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Abstract: Pipeline conveying is a crucial method for realizing gangue slurry filling. In order to
avoid the blockage of gangue slurry in pipeline conveying, it is necessary to clarify the deposition
behavior of gangue particles in the pipeline. This paper analyzes coal gangue’s microstructure and
mineral composition in the Zhaozhuang No. 2 coal mine through electron microscope scanning and
X-ray diffraction tests. We studied the viscosity characteristics of gangue slurry at different mass
concentrations and particle sizes and analyzed the change rule of viscosity of gangue slurry with
time. Based on determining the nature of the slurry material, a simulation analysis of the deposition
behavior of the gangue slurry in a pipeline was carried out using the coupled fluid dynamics–discrete
element (CFD-DEM) method. The results show that gangue slurry with a particle size larger than
1.0 mm is likely to lead to the blockage of the pipeline. A small increase in viscosity will promote a
uniform distribution of particles inside the pipeline. The deposition behavior of particles is jointly
influenced by gravity, fluid interaction force, inter-particle force, and the interaction between particles
and the pipeline surface. The research results can be used as a reference for the design and study of
gangue slurry grouting systems.

Keywords: gangue slurry; filling mining; pipeline transport; coupled CFD-DEM simulations;
particle deposition

1. Introduction

Coal gangue is the discarded coal-containing rocks in coal production, and its most
conventional treatment is accumulation on the ground [1–3]. The total storage capacity of
coal gangue in China has exceeded 7 billion tons, and accumulating a large amount of coal
gangue will bring severe environmental problems while occupying land resources [1,4–6].
These environmental issues are of great concern in China and have gained widespread
attention globally [7,8].

Coal gangue made into a gangue-based slurry that is used to fill mining holes can be a
way to dispose of enormous amounts of waste gangue. It can effectively control the ground
subsidence to achieve green mining [9,10]. The slurry filling must be transported from
the ground to the stratum or hollow area through a pre-constructed pipeline. However,
the physical properties of gangue particles, such as particle size and shape, will affect
the fluidity of gangue slurry in the pipeline. Changes in fluidity increase the number of
settled particles, resulting in pipeline clogging during slurry transportation [11–13]. The
clogging of the grouting pipeline will cause economic losses and delay the progress of the
filling project. Moreover, it even affects settlement management, which will bring more
significant safety hazards [10,14–17]. Therefore, it is necessary to study the flow state of
gangue slurry in grouting pipes to avoid the phenomenon of gangue slurry clogging in the
grouting pipeline.
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The fluidity of gangue slurry directly affects its transportation performance [18,19].
If the prepared gangue slurry’s viscosity is too high, resistance in pipeline transportation
is apparent. Suppose that the viscosity of the slurry is too low. In that case, stratification
and segregation can quickly occur and many particles settle, resulting in pipeline clogging
in the slurry transportation process [9,11,20]. However, the research at this stage does not
consider the influence of the viscosity change of the slurry on the rule of motion of the coal
gangue slurry. The more common perception is that the viscosity of gangue slurry is not
constant [2,12,18]. The viscosity change will inevitably affect the slurry flow and particle
deposition laws. Therefore, it is necessary to study the flow characteristics of slurry with
viscosity change. The motion behavior of gangue slurry in the pipeline results from the
interaction between gangue particles and slurry [14,21,22]. The coupled CFD-DEM method
is used to solve the interaction between particles and fluid [23–28], which is very suitable
for simulating the flow process of gangue slurry in the pipeline [13,19]. The CFD-DEM
method has been utilized in various applications involving the coupling of fluids and solids
in geotechnical engineering [29,30]. It is highly accurate in describing the microscopic
motion patterns of particles in the flow field [31,32].

In this paper, through the simulation of gangue slurries of different particle sizes
during pipeline transportation, we determine the apparent gangue slurry mass concen-
tration, particle size, and viscosity changes, as well as the impact of the pipeline angle
on the deposition behavior of the particles. Then, the correlation between these factors
and the particles deposited in the blockage phenomenon will be determined. The research
results provide a basis for the design of gangue slurry filling systems and the selection of
slurry materials.

