Supplementary information for manuscript:

Experimental deployment of microbial mineral carbonation at an asbestos mine: Potential applications to carbon storage and tailings stabilization

Jenine McCutcheon ^{1,2,*}, Connor C. Turvey ³, Siobhan A. Wilson ³, Jessica L. Hamilton ³, and Gordon Southam ¹

- ¹ School of Earth & Environmental Sciences, The University of Queensland, St Lucia QLD 4072, Australia; g.southam@uq.edu.au
- ² School of Earth and Environment, The University of Leeds, Leeds LS2 9JT, UK
- ³ School of Earth, Atmosphere and Environment, Monash University, Clayton, Melbourne VIC 3800, Australia; connor.turvey@monash.edu (C.C.T.); sasha.wilson@monash.edu (S.A.W.); jessica.hamilton@monash.edu (J.L.H.)
- * Correspondence: j.mccutcheon@leeds.ac.uk; Tel.: +44-113-343-2846

Figure S1. Maximum air temperature (°C) and precipitation (mm) over the duration of the experiment as measured in a nearby town (Bureau of Meteorology, 2016).

Cations (ppm)												
Al	Ca	Fe	Κ	Mg	Ν	ĺn	Na	Р	S	Si	Ti	
<dl< td=""><td>29.2</td><td>0.007</td><td>2.1</td><td>70.4</td><td>0.</td><td>06</td><td>37.4</td><td><dl< td=""><td>8.1</td><td>11.8</td><td><dl< td=""></dl<></td></dl<></td></dl<>	29.2	0.007	2.1	70.4	0.	06	37.4	<dl< td=""><td>8.1</td><td>11.8</td><td><dl< td=""></dl<></td></dl<>	8.1	11.8	<dl< td=""></dl<>	
	Nutrients (ppb)											
				PO ₄ -P	NH4-N	NO2-N	NO3-N					
				27.4	0.0	1.1	1.2					

Table S1. Cation (ppm) and nutrient concentrations (ppb) in the creek water added to the experimental plots.

<DL: below the detection limit

Table S2. Rietveld results and corresponding R_{wp} values for the control tailings. R_{wp} is the weighted pattern index, a function of the least-squares residual.

Depth	Mineral Phase (wt %)										
(cm)	Serpentine	Pyroaurite	Magnetite	Hydromagnesite	Brucite	Calcite	Forsterite	Enstatite	Quartz	Total	Rwp
	91.8	1.4	3.6	0.0	0.2	0.3	1.5	0.6	0.6	100.0	6.2
0–2	89.0	1.9	3.3	0.0	0.2	0.2	3.8	1.1	0.5	100.0	6.5
	92.8	0.7	3.5	0.0	0.1	0.2	1.6	0.7	0.5	100.0	5.9
	90.8	1.8	2.3	1.3	0.2	0.5	2.2	0.9	0.2	100.0	6.0
2–17	87.9	2.8	1.9	0.8	0.4	0.4	3.5	2.2	0.3	100.0	6.9
	87.9	3.3	2.4	1.4	0.3	0.4	2.6	1.5	0.2	100.0	7.3
	89.0	2.1	2.2	0.9	0.3	0.7	2.6	2.0	0.1	100.0	7.1
17–32	90.5	1.8	2.1	0.5	0.2	0.6	2.5	1.7	0.1	100.0	6.7
	91.2	1.7	2.0	0.6	0.2	0.7	2.2	1.4	0.0	100.0	7.1
	93.6	0.9	2.4	0.0	0.3	0.4	1.8	0.5	0.0	100.0	6.0
32–47	86.8	1.6	2.0	0.0	0.5	0.4	4.6	4.2	0.0	100.0	7.0
	92.0	1.3	1.9	0.0	0.5	0.6	2.5	1.2	0.1	100.0	6.3

Depth			Mineral Phase (wt %)										
(cm)	Serpentine	Pyroaurite	Magnetite	Hydromagnesite	Brucite	Calcite	Forsterite	Enstatite	Quartz	Total	Rwp		
	92.6	1.9	2.1	0.5	0.1	0.3	1.2	0.9	0.3	100.0	5.9		
0–2	92.3	1.1	2.9	0.0	0.2	0.0	2.0	1.0	0.5	100.0	6.6		
	93.2	0.9	2.5	0.0	0.2	0.0	2.1	0.6	0.5	100.0	6.3		
	88.5	3.8	2.0	1.2	0.3	0.5	2.4	1.2	0.1	100.0	6.9		
2–17	89.6	3.4	2.0	1.1	0.2	0.4	1.8	1.2	0.2	100.0	6.6		
	87.9	3.1	2.2	1.5	0.3	0.4	2.7	1.8	0.2	100.0	6.5		
	88.3	2.6	3.3	1.5	0.2	0.5	2.5	1.0	0.1	100.0	7.1		
17–32	89.8	2.2	2.1	1.5	0.2	0.6	2.3	1.3	0.1	100.0	6.7		
	89.4	2.1	2.1	0.8	0.3	0.6	3.5	1.2	0.1	100.0	6.3		
	93.3	1.7	1.8	0.0	0.1	0.6	1.5	0.9	0.0	100.0	6.7		
32–47	92.2	1.6	2.0	0.9	0.1	0.4	1.9	0.7	0.1	100.0	6.3		
	94.0	1.0	1.9	0.0	0.2	0.5	1.7	0.7	0.0	100.0	6.0		

Table S3. Rietveld results and corresponding R_{wp} values for the tailings sampled after 2 weeks following acid leaching. R_{wp} is the weighted pattern index, a function of the least-squares residual.

