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Abstract: Crude steel production in China exceeds 1 billion tons per year, and steel slag production
accounts for 10%–15% of the crude steel mass. Although slag presents certain hydration activity, it is
still difficult to be used as a building material because the particles contain a large amount of active
calcium oxide and magnesium oxide, which are easy to hydrate and expand besides presenting low
stability. The heap stock is increasing at a rate of 80 Mt/a because of the limitation of application
scenarios. Moreover, every 1 ton of crude steel is associated with an emission of 1.8 tons of carbon
dioxide (CO2), which becomes a greenhouse gas, because it cannot be reused at the moment. In this
investigation, CO2 was used to cure steel slag particles, and the coupling mineralization reaction
between them was used to convert active calcium oxide and magnesium oxide in steel slag into
carbonate forms and, thus, allow the processing of steel slag particles into fine building aggregate.
Two particle size ranges of 0.6–2.36 and 2.36–4.75 mm were selected as representative particle sizes.
Mineralization was carried out under a temperature of 25 ◦C, relative humidity of 75%, a CO2

concentration of 20%, and a time of 24 h. The carbon fixation rate of steel slag was 9.68%. The quality
of steel slag fine aggregate as a product met the GB/T 14684-2011 construction sand grade II standard.
The application of this technology is expected to improve the stability of steel slag particles, the
utilization rate as a building material, and the resource utilization level of CO2. It is expected to
realize the full, high-value-added resource utilization of steel slag and CO2 absorption and solve the
supply shortage problem of fine aggregate for construction in China, which has potential economic
and environmental benefits.

Keywords: steel slag; carbon dioxide; aggregate; carbonization; stability

1. Introduction

China is one of the major global producers of iron and steel, and large amounts of
carbon dioxide (CO2) and steel slag are emitted in the manufacture of iron and steel. In 2021,
China’s emissions from the energy and industry exceeded 11.9 billion tons, accounting
for 33% of the global total. According to the National Bureau of National Statistics, the
output of crude steel in China reached 1.03 billion tons in 2021, accounting for 52.8% of the
world’s total production. The mass of steel slag accounts for 10%–15% of crude steel mass.
In recent years, with urban infrastructure construction and development, the demand
for sand and stone aggregates has further increased, and the output of natural sand and
stone showed a trend of short supply, thus requiring the processing and manufacturing of
artificial aggregate with the same strength as natural sand and stone to meet the production
requirements. Further comprehensive utilization of steel slag, improvements in the effective
utilization rate of steel slag, and the production of green, safe, environmentally friendly, and
highly valuable steel slag products have substantial environmental benefits and economic
benefits and are worth further exploration [1,2].
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As a challenge, the solid waste produced in steelmaking increases yearly, and the envi-
ronmental problem caused by CO2 has become much more serious recently. The rationality
of utilizing steel slag and CO2 together is increasing. Steel slag has high carbonization
reactivity, reacts with CO2, and applies carbonation technology. The solid storage of CO2
in the form of mineral absorption may absorb a large amount of CO2 [3]. This method
has the advantages of thermodynamic feasibility, high reactivity, and strong fixing ability.
Carbonating steel slag activates the RO phase inside [4], improves its mechanical properties
and volume stability [5], and plays a positive role in the practical application of carbon-
ated steel slag [6,7]. Yu, J., et al. [8] studied CO2 capture in steel slag and proved that its
carbonization reaction is controlled by reaction kinetics, as well as the diffusion of gaseous
CO2, and steel slag can capture and permanently store CO2. Tian, S.C. et al. [9] studied
direct gas–solid carbonization under different working conditions to determine the storage
of CO2 and found that temperature is an important factor affecting the reaction rate and
carbonation conversion rate of steel slag.

Steel slag can be used for various purposes in practical applications, including fine
and coarse aggregates for concrete in the construction industry, asphalt pavement materials
for highways, and filling materials for various products. Steel slag can also be used as
coarse or fine aggregates for concrete, and concrete containing steel slag aggregate exhibits
satisfactory compressive and flexural strength [10–12]. A scholar [13] achieved the balance
between the hydration activity and volume stability of steel slag by adjusting the accelerated
precarbonization conditions, and proved the volume stability of steel slag depends largely
on the time of accelerated precarbonization. Pang, B., et al. [14] studied the carbonized steel
slag particles used to replace limestone, quartz, and other common natural aggregates to
detect the strength of concrete test blocks. The free CaO content of steel slag was reduced
from 7% to less than 1% in 3 h after carbonization treatment, and the compressive strength
of concrete was increased by 20% in 28 days, which showed the feasibility of carbonized
steel slag as an aggregate. Ghouleh, Z., et al. [15] produced artificial aggregates and proved
CO2 can be utilized to prime waste steel slag for use as an aggregate in concrete.