2. Analysis of Physical and Chemical Properties of Materials
2.1. Gangue Materials

The gangue used is a mixture of carbonaceous, muddy, sandy mudstone and sand-
stone, of which mudstone accounts for a relatively large proportion. Moreover, the particles
are cohesive after crushing and ball milling to make a slurry. As a component of coal strata,
the gangue is mainly composed of quartz sand and clay minerals. The selected gangue was
scanned by electron microscopy (Zeiss Sigma500, Oberkochen, Germany), and the resulting
scanning electron microscope pictures are shown in Figure 1a,b, magnified 500 times and
2000 times.
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Figure 1. Microstructure of gangue.

From the scanning electron microscope image, it can be seen that there are cracks and
pores on the surface, and the whole surface is broken and in an uneven state. At the same
time, it can be observed that there are many flaky structures and some blocky structures.
In order to analyze the mineral composition further and understand the swelling and
modification of the gangue when it meets water, the gangue was analyzed using the XRD
diffraction test.
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The results of the mineral composition analysis are shown in Figure 2. From the
XRD analysis results, it can be seen that the clay minerals in the coal gangue accounted
for 53.3%. Clay’s illite/smectite formation components swell with water, and kaolinite
and chlorite components mud with water. Both make the gangue particles in the slurry
transport process easy to swell, disintegrate, and mud [33,34]. These phenomena will affect
the overall rheological properties of the gangue slurry, which in turn affects the slurry’s
flow law and the particles’ deposition law.
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2.2. Slurry Fluidity

The rheological properties of gangue slurry at different particle sizes (0.15 mm, 0.5 mm,
1.0 mm, 2.0 mm) for each mass concentration were measured using a rheometer (Antonpa-
MCR30, Graz, Austria). According to the experimental results, the viscosity characteristics
of gangue slurry under different conditions were obtained, as shown in Figure 3.
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Figure 3 shows that the plastic viscosity of the gangue slurry becomes more significant
with the increase in mass concentration. With the increase in the number of particles,
the shear rate increases, and the gangue particles collide, resulting in a shear thickening
phenomenon, and the viscosity of the slurry gradually increases [2,9,18]. At the same time,
there is a concentration interval in which the viscosity growth rate is significant. Before this
interval, the viscosity growth is more moderate. According to the change in viscosity of the
slurry, it can be seen that the rapid viscosity growth occurs when the mass concentration
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is low for the gangue slurry with a small particle size. The smaller the particle size, the
larger the surface area; thus, the gangue slurry is more likely to form a high-viscosity slurry.
When the viscosity of the slurry enters the rapid growth stage, the viscosity of this time
is very sensitive to changes in mass concentration. In order to ensure the fluidity of the
slurry in the pipeline for a long time, we tested gangue with a particle size of 0.15 mm,
using a slurry concentration of 40%; gangue with a particle size of 0.5 mm, using a slurry
concentration of 60%; gangue with a particle size of 1.0 mm, using a slurry concentration of
65%; and gangue with a particle size of 2.0 mm, using a slurry concentration of 70%.

At the same time, the rheology of gangue slurry also changes with time. According
to existing research, the viscosity of some gangue slurry is positively correlated with
time [18]. In pipeline transportation, the longer the time duration, the greater the slurry’s
viscosity. According to the measured values of the viscosity of gangue slurry at different
times [2,11,18], the trend of gangue slurry with time and its fitting curve can be obtained
and is shown in Figure 4.
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3. Numerical Simulation

This chapter uses the CFD-DEM coupling method to simulate the gangue slurry
pipeline flow process and study the gangue slurry based on pipeline slurry flow and particle
deposition laws. This chapter analyses the distribution characteristics of the deposition and
blockage of particles of different particle sizes in the pipeline under viscosity change. It
clarifies the flow law of slurry in the pipeline under viscosity change. A reasonable slurry
transport scheme ensures the stable operation of the pipeline conveying system.

