold deposits [1–3]. Orogenic gold deposits dominantly form in greenstone belts,
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at or above the brittle-ductile transition, with weakly reduced, low-salinity fluids with near-neutral
pH values at approximately 300 ◦C [1,4–8]. In contrast, reduced intrusion-related gold deposits are
intrusion-hosted, sheeted arrays of thin, low-sulfide quartz veins with Au–Bi–Te–W signatures [2,6].
Some models have explained the role of fluids in gold mineralization, including a decrease in solubility
that occurs during drops in pressure associated with earthquakes in the case of quartz veins [9,10] and
the destabilization of gold bisulfide complexes by a redox reaction that occurs between the transporting
fluid and iron in the host rocks, which precipitates both pyrite and free gold [7,11].

Current issues in the study of gold deposits include the source of the ore-forming fluids, the precise
tectonic setting and age of mineralization, and the specific depositional mechanisms for gold [3,8].
The first two controversies are mainly due to the abundance of isotope and fluid inclusion data [12,13]
and the lack of ore minerals that have been subjected to high-precision geochronological analysis [14].
However, information about the transport and deposition of gold and its fluid evolution can be
obtained using the detailed petrogenetic analyses and trace element data of pyrite [15–18]. Pyrite is
stable under a very wide range of sulfur activity and thermodynamic conditions compared to other
sulfides [15,19,20]. Gold is preferentially concentrated in the crystal structure of arsenian pyrite or as
micrometer-size particles [19,21,22]. It is possible to identify the gold mineralization in the Zhengchong
deposit based on the presence of arsenian pyrite.

The Jiangnan Orogenic Belt (JOB), which is located in South China (Figure 1a), hosts more than
250 Au-(polymetallic) deposits and contains more than 960 t of total gold reserves [23,24]. Northeastern
Hunan Province (NEHP) contains approximately 125 Au-(polymetallic) deposits, including the
Wangu, Huangjindong and Yanlinsi deposits (Figure 1b) [24]. The Zhengchong gold deposit is a
new exploration area in the Yanlinsi orefield. However, the ore genesis of the deposits in the Jiangnan
Orogen is not well understood [23]. Various genetic models have been proposed for the deposits in the
JOB, including orogenic, epithermal, intrusion-related, and even SEDEX-type models [25–33].

Here, we provide textural, EPMA and LA-ICP-MS data for Au and the other trace elements in
the pyrite from the Zhengchong deposit. In this contribution, we show that systematic differences
exist between different generations of pyrite, and we use these data to better understand the evolution
stages of ore systems and characterize their ore-forming processes.
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Figure 1. (a) Simplified map of South China; (b) geological sketch map of northeastern Hunan 
Province showing the tectonic, magmatic and stratigraphic framework as well as the dominant Au-, 
Cu- and Co (-polymetallic) ore deposits (modified after [23]). 

2. Geological Setting 

2.1. Regional Geology 

The JOB is a Neoproterozoic collisional zone located between the Yangtze Block to the 
northwest and the Cathaysia Block to the southeast (Figure 1a) [34–38]. 

The NEHP is located in the central part of the JOB. The lithostratigraphic units in this region 
consist of Neoproterozoic Lengjiaxi Group (LJXG) low-grade metamorphic volcaniclastic and 
sedimentary rocks and Meso-Cenozoic red-bed sedimentary rocks, with minor Archean to 
Paleoproterozoic crystalline metamorphic rocks and Paleozoic sedimentary rocks [24]. A 
Basin-and-Range-style tectonic setting (Figure 1b), comprising extensional basins and granitic domes, 
as well as marginal strike-slip faults, formed during the late Mesozoic [24,39–41]. Most of the granites 
in the JOB have been interpreted as S-type granites that formed from the Proterozoic, Early Paleozoic 
(Caledonian), and Early Mesozoic (Indosinian) to the Late Mesozoic (Yanshanian) [24,39,42]. 

2.2. Deposit Geology 

The Zhengchong gold deposit is hosted in the Neoproterozoic lower and upper Huanghudong 
and lower Xiaomuping formations of the LJXG (Figure 2). These rocks are all NE-striking and dip to 
the NW at 26°–65°, indicating that they comprise a reverse anticline. The lower Huanghudong 
Formation is a suite of flysch turbidites that is mainly composed of greywacke, slate and silty slates. 
The upper Huanghudong Formation consists of grayish metamorphic quartz greywacke, siltstones, 
slate and silty slates. The lower Xiaomuping Formation is composed of pale yellow slate and silty 
slates. The altered granodiorite that is exposed in the central part of the Zhengchong deposit has 
experienced carbonatization, sulfidation, and sericitization (Figures 2 and 3f). The NW-trending 
QCVs are always associated with strong alteration. 

 

Figure 1. (a) Simplified map of South China; (b) geological sketch map of northeastern Hunan Province
showing the tectonic, magmatic and stratigraphic framework as well as the dominant Au-, Cu- and
Co (-polymetallic) ore deposits (modified after [23]).

2. Geological Setting

2.1. Regional Geology

The JOB is a Neoproterozoic collisional zone located between the Yangtze Block to the northwest
and the Cathaysia Block to the southeast (Figure 1a) [34–38].