However, limited studies have focused on the mass production of the direct carbon-
ation of steel slag as an aggregate additive to building materials, the factors limiting the
carbonation and solidification conditions of aggregate are not clear, and product charac-
teristics have not been studied. Therefore, based on the coupling reaction between steel
slag and carbon dioxide, this paper studied the influence of the increase in carbonation
and solidification time on the carbonation degree of steel slag materials. It also determined
the maximum CO2 storage rate under the most suitable conditions mainly to absorb a
large amount of CO2 in order to reduce steel slag damage to the environment and CO2
pollution in the atmosphere. At the same time, according to the relevant standards, the me-
chanical properties and stability of carbonized steel slag were tested to determine whether
carbonized steel slag can be widely used as an aggregate in the field of building materials.

2. Materials and Methods
2.1. Experimental Materials

The material used in the experiment was steel slag. The main chemical composition,
bulk mineral composition, and particle number of the raw material were analyzed using an
X-ray fluorescence spectrometer (XRF) and a mineral dissociation analyzer (MLA), and the
results are shown in Table 1. In steel slag, the chemical composition of CaO is the highest,
followed by Fe2O3, with a small amount of SiO2, MgO, and Al2O3. The content of basic
metal oxide represented by CaO and MgO is more than 45.41%. In the mineral phase,
the content of calcium ferrite mineral composition is the highest, accounting for 23.13%,
and the number of particles is 9240, followed by calcium silicate mineral, accounting for
21.78%. Calcium oxide, magnesium oxide, and other minerals are also present. Among
them, calcium silicate, calcium oxide, magnesium oxide, and calcium iron garnet can react
with CO2 gas, proving that the original steel slag contains active components to fix the CO2
gas, and solidify the gas with the form of stable carbonate in mineral systems.
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Table 1. Chemical compositions and components of the steel slag studied/wt %.

Chemical
Compositions Steel Slag Minerals Steel Slag Grain Count

CaO 37.40 Calcium ferrite 23.13 9240
Fe2O3 32.75 Calcium silicate 21.78 4923
SiO2 10.56 Ferric oxide 14.99 5861
MgO 8.01 Calcium aluminate 11.63 2586
Al2O3 5.95 Magnesium oxide 9.96 269
P2O5 1.39 Andradite 2.68 446
MnO 1.29 Calcium oxide 1.79 1115
TiO2 0.60 Others 14.04 5977
SO3 0.33

V2O5 0.13
Cr2O3 0.11
Others 1.48

The main drugs and equipment used in the experiment were phenolphthalein (Guang-
dong Yunxing Biotechnology Co., Ltd.) (Shaoguan, China), CO2 gas (Beijing Millennium
Capital Gas Co., Ltd.) (Beijing, China), electronic scale, 500 mL volumetric bottle, boil-
ing box, autoclaved kettle (YZF-2S), length ratio instrument, concrete carbonation test
box, electric blast drying oven, vibrating standard sieve machine, cement pulp mixer,
microcomputer-controlled pressure testing machine, standard constant temperature, and
humidity curing box.

2.2. Experimental Methods

First, nine particle materials with a size of at least 20–30 mm were obtained. The
particle surface was brushed clean in the ascending order of particle size into the carbonized
curing box. The curing box temperature was 25 ◦C, relative humidity was 75%, and CO2
concentration was 20%. Under this condition, curing was performed for 6 h, 12 h, 18 h, 24 h,
and 3 days successively. After reaching the curing time of carbonization, a corresponding
material was obtained and cut with a grinding wheel, the surface was wiped clean, and a
phenolic phthalein indicator was sprayed to test carbonization depth.

Mineralization was carried out under a temperature of 25 ◦C, relative humidity of
75%, a CO2 concentration of 20%, and a carbonization period of 6, 12, 18, and 24 h. Then,
enough steel slag particles with a diameter of 0.6–2.36 mm were placed in a curing box for
carbonization curing at 6, 12, 18, and 24 h, denoted as S1–S4, and uncarbonized steel slag
samples were denoted as S0.