3.1. Control Equations
3.1.1. Fluid Control Equations

The controlling equation for the fluid as a continuous phase consists of the fluid
continuity equation derived based on the law of conservation of mass and the momentum
equation derived based on Newton’s second law [35,36]. The equation is given as

∂(ερf)

∂t
= ∇·(ερfuf) (1)

∂(ερf)

∂t
= ∇·(ερfufuf)− ε∇·(µf∇uf) = −∇p − Ff,p + ερfg (2)

where ρf is the fluid density; uf is the velocity of fluid motion; ε is the porosity of the solid
cell; ∇ is the Laplace operator; p is the fluid pressure; µf is the coefficient of viscosity; and
Ff,p is the force of interaction between the particles and the fluid.
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3.1.2. Particle–Fluid Interaction Forces

Consider that the main interaction forces of the particles subjected to the fluid are
those of the trailing force (Fd) with the pressure gradient force (Fb). The effect of the lift
force, virtual mass force, and other interaction forces can be neglected. The formula is

Ff,p = Fd + Fb (3)

where the pressure gradient force (Fb) is

Fb = −VP∇p (4)

The trailing force (Fd) can be obtained from Equation (5) [37]:

Fd =
βVP
1 − ε

(
uf − up

)
(5)

β is the momentum transfer coefficient with the following expression:

β =

150 µf(1−ε)2

εd2
p

+ 1.75(1 − ε)
ρf
dP

∣∣uf − up
∣∣(ε ≤ 0.8)

3
4 Cd

ε(1−ε)
dP

ρfε
−1.65

∣∣uf − up
∣∣(ε > 0.8)

(6)

Cd =

{
24

ReP

(
1 + 0.15Re0.687

P

)
(ReP ≤ 1000)

0.44(ReP > 1000)
(7)

where Cd is the coefficient of traction; VP is the volume of the particle; dP is the diameter of
the particle; up is the velocity of motion of the particle; and Rep is the Reynolds number of
the particle, whose expression is

ReP =
ερfdP

∣∣uf − up
∣∣

µf
(8)

3.1.3. Particle Control Equations

The discrete element method (DEM) solves the particle’s state of motion. Based on
Newton’s second law and adding the derivation to derive the force between the fluid and
the particles, the particle governing equations were derived [38] (Equation (9)):

mi
dui
dt

=
ni

∑
j=1

Fij + Ff,p,i + FG,i (9)

Ii
dωi
dt

=
ni

∑
j=1

Mij (10)

where ui is the velocity of particle i; Fij is the contact force on particle i; FG;i is the gravi-
tational force on particle i; Ii is the rotational moment of inertia of the particle; ωi is the
rotational angular velocity of particle i; and Mij is the rotational moment on the ith particle
by particle j or by the wall.

3.2. CFD-DEM Coupling Process

In the framework of CFD-DEM coupling, the liquid-phase equations of motion are
calculated using the ANSYS FLUENT program, and the particle-phase equations of motion
are calculated using EDEM. The information is transferred through the CFD-DEM coupling
module (API).

The CFD-DEM coupling process is as follows: the CFD calculates the particle–fluid
interaction forces transferred to the DEM, and the DEM updates the particle’s parameter
information such as position, volume, and velocity; the computational data are updated
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between the CFD and the DEM according to the time step. The particle information is then
submitted to CFD and matched with the fluid cell, after which the flow field calculation is
performed in the next time step. During the coupled CFD-DEM computation process, data
exchange continues to cycle until the end of the computation.

3.3. Fluid Domain Settings

This paper establishes a pipeline model based on constructing the grouting system in
the Zhaozhuang No. 2 shaft coal mine. The grouting holes are all directional drill holes
and the azimuth and inclination of the grouting pipeline change with the increase in depth.
Different well inclination angles (0~90◦) were selected for gangue slurry flow simulation.

The diameter of the surface grouting pipe of the mine is 140 mm, and the diameter of
the grouting pipe in the range of 285 m below the surface is 177.8 mm. The pipe simulation
model is the same as the actual grouting pipe, with an inner diameter of 178 mm. The
actual length of the pipe is too long, so a unit pipe model with a length of 2 m is defined
in combination with the available experimental data [13,17,21]. The mesh of the CFD
simulation model meets the calculation requirements. The boundary conditions at the inlet,
wall, and outlet are set as Velocity—inlet, Wall, and Outflow, respectively. The standard
flow rate of the slurry pump used in the Zhaozhuang No. 2 shaft coal mine is 1.5 m/s, so
the inlet flow rate is set at 1.5 m/s. The dimensions of the pipeline simulation model are
shown in Figure 5. At the same time, according to the gangue slurry viscosity with the time
fitting equation to define the fluid viscosity, the viscosity change UDF is written in the CFD
module and loaded into the fluid calculation to realize that the fluid viscosity grows with
the increase in the existence time. The initial viscosity of gangue slurry was 0.1 Pa·s.
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3.4. Granular Domain Settings