The NEHP is located in the central part of the JOB. The lithostratigraphic units in this region consist
of Neoproterozoic Lengjiaxi Group (LJXG) low-grade metamorphic volcaniclastic and sedimentary
rocks and Meso-Cenozoic red-bed sedimentary rocks, with minor Archean to Paleoproterozoic
crystalline metamorphic rocks and Paleozoic sedimentary rocks [24]. A Basin-and-Range-style
tectonic setting (Figure 1b), comprising extensional basins and granitic domes, as well as marginal
strike-slip faults, formed during the late Mesozoic [24,39–41]. Most of the granites in the JOB have
been interpreted as S-type granites that formed from the Proterozoic, Early Paleozoic (Caledonian),
and Early Mesozoic (Indosinian) to the Late Mesozoic (Yanshanian) [24,39,42].

2.2. Deposit Geology

The Zhengchong gold deposit is hosted in the Neoproterozoic lower and upper Huanghudong
and lower Xiaomuping formations of the LJXG (Figure 2). These rocks are all NE-striking and dip
to the NW at 26◦–65◦, indicating that they comprise a reverse anticline. The lower Huanghudong
Formation is a suite of flysch turbidites that is mainly composed of greywacke, slate and silty slates.
The upper Huanghudong Formation consists of grayish metamorphic quartz greywacke, siltstones,
slate and silty slates. The lower Xiaomuping Formation is composed of pale yellow slate and silty
slates. The altered granodiorite that is exposed in the central part of the Zhengchong deposit has
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experienced carbonatization, sulfidation, and sericitization (Figures 2 and 3f). The NW-trending QCVs
are always associated with strong alteration.Minerals 2018, 8, x FOR PEER REVIEW  4 of 21 
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Figure 3. Photographs of various vein types in the Zhengchong Au deposit. (a) Disseminated pyrite
and arsenopyrite in vein and country rock; (b) representative NE-trending laminated quartz veins.
(c) Laminated quartz vein (NE) cuts through an earlier quartz-pyrite vein (NW) in granodiorite.
(d) Stockwork veins and massive pyrite vein are cut by disseminated pyrite vein, and they are all
cut by quartz-carbonate vein. (e) Massive pyrite vein and laminated quartz vein cut by barren
quartz-carbonate vein. (f) Disseminated pyrite vein and pyrite pebble.

The orebody contains Au-bearing quartz veins that range in thickness from centimeters to meters
and consist of quartz, carbonate, pyrite, arsenopyrite, and native gold. There are two sets of quartz
veins in the deposit: (1) NE-trending laminated quartz veins (Figure 3b) and (2) NW-trending quartz
veins, which are more complicated and include disseminated pyrite and arsenopyrite in and around
veins (Figure 3a), massive pyrite veins (Figure 3d,e) and disseminated pyrite veins (Figure 3c–f). These
Au-bearing quartz veins are hosted in strata and altered granodiorite. The gold mineralization is
closely associated with carbonatization, sulfidation, sericitization and chloritization (Figure 4).
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Based on the mineralogical and textural characteristics of the ore minerals and the crosscutting
relationships between the mineralized veins (Figure 3), four mineralization stages were recognized
(Figure 5). These stages are the quartz-pyrite (stage I), quartz-pyrite-arsenopyrite (stage II),
quartz-polysulfide (stage III) and quartz-carbonate (stage IV) stages. Stages II and III are considered to
be the main stages of ore formation.
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3. Samples and Analytical Methods

3.1. Sample Sites

To obtain a more complete picture of the evolution of the ore-forming hydrothermal fluids and
the genetic model of gold deposition for the Zhengchong Au deposit, three samples were collected
from tunnels at different levels (Figure 2b) based on their cross-cutting relationships and differences in
mineralization between veins. Detailed descriptions of the analyzed samples are given in Table 1.

Table 1. Location, host rock, general description and ore minerals of the analyzed samples from the
Zhengchong deposit (wt %).

Sample No. Location Host Rock General Description Oxide and Sulfide
Minerals

Associated
Gangue

290-7 290 m Level granodiorite Coarse-grained pyrite in veinlet (0.5 cm) Au, Py, Apy, Gn, Sp Qtz, Cal

290-8 290 m Level granodiorite Quart-carbonate vein, pyrite alone
the boundary Py, Apy, Tt Qtz, Cal

D036-1 290 m Level slate Coarse-grained pyrite in veinlet (2 cm) Py, Po, Ccp, Rt Qtz, Dol, Sd,
Chl

240-3 240 m Level slate Quartz veins, including residual slate Py, Apy Qtz, Sd, Dol,
Chl

330-9 330 m Level slate Disseminated Sulfides in slate Py, Apy, Tt Qtz, Sd, Ser

330-10 330 m Level granodiorite Disseminated Sulfides in granodiorite Au, Py, Apy, Sp, Gn,
Tt, Rt

Qtz, Ms, Ap,
Ser, Cal

330-11 330 m Level slate Massive pyrite vein Au, Py, Po, Ccp, Sp,
Gn Qtz, Ser

330-12 330 m Level slate Quart-pyrite vein from stockwork,
Pyrite as a line within vein.