2.3. Research Methods
2.3.1. Carbonization Rate

The 1% phenolphthalein indicator was sprayed on the cut surface of carbonized
particles. After spraying, the color of the carbonized part did not change, while the non-
carbonized part turned purple red. When the boundary between the carbonized part and
the non-carbonized part became obvious, a vernier caliper was used to measure the vertical
distance between the intersection boundary of the carbonized part and the non-carbonized
part to the aggregate surface. The values were measured at least thrice, the average value
was calculated, and the data were recorded.

2.3.2. CO2 Retention Rate

The total carbon of steel slag was tested using a carbon–sulfur analyzer (Ncs Testing
Technology Co., Ltd., CS-2800, Beijing, China) the mass of steel slag was weighted before
and after carbonization, and the total carbon in the steel slag before and after carbonization
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(C) was calculated. The carbon dioxide content (C0) was calculated using Equation (1),
as follows:

C0 =
C

12/44
(1)

The CO2 retention rate (R) of the steel slag was calculated using Equation (2):

R =
C0

G
× 100% (2)

where G is the mass of steel slag before carbonization;

2.3.3. Stability Performance Test

The process was based on the Test Method for Stability of Steel Slag (GB/T 24175-2009).
A certain quality of steel slag with a particle size of 4.75–2.36 mm was weighed, rinsed with
water to remove floating dust and impurities on the surface, completely wet, placed in a
pressure autoclast under 2.0 MPa saturated steam pressure for 3 h, and dried to a constant
weight. The mass, m0, was recorded. The dried steel slag was passed through a 1.18 mm
sieve and placed on a vibrating sieve machine for 20 min of vibration. The screen mass, m1,
was determined, and the autoclave chalked ratio was calculated.

2.3.4. Mechanical Property Test

1. The apparent density test was based on Sand for Construction (GB/T 14684-2011).
First, 300 g of steel slag sample was placed in a volumetric bottle. Water was added to
the scale line of 500 mL. The volumetric bottle was rotated and shaken. The cap was
tightly plugged, the bottle was allowed to stand for 24 h, and the mass was determined.
Then, the water and the sample were poured out, the volumetric bottle was washed,
water was poured into the volumetric bottle to the 500 mL scale, the bottle was tightly
plugged, the mass was determined, and the apparent density was calculated.

2. The soundness test was based on Sand for Construction (GB/T 14684-2011). First,
330 g of single-grade steel slag sample was poured into the assembled compression
steel die, and placed on the press support plate at a speed of 500 N per second
loading, to 25 kN stable load 5 s, unloading at the same speed. Then, the steel slag
sample was poured out, and the lower limit screen for screening was used. The sieve
allowance was weighed, the amount was passed through, and the crushing index
value was calculated.

2.3.5. Mineral Phase Change Test

XRF (PANalytical B.V., Axios MAX, China) and MLA (FEI, FEI MLA 250, Hillsboro,
OR, USA) were used to analyze the main chemical composition, bulk mineral composition,
and particle number of raw materials. An X-ray diffractometer (XRD) (Rigaku, UltimaIV,
Tokyo, Japan) was used to analyze the mineral phase changes of each group of carbonized
materials. A Fourier infrared spectrometer (FTIR) (NICOLET, iS10, USA) was used to
analyze the changes in the molecular chemical structure and chemical bond inside the
aggregate. A thermogravimetric analyzer (TG) (TA Instruments, TGA Q500, USA) was used
to obtain the pyrolysis mass loss and data, infer the material composition, and measure
the degree of carbonization macroscopically. A scanning electron microscope (Hitachi,
S-3400N, Tokyo, Japan) was used to observe the microstructure of the steel slag aggregate
before and after carbonization, and the structure was analyzed. EDS (EDAX, Appllo X,
USA) was used to analyze the type and content of microcomponent elements.