Before making the gangue slurry, the gangue needs to be crushed and ball milled,
alongside other preparation processes. The particle size must meet the requirements before
the slurry can be made. Currently, the most commonly used gangue slurry particle sizes
are less than 0.15 mm [3,10,12]. The stability of large-particle-size gangue slurry pipeline
transport needs to be further analyzed. This study selects four particle sizes: 0.15 mm,
0.5 mm, 1.0 mm, and 2.0 mm. The simulation particle shape is modeled according to eight
actual shapes, which is more in line with the actual movement of particles. The contact
force between particles was modeled by the JKR contact model, which simulates the strong
viscous interaction between particles through the cohesive force between particles. It
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considers the van der Waals force on particle motion and is highly accurate for simulating
wet particles [39,40].

The gangue particle parameters need to be determined before particle domain calcula-
tions [41–43]. The funnel method was utilized to measure the particle angle of repose to
calibrate the particle parameters used in the simulation [19,44]. The measurement process
of the angle of repose of gangue using the funnel method is shown in Figure 6. At the same
time, the same funnel simulation model was used for the particle rest angle experimental
simulation. By comparing the actual measurement results and simulation results, we
were able to adjust and define the optimal particle parameters. The final obtained particle
parameters are shown in Table 1.
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Table 1. Particle parameters.

Parameter Value

Density 2800 kg/m3

Poisson ratio 0.3
Shear Modulus 1 × 107 Pa

Time step 1 × 10−5

Particle–particle
Coefficient of restitution 0.8

Coefficient of static friction 0.2
Coefficient of rolling friction 0.01

Particle–Pipeline
Coefficient of restitution 0.5

Coefficient of static friction 0.5
Coefficient of rolling friction 0.2

4. Analysis of Simulation Results
4.1. Particle Distribution in the Pipeline

Figure 7 shows the spatial distribution of gangue particles through the horizontal
pipeline at an inlet flow rate of 1.5 m/s. The blue particles in the figure are lumpy particles
with a particle size of 2 mm, the green particles are flaky particles with a particle size of
2 mm, the red particles are columnar particles with a particle size of 1mm, and the yellow
particles are prismatic particles with a particle size of 0.5 mm. In order to observe the
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particle distribution more clearly, some of the particles were scaled during post-processing.
By comparing the particle distribution of the pipeline cross-section at 0.2 m and 1.8 m from
the inlet, it can be seen that the gangue particles are more uniformly distributed in the
pipeline in the initial stage when the pipeline conveys gangue slurry. With the continuous
action of subsequent gravity, large particles gradually sink, gathering in the lower half of
the pipeline.

Minerals 2024, 14, x FOR PEER REVIEW 9 of 16 
 

 

particles larger than 1 mm, gravity dominates compared with the shear force of the fluid 
on the particles. Thus, they are gradually deposited at the bottom of the pipeline. This is 
manifested in the macroscopic slurry conveying process as the phenomenon of slurry 
stratification and segregation, which can easily cause pipeline clogging. 

 
Figure 7. Distribution of gangue particles in the pipeline. 

As an essential factor of pipeline clogging, the deposition behavior of gangue parti-
cles with different particle sizes must be further analyzed. In the DEM, the normal force 
applied to the particle is taken to be affected by the overlap and interaction parameters as 
well as the surface energy. The particle surface energy density is the particle energy per 
unit surface area [27,28]. Three surface energy densities (0.1 J/m2, 1 J/m2, 5 J/m2) were se-
lected based on the current research results to simulate the transport of gangue slurry with 
different particle sizes (0.15 mm, 0.5 mm, 1.0 mm, and 2.0 mm) in the pipeline and to 
analyze the distribution of particles for each particle size [27,44]. 