Au, Py, Apy, Ccp, Sp,
Gn, Tt Qtz, Cal

Abreviations: Au—native gold; Py—pyrite; Asp—arsenopyrite; Ccp—chalcopyrite; Gn—galena; Sp—sphalerite;
Po—pyrrhotite; Tt—tetrahedrite; Rt—rutile; Qtz—quartz; Cal—carbonate; Sd—siderite; Dol—dolomite;
Ser—sericite; Ms—muscovite; Chl—chlorite; Ap—apatite.

3.2. Electron-Probe Microanalyses

Ore minerals and ore textures were observed in polished sections using standard reflected-light
microscopy techniques. Selected representative thin sections containing more auriferous pyrite and
Au-bearing minerals were analyzed by electron probe microanalysis (EPMA) using a Shimadzu
EPMA-1720H housed at the School of Geosciences and Info-physics (SGI), Central South University
(CSU), Changsha, China. The operating conditions of the electron microprobe maintained an
accelerating voltage of 15 kV, a beam current of 10 nA, and an electron beam diameter of 1 µm.
The following X-ray lines were used to analyze different elements: AsL, SK, FeK, CoK, NiK, AuM,
and PbM. The mineral and metal standards used for the calibration of elemental X-ray intensities
included pyrite (S and Fe), gallium arsenide (As), cobalt (Co), nickel (Ni), gold (Au) and galena (Pb).
The resulting data were then ZAF-corrected using proprietary Shimadzu software. The minimum
detection limit of Co was 0.03 wt %, that of Ni was 0.01 wt %, that of Au was 0.06 wt %, that of Pb
was 0.04 wt %.

To understand the distribution of the main elements in auriferous pyrite, EPMA X-ray elemental
maps were obtained from representative grains.

3.3. LA-ICP-MS Analysis

The analytical instrumentation employed in this study consists of a New Wave UP-213 nm Laser
Ablation System coupled with an Agilent 7700s Quadrupole ICP-MS housed in the CODES LA-ICP-MS
facility at the University of Tasmania, Hobart, Australia. Depending on the size of the pyrite grain,
analyses were performed by laser ablation using spot diameters of 10–35 µm and a repetition rate
of 2–5 Hz. The laser beam energy was maintained between 1.6 and 2.5 J/cm2. The analysis time
for each sample was 90 s, including 30 s of background measurement with the laser off and 60 s of
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analysis with the laser on. The acquisition time for all masses was set to 0.02 s, with a total sweep
time of ~0.6 s. Data reduction was performed using standard methods [43,44], with Fe as the internal
standard. Calibration was performed using the in-house standard (STDGL2b-2), which comprises
powdered sulfides doped with certified element solutions and fused to a lithium borate glass disk [45].
The standard was analyzed twice every 1.5 h with a 100-µm beam size at 10 Hz to correct for instrument
drift. The accuracy is expected to be better than 20% for most elements [45]. A series of 28 elements
was chosen for spot analysis (i.e., Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Zr, Mo, Ag, Sn, Sb, Te, Ba,
La, W, Pt, Au, Tl, Pb, Bi, Th, and U) in this study. The minimum detection limit of S was 50.8176 ppm,
that of Fe was 2.9364 ppm, that of As was 0.8589 ppm, that of Au was 0.0009 ppm, that of Co was
0.0035 ppm, that of Ni was 0.003 ppm, that of Cu was 0.0738 ppm, that of Zn was 0.1571 ppm, that of
Pb was 0.0059 ppm, that of Ag was 0.0099 ppm, that of Se was 2.4309 ppm, that of Te was 0.039 ppm,
that of Sb was 0.0223 ppm, that of Bi was 0.0005 ppm.