Depth		Mineral Phase (wt %)											
(cm)	Serpentine	Pyroaurite	Magnetite	Hydromagnesite	Brucite	Calcite	Forsterite	Enstatite	Quartz	Total	Rwp		
	91.2	1.8	2.7	0.0	0.2	0.2	1.9	1.5	0.5	100.0	6.4		
0–2	89.0	1.5	2.8	0.0	0.1	0.2	3.6	2.4	0.5	100.0	6.4		
	90.4	1.2	3.0	0.0	0.3	0.2	2.5	1.8	0.6	100.0	6.6		
	87.0	2.6	2.1	0.8	0.2	0.2	5.2	1.4	0.4	100.0	6.7		
2–4	89.3	2.5	2.4	1.0	0.2	0.3	2.8	1.3	0.3	100.0	6.6		
	89.6	2.5	2.0	1.5	0.1	0.3	1.9	1.8	0.3	100.0	6.1		
	90.8	2.5	2.0	1.2	0.2	0.4	1.9	0.9	0.1	100.0	6.2		
4–17	89.7	2.0	3.0	1.4	0.1	0.4	2.1	1.2	0.1	100.0	6.0		
	89.1	3.0	2.2	1.6	0.3	0.4	1.8	1.4	0.1	100.0	6.5		
	90.1	1.5	2.3	1.0	0.3	0.5	2.6	1.8	0.0	100.0	6.2		
17–32	93.6	0.9	2.1	0.0	0.3	0.5	1.9	0.7	0.0	100.0	6.6		
	92.2	1.0	2.1	0.0	0.3	0.5	2.0	2.0	0.0	100.0	6.6		
	95.2	0.6	1.9	0.0	0.1	0.5	1.3	0.4	0.0	100.0	6.1		
32–47	94.6	0.9	1.9	0.0	0.2	0.4	1.4	0.6	0.0	100.0	6.3		
	95.0	0.8	1.9	0.0	0.3	0.4	1.2	0.4	0.0	100.0	6.5		

Table S4. Rietveld results and corresponding R_{wp} values for the tailings sampled after 11 weeks following leaching. R_{wp} is the weighted pattern index, a function of the least-squares residual.

Depth		Mineral Phase (wt %)											
(cm)	Serpentine	Pyroaurite	Magnetite	Hydromagnesite	Brucite	Calcite	Forsterite	Enstatite	Quartz	Total	Rwp		
	90.7	0.7	3.3	0.0	0.2	0.2	3.1	1.2	0.5	100.0	6.1		
0–2	89.2	1.2	3.2	0.0	0.3	0.3	3.5	1.5	0.8	100.0	6.1		
	92.0	0.9	2.9	0.0	0.2	0.1	2.5	1.0	0.4	100.0	6.3		
	87.1	2.9	2.1	2.1	0.3	0.7	3.3	0.9	0.7	100.0	6.5		
2–4	89.6	3.2	2.2	1.6	0.1	0.3	1.7	0.9	0.4	100.0	6.3		
	92.1	1.3	2.0	2.0	0.1	0.3	1.5	0.5	0.2	100.0	6.3		
	91.3	1.8	2.1	1.1	0.1	0.5	2.0	1.0	0.0	100.0	5.9		
4–17	90.8	2.4	2.0	1.2	0.1	0.5	2.1	0.9	0.0	100.0	6.1		
	89.1	2.9	1.9	1.4	0.1	1.0	2.4	1.1	0.0	100.0	6.6		
	91.7	1.2	2.1	0.8	0.2	0.5	2.6	0.9	0.0	100.0	6.3		
17–32	91.7	1.2	2.2	0.7	0.2	0.6	2.4	0.9	0.0	100.0	6.1		
	92.5	1.0	2.0	0.4	0.2	0.5	2.4	1.0	0.0	100.0	6.4		
	92.3	1.1	2.2	0.0	0.3	0.5	2.4	1.3	0.0	100.0	6.5		
32–47	92.3	0.9	2.4	0.0	0.9	0.6	2.0	0.9	0.0	100.0	6.4		
	92.5	1.0	2.3	0.0	0.3	0.6	2.2	1.1	0.0	100.0	6.6		

Table S5. Rietveld results and corresponding R_{wp} values for the tailings sampled after 2 weeks following acid leaching and 9 weeks post-inoculum. R_{wp} is the weighted pattern index, a function of the least-squares residual.