3. Results
3.1. Carbonization Rate

Particles with a diameter of 20–30 mm after carbonization were obtained, cut in the
appropriate position, and sprayed with a phenolphthalein indicator. The discoloration of
the section surface was observed. Figure 1 shows the specific discoloration and the mea-
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surement results of the depth of carbonization. Excluding dense particles and individual
differences, the experimental results clearly show that the increase in carbonization time
plays a positive role in increasing the carbonization depth inside the test block. With the
gradual increase in carbonation time, the particle carbonation depth gradually increased
from 0.69 mm to 2.73 mm, and with the increase in carbonation time and the deepening
trend, the effect was improved.
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Figure 1. Influence of carbonation time on particle carbonation depth. (a) Section discoloration of
particles carbonized for 6 h; (b) section discoloration of particles carbonized for 24 h; (c) section
discoloration of particles carbonized for 3 days.

3.2. CO2 Retention Rate

Mineralization was carried out under a temperature of 25 ◦C, relative humidity of
75%, and a CO2 concentration of 20% for the carbonized curing of materials with different
grain grades. The relationship between retention rate and carbonization time among
different grain-size materials is shown in Figure 2. According to the curve change, the
adsorption capacity of the fine-grained material (0.6–2.36 mm) is better than that of the
coarse-grained material (2.36–4.75 mm). The carbonation effect of the particles with a size
range of 0.6–2.36 mm can reach 9.40% after 24 h of carbonation treatment, and a 1.51%
carbonization effect can be achieved for particles with a size range of 2.36–4.75 mm.

3.3. Pressure Vaporization Rate

Figure 3 shows the pressure vaporization rate results of coarse-grained material
(4.75–2.36 mm). The test results show that the pressure vaporization rate of steel slag
aggregate (4.75–2.36 mm) decreased from 9.57% to 4.72% and 4.20% after carbonization
curing for 18 and 24 h, respectively. The basic oxides in the structure, such as magnesium
oxide and calcium oxide, can effectively absorb the CO2 gas around the system and generate
stable carbonate to improve the stability. Moreover, with an increase in the carbonization
curing time, the pulverization rate of steel slag particles displayed a downward trend under
a saturated steam pressure of 2.0 MPa, indicating that the stability of steel slag particles
was substantially enhanced.
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3.4. Mechanical Property Test

Table 2 shows the apparent density and firmness of samples S3 and S4 after car-
bonization curing. The test results show that after 18 and 24 h of carbonization curing, the
apparent density and firmness of the steel slag meet the class II standard in GB/T 14684.
The longer the carbonization time is, the better the soundness of the material is.



Minerals 2023, 13, 795 7 of 13

Table 2. Test results of the apparent density and firmness of steel slag after carbonization curing.

Sample Apparent Density
ρ/kg/m3 Test Results

Apparent density test
(0.6–2.36 mm) S3 2974.15 Reached the standard

S4 2983.05 Reached the standard

Sample

Grade i
single-particle-level

crushing index value
Yi/%

Test category

Sturdiness test
(1.18–2.36 mm) S3 26.66 III

S4 23.35 II

Figure 4 shows the stability test results of materials carbonized for 18 and 24 h under
a pressure of 0.5 MPa and a treatment time of 1.5 h. The test results show slight local
pitting and spalling phenomena on the surface of the specimen, but the whole specimen is
intact. Under a pressure of 0.5 MPa and a treatment time of 1.5 h, the autoclave method
for soundness increased with an increase in the carbonation curing time, and the volume
stability increased. Considering the presence of f-CaO and f-MgO components in steel slag,
Ca(OH)2 and Mg(OH)2 were gradually generated in the hydration reaction, resulting in the
volume change of the block before and after the reaction and then local pitting and cracks
on the surface of the specimen.
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3.5. Mineral Phase Change
3.5.1. Microscopic Analysis of Mineral Composition

Figure 5 shows steel slag particles with a size of 0.6–2.36 mm and the scanning electron
microscopy (SEM) images of three groups of materials cured by different carbonization
times, labeled raw ore S0 (not carbonized), S3 (carbonized for 18 h), and S4 (carbonization
for 24 h). Figure 5a shows that the surface of the particles is uneven, the volume is different,
the shape is irregular, and the structure is loose. After carbonization for 18 h, lamellar
crystals appeared on the surface of the particles, as shown in Figure 5b; the flatter the
surface is, the smaller the gap is. After 24 h carbonization and curing, as shown in Figure 5c,
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relatively complete crystals appeared, and void holes were reduced. The surface of mineral
particles is a flat and thin sheet, spheroid crystals appear, the structure is dense, and the
surface is complete.
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Figure 5. Scanning electron microscopy (SEM) images of the samples and associated energy-
dispersive spectroscopy (EDS) results. (a) SEM image of uncarbonized steel slag sample S0; (b) SEM
image of steel slag sample after 18 h of carbonization S3; (c) SEM image of steel slag sample after 24 h
of carbonization S4; (d) EDS result of uncarbonized steel slag sample S0; (e) EDS result of steel slag
sample after 18 h of carbonization S3; (f) EDS result of steel slag sample after 24 h of carbonization S4.
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3.5.2. Test Results of Microscopic Changes in Mineral Phases