4. Results

4.1. Petrography and Mineralogy

The ore minerals are mainly composed of pyrite and arsenopyrite; lesser amounts of galena,
sphalerite, chalcopyrite, tetrahedrite, pyrrhotite, rutile and native gold formed during stage II and
stage III (Figure 6). The gangue minerals include quartz, carbonate (i.e., dolomite, siderite, calcite),
sericite, and chlorite (Figure 4).
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Figure 6. Photomicrographs showing textures and features of metal minerals in Zhengchong gold
deposit: (a) Reflected light image of isolated gold-barren PyI showing a fractured or corroded pyrite
crystal. (b) BSE image of oscillatory zonation of PyII; lighter bands are As-rich. Arsenopyrite and
tetrahedrite occur in pores of PyII-2. Chalcopyrite fills the fractures of PyII or occurs as overgrowth
on PyIII in a quartz-carbonate vein. (c) BSE image of chalcopyrite and sphalerite cross-cutting
arsenopyrite. (d) BSE image of galena filling the fracture of cataclastic pyrite. Sample 290-7 is
from a large pyrite crystal in a veinlet. (e) Detail of minerals in fracture in Figure 4d showing the
intergrowth of native gold, galena and sphalerite in fracture. (f,g) Earlier-formed chalcopyrite and
pyrite, overgrowth of arsenopyrite, tetrahedrite wrapping native gold, and galena finally filling the
fracture in a disseminated pyrite vein in stockwork. (h) Galena, pyrrhotite, and chalcopyrite occurring
as inclusions in PyIII from a large pyrite pebble in veinlet shown in Figure 3f. (i) Euhedral PyIII with
significant amounts of native gold, galena, chalcopyrite and pyrrhotite inclusions in a massive pyrite
vein. Py—pyrite; Asp—arsenopyrite; Ccp—chalcopyrite; Gn—galena; Sp—sphalerite; Po—pyrrhotite;
Rt—rutile; Gold—visible native gold; Tt—tetrahedrite.
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Pyrite is a very common mineral in most metamorphosed ore deposits and many types of
metamorphic rocks [26]. Once pyrite has formed, it becomes much more refractory and retains many
of its characteristics, even in deposits that have undergone penetrative deformation [26]. The pyrite
in the Zhengchong gold deposit, which is the most abundant sulfide in these orebodies, is entirely
hydrothermal pyrite. Three major crystal growth stages were defined based on their textures and
paragenetic sequences observed using optical microscopy and back-scattered electron (BSE) images
obtained by EMPA (Figure 6). PyI is characterized by isolated crystals in quartz veins (Figure 6a) or
disseminated euhedral to subhedral cubes in country rock (~1 mm across). PyII comprises euhedral
to subhedral cubic crystals (~500 µm across); these grains exhibit oscillatory zonation with core-rim
structures and are commonly overprinted by other minerals (Figure 6b,d). Three subgenerations
(PyII-1, -2, -3) were defined based on BSE images (Figure 6b), and the pores of PyII-2 commonly contain
arsenopyrite and tetrahedrite. PyIII, which comprises euhedral and subhedral cubes (100 µm~ 1 mm
across), is characterized by inclusions (e.g., gold, chalcopyrite, galena, sphalerite and pyrrhotite)
(Figure 6f,h,i).

4.2. EPMA Data

The EMPA data obtained from different generations of pyrite are listed in Table 2. Point analyses
were obtained from the core to the rim on relatively large pyrite grains. The average Fe, S and As
contents are 47.18 wt %, 53.74 wt % and 0.37 wt % for PyI; 46.96 wt %, 52.73 wt % and 1.49 wt % for
PyII-1; 46.40 wt %, 51.58 wt % and 3.01 wt % for PyII-2; 46.90 wt %, 52.48 wt % and 1.63 wt % for PyII-3;
and 46.72 wt %, and 52.34 wt % and 1.72 wt % for PyIII, respectively. The concentrations of Au and
other trace elements (Co, Ni, Pb) in pyrite were close to or below the limits of detection.

Table 2. Selected EPMA analyses of different generations of pyrite from the Zhengchong deposit (wt %).

Pyrite Type As S Fe Co Ni Au Pb

PyI Min. 0.20 52.60 46.77 0.03 0.02 0.06 0.05
Max. 1.12 54.32 47.80 0.07 0.08 0.11 0.24
SD 0.34 0.57 0.35 0.02 0.02 0.03 0.07

n = 7 Av. 0.37 53.74 47.18 0.05 0.03 0.08 0.14

PyII-1 Min. 1.01 52.43 46.64 0.04 0.02 0.08 0.05
Max. 1.95 53.22 47.21 0.12 0.08 0.16 0.12
SD 0.36 0.29 0.24 0.03 0.03 0.06 0.03

n = 7 Av. 1.49 52.73 46.96 0.07 0.04 0.12 0.09

PyII-2 Min. 2.51 50.60 45.70 0.04 0.02 0.15 0.04
Max. 4.19 51.96 47.00 0.08 0.08 0.15 0.20
SD 0.56 0.46 0.40 0.02 0.03 0.05

n = 7 Av. 3.01 51.58 46.40 0.06 0.05 0.15 0.10

PyII-3 Min. 1.23 52.12 46.55 0.04 0.04 0.05
Max. 2.12 53.10 47.46 0.09 0.04 0.31
SD 0.34 0.37 0.30 0.02 0.10

n = 7 Av. 1.63 52.48 46.90 0.06 0.04 0.11

PyIII Min. 1.09 50.13 46.03 0.03 0.01 0.07 0.04
Max. 3.18 53.37 47.35 0.14 0.15 0.12 0.20
SD 0.52 0.75 0.38 0.03 0.05 0.02 0.05