Figure 8 shows the volume fraction distribution of gangue slurry with bound parti-
cles in the pipeline. The amount of particles deposited increases with increasing particle 
size in a nonlinear trend. The larger the surface energy density, the more uniform the 
distribution of particles. When the particle size is 2.0 mm, the particles in the surface en-
ergy density conditions of 0.1 J/m2 and 1.0 J/m2 are in the bottom of the pipeline concen-
tration aggregation area. When the particle size is less than 1.0 mm, the volume fraction 
of gangue slurry changes slightly with the increase in surface energy density. The volume 
fraction at the bottom and the top of the pipeline has little difference, and the particle 
distribution is uniform. By analyzing the difference in volume fraction of the slurry under 
the conditions of a surface energy density of 0.1 J/m2, 1.0 J/m2, and 5.0 J/m2, it can be seen 
that the effect of the surface energy density on the distribution of particles is a nonlinear 
relationship. The deposition behavior of gangue slurry with particle sizes larger than 1.0 
mm in the pipeline can easily lead to clogging. Improving the fluidity of the slurry in the 
pipeline requires the provision of more kinetic energy of the slurry, but this will lead to 
an increase in economic costs. 

Figure 7. Distribution of gangue particles in the pipeline.

Moreover, the distribution of small particles in the pipeline is still relatively uniform.
At the same time, it can be seen that the particles of the same size, due to the different
shapes of the particles, lead to different fluid interactions. There are differences in the
state of motion in the conveying process. In the pipeline conveying process, for large-size
particles larger than 1 mm, gravity dominates compared with the shear force of the fluid
on the particles. Thus, they are gradually deposited at the bottom of the pipeline. This
is manifested in the macroscopic slurry conveying process as the phenomenon of slurry
stratification and segregation, which can easily cause pipeline clogging.

As an essential factor of pipeline clogging, the deposition behavior of gangue particles
with different particle sizes must be further analyzed. In the DEM, the normal force applied
to the particle is taken to be affected by the overlap and interaction parameters as well as
the surface energy. The particle surface energy density is the particle energy per unit surface
area [27,28]. Three surface energy densities (0.1 J/m2, 1 J/m2, 5 J/m2) were selected based
on the current research results to simulate the transport of gangue slurry with different
particle sizes (0.15 mm, 0.5 mm, 1.0 mm, and 2.0 mm) in the pipeline and to analyze the
distribution of particles for each particle size [27,44].

Figure 8 shows the volume fraction distribution of gangue slurry with bound particles
in the pipeline. The amount of particles deposited increases with increasing particle
size in a nonlinear trend. The larger the surface energy density, the more uniform the
distribution of particles. When the particle size is 2.0 mm, the particles in the surface energy
density conditions of 0.1 J/m2 and 1.0 J/m2 are in the bottom of the pipeline concentration
aggregation area. When the particle size is less than 1.0 mm, the volume fraction of gangue
slurry changes slightly with the increase in surface energy density. The volume fraction at
the bottom and the top of the pipeline has little difference, and the particle distribution is
uniform. By analyzing the difference in volume fraction of the slurry under the conditions
of a surface energy density of 0.1 J/m2, 1.0 J/m2, and 5.0 J/m2, it can be seen that the effect
of the surface energy density on the distribution of particles is a nonlinear relationship.
The deposition behavior of gangue slurry with particle sizes larger than 1.0 mm in the
pipeline can easily lead to clogging. Improving the fluidity of the slurry in the pipeline
requires the provision of more kinetic energy of the slurry, but this will lead to an increase
in economic costs.
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4.2. Pipe Angle

Figure 9 shows the particle distribution at 1 m from the inlet at 5 min at five different
well inclination angles (0◦, 30◦, 45◦, 60◦, 90◦). The pipeline was divided into four equal
areas, from top to bottom, along the diameter of S1, S2, S3, and S4. It can be seen from
Figure 9 that when the gangue slurry is transported downhole, gravity gradually plays a
dominant role in the transportation of particles with the increase in the well inclination
angle. For different angles, the overall distribution of particles is more uniform. When the
well inclination angle is 0◦~45◦, the gangue particles are evenly distributed in the pipeline.
There is almost no change in the particle distribution between 0◦ and 30◦ well inclination
angles. After the well inclination angle is greater than 45◦, the distribution pattern of
particles in the pipeline changes. The number of particles in areas S1 and S2 decreases,
the number of particles in areas S3 and S4 increases, and the particles are shifted to the
bottom of the pipeline. When the well inclination angle is 60◦, the particles in the pipeline
shift, and the proportion of particles in regions S3 and S4 to the total number of particles
increases. When the well inclination angle is 90◦, the number of particles in the S3 and S4
areas is much larger than in the S1 and S2 areas. At this time, the difference in the number
of gangue particles in different locations is increasing. The particles in the pipeline are
subjected to an increasing angle between the fluid force and the force of gravity. Gravity
causes the particles to continuously undergo sedimentation, inhibiting the uniform particle
distribution in the pipeline, and it quickly causes pipeline blockage.
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4.3. Particle Motion Law under Viscosity Change