1. XRD Analysis

Figure 6 shows steel slag particles with a size of 0.6–2.36 mm and the XRD pattern of
three groups of materials cured under different carbonization times, labeled raw ore S0
(not carbonized), S3 (carbonized for 18 h), and S4 (carbonization for 24 h). The XRD pattern
shows that the undisturbed steel slag contains more silicate minerals when it has not been
carbonated. At a temperature of 25 ◦C, relative humidity of 75%, and a CO2 concentration of
20%, after carbonation curing, the CaO in the sample particles and the calcium-rich mineral
components react, the calcium mineral phase diffraction peak decreased, calcium carbonate
diffraction peak appeared, and a calcium carbonate substance was generated (CaCO3,
PDF-#05-0586). The calcium ferrite groups emerged progressively, predominantly in the
form of siderite (FeCO3, PDF-#08-0133). After 24 h of carbonization curing, the particle
components absorbed CO2 and generated carbonate substances, resulting in the appearance
of magnesium carbonate products, such as artinite (Mg2CO3(OH)2 • 3H2O, PDF-#06-0484)
and magnesite(MgCO3, PDF-#08-0479). This process resulted in CO2 absorption and
improved the strength of granular materials.
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Figure 6. XRD pattern for S0, S3, and S4.

2. TG-DTG analysis

Figure 7 represents the S0, S3, and S4 TG-DTG analysis results. The mass difference of
50 ◦C–350 ◦C is caused by the evaporation of interlayer water in the C-S-H structure [16],
while that at 200 ◦C–500 ◦C is due to the loss of a hydroxyl group in the product structure [17],
and that between 500 ◦C–800 ◦C is mainly related to carbonate materials [18,19]. The endother-
mic peaks of dehydration and decomposition of carbonate materials in the C-S-H structure of
uncarbonized steel slag are considerably smaller than those in the hydroxyl structure, indicat-
ing the presence of a certain amount of hydration products in the slag, but the amount is small.
After carbonation curing, the peaks of the three substances in steel slag aggregate changed
substantially. The peaks in the range of 500 ◦C–800 ◦C changed the most, indicating that the
carbonate products showed an increasing trend, and the increment was CO2 absorption. The
carbon contents in S0, S3, and S4 were 1.89%, 8.60%, and 9.68%, respectively.
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tion times.

3. FTIR analysis

Figure 8 shows the S0, S3, and S4 infrared absorption spectra of the sample. The
relative strength of the infrared absorption peak reflects the content of the group. The
greater the peak strength of a position in the figure is, the higher the content of the group
in the position is. The absorption band at 3460–3644 cm−1 represents the O–H stretching
vibration band belonging to the water molecule products of hydration in the steel slag
structure. The samples carbonized for 18 h (S3) and 24 h (S4) showed carbonic acid–base
groups, and the absorption vibration peaks were observed at 1455, 1447, and 875.28 cm−1.
The increase in the relative strength of the absorption vibration peak of the carbonate base
group can reflect the increase in its content, which proved the formation of carbonate
substances, and the quality of carbonated products increased with an extension of the
carbonization time. Moreover, the absorption and vibration peak of the Si–O group was
988 cm−1. The results agree with the XRD and TG-DTG analysis.
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4. Discussion

In this investigation, the coupling mineralization reaction between carbon dioxide
and steel slag was used to store carbon dioxide in steel slag, while the active calcium oxide
and magnesium oxide in steel slag were converted into carbonate. The results show that
with the increase in the reaction time, more carbonated products were generated, and
the physical properties were improved. This method can transform steel slag into fine
building aggregate.