n = 15 Av. 1.72 52.34 46.72 0.06 0.06 0.10 0.11

Arsenic, cobalt and nickel contents can be mapped using EMPA to interpret the crystallization
processes of pyrite [26]. PyI shows no discernible pattern in terms of the distribution of cobalt
and nickel, but arsenic and sulfur show a visible negative correlation (Figure 7). PyII displays
well-developed primary crystallographic growth bands (Figures 8 and 9) through the maps of Co, Ni
and As, as well as the clearly visible core of a preexisting pyrite (Figure 8). PyIII shows low contents and
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uniform distributions of Co, Ni, and As, with inclusions of galena, chalcopyrite, sphalerite, pyrrhotite
and gold (Figures 9 and 10), only the outer of PyIII is characterized by well-developed arsenic, cobalt
and nickel zoning (Figure 10b–d). The correlation of element anomalies in one large fractured crystal
reflects the replacement and characteristics of the distribution of elements between PyII and PyIII
(Figure 9).Minerals 2018, 8, x FOR PEER REVIEW  9 of 21 
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maps of Co, Ni, S, As, and Au in PyI. Cobalt and nickel show uniform distribution, but irregular arsenic
enrichment occurs in isolated crystal PyI.
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Figure 8. (a) Backscattered electron image of PyII from sample 290-8. (b–f) X-ray element distribution
maps of Co, Ni, S, As, and Au in PyII. PyII contains weakly visible growth zoning indicating that
cobalt, nickel and arsenic are present in similar concentric zones in these crystals.
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galena, sphalerite, chalcopyrite, tetrahedrite, pyrrhotite and native gold; the distributions of As, Co, 
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A total of 36 LA-ICP-MS spot analyses were completed on pyrites selected from two typical 
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distribution maps of Co, Ni, As, Au, and Pb in PyII and PyIII. PyIII replace cataclastic PyII, as shown
in Figure 6d.
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Figure 10. (a) Backscattered electron image of PyIII from sample 330-11. (b–f) X-ray element
distribution maps of Co, Ni, As, Au, and Pb in PyIII. The inclusion-rich PyIII contains inclusions
of galena, sphalerite, chalcopyrite, tetrahedrite, pyrrhotite and native gold; the distributions of As, Co,
and Ni are heterogeneous in inter; oscillatory zonation is present in outer; and the distributions of Au
and Pb are present in inclusions.

4.3. Trace Element Contents in Pyrites

A total of 36 LA-ICP-MS spot analyses were completed on pyrites selected from two typical
samples (290-7, 290-8) in the Zhengchong gold deposit (Table 3); these analyses included 4 analyses of
PyI, 20 analyses of PyII and 12 analyses of PyIII.
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Table 3. Selected LA-ICP-MS analyses of different generations of pyrite from the Zhengchong deposit.

Pyrite
Type

S, As, Se
(wt %)

Fe
(wt %)

As
(ppm)

Au
(ppm)

Co
(ppm)

Ni
(ppm)

Cu
(ppm)

Zn
(ppm)

Pb
(ppm)

Ag
(ppm)

Se
(ppm)

Te
(ppm)

Sb
(ppm)

Bi
(ppm) Co/Ni Se/Te

PyI Min. 52.94 46.33 183.04 0.02 0.00 0.02 0.55 0.53 0.10 0.02 3.72 0.05 0.04 0.03 0.01 33.74
Max. 53.37 46.52 6869.63 0.86 0.92 6.55 300.61 1241.20 552.96 0.57 17.13 0.51 25.60 19.57 0.32 107.37
SD 0.21 0.08 3501.40 0.36 0.47 3.45 149.70 620.13 265.99 0.26 5.66 0.21 12.08 9.24 0.13 30.19

n = 4 Av. 53.14 46.39 3647.71 0.53 0.40 3.18 76.06 311.00 214.99 0.22 9.63 0.19 7.65 6.08 0.15 72.08

PyII-1 Min. 51.84 45.95 11,324.34 2.35 0.01 0.16 1.64 0.21 6.72 0.03 4.42 0.07 0.80 0.12 0.05 40.50
Max. 52.62 46.23 21,855.37 26.72 22.20 125.99 16.68 0.57 231.59 0.21 36.99 0.91 20.74 6.66 0.22 144.50
SD 0.33 0.12 4554.95 8.41 9.35 48.17 5.68 0.13 80.96 0.07 10.67 0.32 6.88 2.36 0.06 41.08

n = 6 Av. 52.20 46.08 16,986.38 11.91 7.48 60.62 10.20 0.40 91.81 0.07 18.66 0.27 7.45 2.30 0.12 94.67

PyII-2 Min. 50.82 45.54 22,663.61 24.67 17.13 97.02 30.44 0.48 74.44 0.06 9.68 0.19 2.40 1.56 0.18 14.13
Max. 51.78 45.93 35,709.79 56.51 98.69 371.70 54.59 1.00 319.26 0.17 15.66 0.70 22.17 6.63 0.27 50.48
SD 0.48 0.19 6523.10 16.54 42.02 138.26 12.10 0.28 136.70 0.06 2.99 0.26 10.35 2.76 0.05 14.13

n = 3 Av. 51.30 45.73 29,191.95 38.01 52.07 225.19 42.98 0.68 161.72 0.12 12.62 0.41 10.51 3.47 0.21 36.86

PyII-3 Min. 51.52 45.83 15,167.92 3.69 0.01 0.20 1.99 0.26 1.54 0.02 2.95 0.04 0.59 0.14 0.04 26.97
Max. 52.34 46.14 26,128.99 19.44 67.41 411.14 83.87 0.83 762.91 0.43 7.73 0.29 31.84 10.05 0.55 75.62
SD 0.20 0.08 2730.29 5.13 20.67 125.76 23.89 0.19 242.90 0.15 1.37 0.07 9.69 3.11 0.16 13.41

n = 10 Av. 51.92 45.98 20,838.69 9.50 8.92 57.01 18.01 0.44 162.75 0.13 4.97 0.11 10.38 3.10 0.20 51.16