Figure 10 compares the particle motion state under two conditions of constant viscosity
(η = 0.6 Pa·s) and viscosity variation (η = 0.6~1.1 Pa·s). The inlet flow rate was set to
1.5 m/s, and the distribution characteristics of the particles in the tube at 5 min and 10 min
were selected.
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From the analysis of Figure 10, it can be seen that the viscosity of the slurry affects
the distribution characteristics of particles in the pipeline. In the range of 1.0~1.4 m from
the inlet, when the viscosity of the slurry is small, the particles with large particle sizes
and particle clusters are mainly distributed below the pipeline’s centerline. The upper
part of the pipeline primarily consists of particles with small particle sizes, which leads to
particle stratification and segregation in the pipeline. It can be seen that when the viscosity
of the slurry is constant, the movement of particles in the pipeline is more stable. With the
increase in time, the distribution of particles in the pipeline did not occur with structural
changes. Under viscosity change, the motion state of particles in the pipeline changed
with time. When t = 5 min, the particles in the pipeline were stratified, and the particle
clusters with larger sizes were mainly distributed below the centerline of the pipeline;
however, when t = 10 min, the particles inside the pipeline were uniformly distributed,
and the particle stratification phenomenon did not occur. This is because the increase in
viscosity leads to a more significant shear force on the particles. When the viscosity is
small, gravity’s influence on large-size particles is more prominent, so the particles settle
during transport; when the viscosity becomes large, the particles subjected to shear force
become larger. Compared with gravity, shear force dominates the particle’s state of motion.
Currently, the internal distribution of particles in the pipeline is uniform. However, the
viscosity of gangue slurry can not be increased indefinitely. If the viscosity of the slurry is
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too large, the slurry receives more resistance along the way. However, it will reduce the
kinetic energy of the slurry, which in turn affects the movement of gangue particles.

4.4. Pressure Loss along the Pipeline

Figure 11 shows the relationship between the pressure drop along the pipeline and the
inlet flow rate of the horizontal pipeline at different mass concentrations. Under the same
mass concentration condition, the pressure drop along the pipeline is positively correlated
with the gangue slurry flow rate. With the increase in the gangue slurry mass concentration,
the pressure drop along the pipe shows a growing trend. When the flow rate is 1.5 m/s,
the pressure drop along the pipe with a 40% mass concentration is 435 Pa/m, the pressure
drop along the pipe with a 70% mass concentration is 1217 Pa/m, and the pressure drop
along the pipe with an 80% mass concentration is 2634 Pa/m. After the mass concentration
is more than 70%, the pressure drop along the pipe is very sensitive to changes in the mass
concentration and shows a sharp increase.
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Figure 12 shows the relationship between different well inclination angles and the
pressure drop along the pipeline when the inlet velocity is 1.5 m/s. From Figure 9, it can be
seen that gravity plays a positive role in the transportation of gangue slurry in the pipeline
when the well inclination angle is 0◦~90◦. The pressure drop increases with the increase in
the well inclination angle and reaches the maximum value when the pipeline is transported
horizontally (well inclination angle of 90◦). The pressure drop along the pipeline at 60◦ is
2.7 times greater than the pressure drop along the pipeline at 0◦. The pressure drop along
the pipeline at 90◦ is 3.5 times the pressure drop along the pipeline at 0◦.
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4.5. Particle Deposition Behavior