The carbonization experimental results clearly show that the increase in the carboniza-
tion time played a positive role in increasing the carbonization depth inside the test block.
Based on the analysis of the carbonation depth of mortar made from steel slag powder, with
the increase in the carbonation time and the deepening trend, the effect was improved [20].
Therefore, time is an important factor for carbonation. Excluding dense particles, individ-
ual differences, and other factors, fine-grained materials such as sand (<4.75 mm) require
6–24 h for carbonization. Gravel (>4.75 mm) and other coarse-grained materials need more
than 24 h. At the beginning of the reaction, the reaction time was short, the carbonization
depth was shallow, and the rate was fast. In the later stage of the reaction, the carbonization
depth deepened, but the rate decreased slightly as the reaction progressed. This finding was
obtained possibly because the carbonization products generated by the reaction increased
and blocked part of the pores, so that the gas in the later stage could not enter deeper into
the particles, which reduced the reaction rate and the production of carbonate materials.

The carbonation effect of 0.6–2.36 mm particles reached 9.40% after 24 h of carbon-
ation treatment, while that of particles with a size range of 2.36–4.75 mm reached 1.51%.
Considering the greater activity of fine particles than coarser ones, the experimental results
indicate that the smaller the particle size of the steel slag is, the higher the carbon fixation
rate is. This result is consistent with the results obtained in a study by Huijgen, W. [21]
on the carbonization behavior of steel slag in water suspension. Based on the results of
carbonization curing, steel slag particles of different grades can absorb CO2 at different
degrees, and with the growth in the carbonation curing time, the CO2 of steel slag aggregate
particles’ retention rate also increases, which can effectively retain CO2 to seal CO2 gas in
steel slag.

The concentration of carbon dioxide gas utilized in this experiment reached 20%, which
is comparable to the flue gas concentration found in actual industrial production. Therefore,
if effectively optimized under current conditions, steel slag can serve as a novel medium
for flue gas recovery that not only absorbs discharged carbon dioxide into the atmosphere
but also functions as an effective aggregate. Meanwhile, the practical implementation
is uncomplicated, that is, by simply co-locating carbon dioxide flue gas and reaction
waste steel slag within a single reactor, the application can easily be achieved without any
superfluous or complex procedures. Based on the existing research, further investigation is
required to improve the firmness and stability of excessively small particles, and the key
factors and laws affecting the carbonization reaction rate of main calcium-bearing mineral
phase and free phase in steel slag need to be investigated. The carbonization rate of steel
slag also needs to be thoroughly investigated under the coupling effect of multiple factors,
such as particle size, CO2 concentration, pressure, and relative humidity, to optimize the
process parameters, improve carbonization efficiency, and reduce costs. At the same time,
the relationship between the carbonization degree of steel slag and its stability and how
to determine the safe residual amount of uncarbonized free CaO and MgO in steel slag
remains to be further studied.

5. Conclusions

By using the coupling mineralization reaction between steel slag and carbon dioxide,
active calcium oxide and magnesium oxide in steel slag can be converted into stable
carbonate by absorbing carbon dioxide and retaining gas. To a certain extent, it can reduce
the content of carbon dioxide gas and absorb substantial amounts of steel slag to alleviate
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the accumulation of land and achieve a reasonable and effective production of building
materials aggregate for the purpose of comprehensive utilization.

When 0.6–2.36 mm grade materials were carbonized and cured, with an increase in the
carbonization time, the CO2 storage of steel slag particles increased, the content of carbonate
substances generated increased, and particle soundness and stability were improved. This
finding helped in overcoming the reuse problem caused by the instability of steel slag.
After 18 h of carbonization curing, the autoclave chalked ratio of steel slag aggregate
reached 4.72%, and the apparent density and firmness of carbonized steel slag material
(1.18–2.36 mm) as an aggregate met the standards. After 24 h of carbonization curing, the
autoclave chalked ratio of steel slag aggregate decreased from 9.57% to 4.2%. Moreover,
the apparent density and firmness of carbonized steel slag material (0.6–2.36 mm) as an
aggregate also met the standards. The CO2 absorption and carbonization curing time of
this kind of steel slag show the same increasing trend; the longer the time is, the greater
the absorption amount is. Carbon curing of steel slag can not only store a large amount of
CO2, but also improve the mechanical properties and stability to a certain extent. Under
the experimental conditions, it can reach the standard of sand for construction and be used
as an aggregate in building materials.
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