PyIII Min. 51.58 45.62 8862.14 2.66 2.40 7.67 2.62 0.19 0.31 0.01 28.40 1.22 0.05 0.06 0.26 2.10
Max. 52.79 46.30 20,429.36 35.58 1083.30 2599.41 32.55 4.31 644.37 0.39 97.17 46.28 36.83 9.75 0.67 23.23
SD 0.31 0.21 3447.75 9.60 316.16 782.05 9.42 1.15 202.70 0.14 19.62 12.88 10.22 3.29 0.10 5.82

n = 12 Av. 52.24 46.03 15,870.44 15.92 164.57 444.62 11.87 0.67 159.95 0.13 66.97 20.80 8.49 3.01 0.37 5.31
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PyI contains low Au (<1 ppm) and As (183~6870 ppm) contents, as well as low contents of
the following trace elements: Co (<1 ppm), Ni (<7 ppm), Cu (0.5–301 ppm), Zn (0.5~1241 ppm),
Pb (0.1~553 ppm), Ag (5.4~28 ppm), Se (4~17 ppm), Sb (1~26 ppm), Te (<1 ppm), and Bi (0.03~ 20 ppm).

PyII records relatively higher abundances of Au (2~57 ppm), As (11,324~35,710 ppm),
Cu (2~84 ppm), and Bi (0.1~10 ppm), as well as the following concentrations of other trace elements:
Co (0.01~99 ppm), Ni (0.1~411 ppm), Zn (<1 ppm), Pb (3~763 ppm), Ag (<1 ppm), Se (3~37 ppm),
Sb (0.5~32 ppm), and Te (<1 ppm).

Compared to PyII (Figure 11), PyIII is enriched in Au (2.5~36 ppm), Co (2~1083 ppm),
Ni (7.6~2599 ppm), Te (1.2~46 ppm), and Se (28~97 ppm); the other trace elements measured in PyIII
include Cu (2.6~33 ppm), Zn (0.1~4.3 ppm), Pb (0.3~644 ppm), Ag (<1 ppm), As (8862~20429 ppm),
Sb (0.05~37 ppm), and Bi (0.06~10 ppm).

These As concentrations are generally consistent with those determined by EPMA (Tables 2 and 3).
Differences in As were observed between different types of pyrite.
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Figure 11. Comparative box plot of the LA-ICP-MS data of three generations of pyrite, illustrating the
concentration ranges of specific trace elements and highlighting significant relative enrichments. The
red box indicate PyI, the green box present PyII, and the blue box shows PyIII. The outlier present the
anomalous data, error bars represent SD.

Pyrite can be subdivided into three group, which are consistent with the ore forming stage
(Figure 11). PyI contains low Au, As Co, Ni contents, but a large ranges in concentrations of Pb, Cu, Zn,
Bi, Sb due to the presence of inclusions (Figure 12a). PyII and PyIII record relatively higher abundances
of Au, As, but PyIII more enrich Co, Ni, Se, Te, sometimes the content of Pb in PyII and PyIII is really
high due to the presence of inclusions (Figure 12b).
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Figure 12. Time-resolved record of the signal recorded on the LA-ICP-MS (in counts per second) during
a single analysis. (a) PyI-low Au and As, but Pb + Zn + Cu and Bi-bearing inclusions; (b) PyII-high
contents of Au, As, Ni, and Pb-bearing inclusion.

5. Discussion

5.1. Distribution and Correlations of Trace Elements in Pyrites

The trace element concentrations in pyrite depend on both the nature of the ore fluid and the
geochemical properties of the elements. Therefore, trace elements in pyrite have been widely used to
constrain the characteristics of ore fluid [18,46–48]. The correlations between selected major and trace
elements in these pyrites are shown in Figure 13.
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The EPMA results reveal that nearly all pyrite samples contain significant amounts of As, as 
well as a wide range of other trace elements, such as Au, Co, Ni, and Pb. PyI contains lower As 
contents; in contrast, PyII and PyIII-2 record higher As contents (i.e., up to wt % levels), and these 
pyrites can thus be classified as arsenian pyrite. However, only PyIII is associated with native gold. 
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Figure 13. Binary plots of selected elements in different generations of pyrite from the Zhengchong
gold deposit. (a) S and As data are from Table 2. Correlation between other elements from Table 3:
(b) plot of Fe vs. Pb; (c) plot of Pb vs. Bi; (d) plot of Ni vs. Co; (e) plot of Fe vs. Ni; (f) plot of Au vs. Ni;
(g) plot of Se vs. Te; (h) plot of S vs. Te; (i) plot of Au vs. Te; (j) plot of Fe vs. Cu; (k) plot of Cu vs. Au.