Figure 13 shows the deposition behavior of particles at 0.3 m to 0.9 m from the inlet
with time under the conditions of an inlet flow rate of 1.5 m/s and viscosity variation. The
morphology of the sediments gradually changes with the increase in the deposition time.
The deposition of particles results from the combined effect of the interaction between the
particles, the fluid, and the surface of the pipe. In the beginning stage, the particles are
uniformly distributed inside the pipeline. It can be seen that with the increase in time, large
particles are gradually deposited at the bottom of the pipe, and the range of deposition
gradually expands. The sediment at the bottom of the pipeline has an intercepting effect on
the particles, which are retained in front of the sediment, further increasing the number
of particles deposited. Behind the sediment, there is a blank area where no particles are
deposited due to the obstruction of the sediment. The fluid force on the particles dominates
for small-sized particles, and the number of deposits is small. The interception by the
sediment at the bottom is the main form of deposition. At the same time, it can be seen that
the force between the particles forming the deposit cannot form a stable structure. When
t = 100 min, the contact area between the sediment and the fluid is large; the force between
the particles can not resist the fluid force, and the sediment will be decomposed. At this
time, the number of deposits will be reduced substantially.
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Figure 14 shows the number of deposited particles from 0.3 m to 0.9 m from the inlet
at different moments. The number of deposited particles showed an overall linear positive
correlation with the deposition time. With time, the number of deposited particles first
increased slowly and linearly. When t = 40 min, the number of deposits began to increase
sharply. When t = 110 min, the number of deposited particles reached a certain number
and again showed a slow increase. At the same time, the disintegration of the sediment by
the fluid force decreased the number of deposited particles. When t = 100~120 min, the
growth rate of the particles decreased due to the disintegration of many particles, which
were taken away. The number of particles deposited is affected by gravity, fluid interaction
force, cohesion between particles, and interaction between particles and the pipe surface.
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5. Conclusions

This paper investigates the deposition behavior of gangue slurry in a pipeline. The
numerical simulation method explains the distribution law of gangue particles in the
pipeline under the viscosity change. The research results can be used as a reference for the
design and study of gangue slurry grouting systems. The main conclusions are as follows:

(1) Clay minerals in the gangue account for 53.3%, resulting in the gangue particles
in the slurry conveying process being prone to expansion, disintegration, and sludging.
This will lead to a change in the overall rheological properties of the gangue slurry. The
plastic viscosity of the gangue slurry constantly becomes more significant with the increase
in mass concentration. The rheology of gangue slurry also changes with time. The viscosity
of the slurry is positively correlated with time.

(2) The effect of particle surface energy density on particle distribution is a nonlinear
relationship. Gangue slurry with particle sizes greater than 1.0 mm in the pipeline can easily
lead to pipeline clogging. Increasing the flow of the slurry through the pipe requires more
kinetic energy to be supplied to the slurry. However, this will increase the economic cost.

(3) With the increase in the well inclination angle, the angle between the fluid force
and gravity on the particles in the pipeline increases. Gravity causes the particles to
continuously undergo sedimentation, inhibiting the particles’ uniform distribution in
the pipeline.

(4) The increase in viscosity will lead to a larger shear force on particles. When the
viscosity is small, the effect of gravity on large-size particles is more prominent. The
particles are transported at the same time as settlement occurs. When the viscosity becomes
large, the particles are subjected to shear force and become larger. Compared with gravity,
shear force dominates the particle movement state. At that time, the internal distribution of
particles inside the pipeline is uniform.

(5) The pressure drop along the pipeline is positively correlated with the slurry flow
rate. With the increase in the gangue slurry quality concentration, the pipeline along the
pressure drop shows a growing trend. When the flow rate is 1.5 m/s, the pressure drop
along the pipeline with a 40% mass concentration is 435 Pa/m, the pressure drop along
the pipeline with a 70% mass concentration is 1217 Pa/m, and the pressure drop along the
pipeline with a 80% mass concentration is 2634 Pa/m. The pressure drop increases with the
increase in the slope angle of the well and reaches the maximum value when the pipeline is
horizontally transported.

(6) The morphology of the sediments in the pipeline changes gradually with the
increase in the deposition time. The number of deposited particles shows an overall linear
positive correlation with the deposition time. With the increase in time, the number of
deposited particles first increases slowly, showing a linear relationship. Then, the number
of deposits begins to increase rapidly. When the number of deposits reaches a certain
number, the trend again shows a slow increase.
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