The EPMA results reveal that nearly all pyrite samples contain significant amounts of As, as
well as a wide range of other trace elements, such as Au, Co, Ni, and Pb. PyI contains lower As
contents; in contrast, PyII and PyIII-2 record higher As contents (i.e., up to wt % levels), and these
pyrites can thus be classified as arsenian pyrite. However, only PyIII is associated with native gold.
The EPMA results show a well-defined negative correlation between As and S (Figure 13a), which
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is consistent with the substitution of As for S as anionic As− in the Fe(S1−xAsx)2 solid solution in
reducing environments [49,50].

There is no clear relationship between Pb and Fe (Figure 13b), and a positive correlation was
observed between Bi and Pb in pyrite (Figure 13c). Therefore, we speculate that most of the Pb
distributed in pyrite comprises galena inclusions and that Bi occurs as a solid solution in galena
(Figure 12) [51].

A well-defined positive correlation exists between Co and Ni (Figure 13d), and a negative
correlation exists between Ni and Fe (Figure 13e), indicating that Co and Ni can replace Fe by direct-ion
exchange [52]. PyIII is characterized by higher Co and Ni contents than PyII (Figure 13d). Element
mapping by electron microprobe also indicates that Co and Ni are incorporated in the pyrite crystal
lattice and exhibit compositional zoning in pyrite grains (Figures 8–10).

A positive correlation was observed between Se and Te on the Se–Te diagram, which can be
divided into two distinct sub-areas (Figure 13g): Se-poor and Te-poor PyI and PyII and Se-rich and
Te-rich PyIII. An obvious negative correlation exists between Te and S (Figure 13h), indicating that Te
and Se distort the S site in a similar way as the AsS dianion [53] and that more S was replaced by Se
and Te in PyIII. Au and Te show no correlation (Figure 13i).

Note the negative correlations between Cu and Fe in pyrite (Figure 13j), the positive correlations
between Au and Cu (Figure 13k), and the fact that the concentration of Cu is approximately the same
as that of Au (Figure 11).

5.2. Gold in Pyrite

The Au–As diagram (Figure 14a) shows that PyI (lower As) and PyII-2 (higher As) plot below
the line of gold saturation, which reflects the incorporation of Au into pyrite in a metastable solid
solution [50,54]; PyII-1, PyII-3, and PyIII plot near or above the line of gold saturation, which reflects
the formation of Au nanoparticles by the cooling of hydrothermal fluid and/or supersaturation with
respect to native Au (Figure 14a) [50,54]. EPMA X-ray elemental maps also show that Au is distributed
as invisible gold within the arsenian pyrite; additionally, visible gold fills microfractures in PyII or
occurs as inclusions in PyIII (Figures 6, 9 and 10). Previous studies have established that invisible gold
is most likely incorporated into metastable solid solution, which is controlled by chemisorption at
As-rich, Fe-deficient surface sites, temperature, or the amounts of other trace elements [8,10,49,52,54].
It is interesting that Au does not display the strong sectoral preference noted for As in arsenian pyrite.
Furthermore, there is a clear negative correlation between Au and Fe concentrations (Figure 14b);
Fe vacancies may be a major cause of the invisible Au precipitation in PyII and PyIII, thus indicating the
substitution mechanism of Au = Fe [54]. However, the chemical state of invisible gold in pyrite remains
controversial [49]. The fact that Co, Ni, and Cu exhibit positive correlations with Au (Figure 13f,k) and
that there is a negative correlation between Au + Cu + Co + Ni and Fe reflect the coupled reaction of
Au+ + Cu+ + Co2+ + Ni2+ ↔ 3Fe2+ (Figure 14c) [52].

There are two alternative mechanisms of gold release: (1) gold is remobilized from the sulfide
lattice by a solid-state process or a coupled dissolution–reprecipitation reaction (CDRR) [3,55–59];
or (2) it is introduced during the overprinting caused by hydrothermal fluids [3,57]. EPMA X-ray
elemental maps also show that invisible gold is uniformly distributed within arsenian pyrite, whereas
visible gold fills microfractures in PyII or occurs as inclusions in PyIII (Figures 6, 7f, 8f, 9e and 10e). Co,
Ni, and As preserve initial oscillatory zonation patterns in PyII, but they are uniformly distributed
in PyIII (Figure 9). A fluid-assisted method of remobilization would explain why some elements are
remobilized but others (Te, Se, Co, and Ni) are clearly not, in addition to supporting the observation of
micropores tied to the observed nanoscale and fine particles [59]. The concentrations of Co, Ni, Se and
Te are higher in PyIII than in PyII (Figure 11). Therefore, we conclude that the possible upgrading of
Au may have occurred if either the fluid became supersaturated and precipitated the majority of gold
at end of the mineralization or if it underwent remobilization by CDRR (e.g., Figure 6e,i) [60].
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Figure 14. Plots of pyrite compositions (LA-ICP-MS data). (a) Au–As plot of pyrite is modified from
Ref. [50,61]. (b) plot of Fe vs. Au; (c) plot of Fe vs. Au + Cu + Co + Ni.

5.3. Implications for Fluid Evolution

The textures and trace element compositions of pyrite can potentially be used as robust indicators
of fluid composition [15,43,53,61,62].

More reducing conditions occurred in stage III, as demonstrated by the minor redissolution of
pyrite and arsenopyrite (Figure 6d,g) [63,64] and the change from a pyrite-arsenopyrite assemblage to a
pyrite-pyrrhotite assemblage [65–67]; this would have promoted the deposition of gold and especially
caused the conversion of pyrite (high sulfur content) to pyrrhotite (low sulfur content) in stage III,
which is associated with native gold (Figure 6i) [65–69].

The Co/Ni ratio in pyrite has been used by many authors as an empirical indicator of the
depositional environment [15,70–72]. The presence of chemical zoning in the pyrite of the Zhengchong
gold deposit may reflect fluctuations in temperature and pH [15,72]. Co/Ni ratios (<1) with low
standard deviations are generally accepted to represent pyrite of sedimentary origin [18,46,47,71].
The Co/Ni ratios of the arsenian pyrite in the Zhengchong gold deposit vary; in general, the average
Co/Ni values are 0.15 in PyI, 0.16 in PyII, and 0.38 in PyIII (Figure 15a), thus apparently indicating
that the mineralization may have been caused by metamorphic hydrothermal fluids [69]. The higher
Co and Ni concentrations (Figure 13d) and higher Co/Ni ratios (Figure 15a) observed from PyII to
PyIII may result from a decrease in temperature [15,72].

Variations in Se and Te have commonly been attributed to changes in fluid temperature and redox
conditions [53,73–77]. Slightly neutral, mildly reduced fluids can efficiently transport Au, a Au(HS)2

−

can also carry ~100 ppb Te at 300 ◦C [77,78]. Te-rich pyrite precipitates from reduced fluids due
to fluid boiling and fluid-rock interactions [53,79]. In contrast, Se-rich pyrite usually forms from
low-temperature fluids, regardless of the f O2 and pH values of the fluids [53,79]. The concentrations
of Se and Te are higher in PyIII than they are in PyII (Figure 11). The average Se/Te values are 87.19 in
PyI, 72.48 in PyII, and 5.36 in PyIII (Table 3). The Se/Te ratios decrease from PyI to PyIII (Figure 15b,c).
The clear differences in the Se and Te concentrations and Se/Te ratios between PyII and PyIII represent
two different conditions. These data reveal that temperature is the key factor in this change and that
the temperature was lower during stage III [5,79].

Field and petrographic observations of most gold deposit in NEHP generally reveal four-stage
mineral paragenesis, especially the quartz-pyrite-arsenopyrite and quartz-polysulfide stages, like the
Zhengchong gold deposits (e.g., Wangu, Huangjindong) [24], which also consistent with worldwide
orogenic gold deposit belts (e.g., the Yilgarn Craton) [80,81]. Belousov et al. (2016) subdivide orogenic
gold deposit in the Yilgarn Craton into Au-As and Au-Te groups based upon pyrite geochemistry,
which may correspond to the PyII and PyIII (Figures 11 and 13a) [81]. For example, in the Yilgarn
Craton, 65% of orogenic gold deposit pyrites have Co/Ni < 1, Au–As association orogenic gold deposits
show Se/Te > 5, in contrast of Au-Te ores [81]. These characteristics fit the Zhengchong gold deposit
(Figure 15).
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6. Conclusions

Our textural observations, pyrite generations, EPMA data, LA-ICP-MS data and elemental maps
demonstrate the complexities of the pyrites at Zhengchong, which reflect the evolution of hydrothermal
events. The results can be used to pinpoint the evolution of fluid during the genesis of the Zhengchong
orogenic gold deposit.

(1) Four stages and three generations of pyrite can be distinguished at Zhengchong. The earliest
sulfide mineralization produced unzoned, trace element-poor pyrite (PyI). Significant amounts of
oscillatory zoned and As-, Co-, and Ni-rich pyrite (PyII) formed coevally with arsenopyrite and
tetrahedrite mineralization. PyII is overprinted by later hydrothermal fluids. Then, inclusion-rich
PyIII precipitated in massive sulfide veins or veinlets. PyII and PyIII are arsenian pyrite and
represent the main Au-bearing minerals.

(2) PyI records the lowest concentrations of Au. PyII and PyIII have similar amounts of Au, Cu, Pb,
Zn, and Bi, but PyIII is more enriched in Co, Ni, Te, and Se. The substitution of As, Se and Te for
S and that of Co and Ni for Fe occurred by direct-ion exchange.

(3) The EPMA X-ray elemental maps and LA-ICP-MS point analyses show that invisible gold is
uniformly distributed within the arsenian pyrite and that visible gold fills microfractures in PyII
or occurs as inclusions in PyIII. Co, Ni, Cu exhibit positive correlations with Au and a negative
correlation between Au + Cu + Co + Ni and Fe reflect that Fe vacancies may have been a major
cause of the precipitation of invisible Au and other metal elements in pyrite structure.

(4) There are systematic trace element differences between the three generations of pyrite (PyI,
PyII, PyIII). The more Co, Ni and Se, Te substitutions that occurred for Fe and S, respectively,
the greater the increase in the Co/Ni ratio (<1) and decrease in the Se/Te ratio (<10) in stage III,
respectively, indicating that more reduced, lower-temperature metamorphic hydrothermal fluid
was present in stage III.
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