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Abstract: The source of iron material and the mineralization process of iron skarn deposits within
the eastern North China Craton are ambiguous. In this study, we present new mineral chemical
data of the Jinling skarn deposit, located in western Shandong Province, east China. Based on
the petrography study and mineral chemical data, we suggest that the Jinling iron skarn deposit
is hydrothermal and the metallogenic iron is enriched by leaching of Fe-rich fluids derived from
primitive magmatic melt from the solidified diorites. The Jinling iron skarn deposit formed as a
result of several mineralization processes: (1) Fe-rich hydrothermal fluids exsolved from a hydrous
parental magma that was characterized by high iron content, oxygen fugacity (f O2), and salinity;
(2) the Fe content of the fluids was augmented during the alkali metasomatism stage via the leaching
of Fe from the solidified dioritic rocks; (3) diopside and garnet in skarns formed under relatively
alkaline and oxidizing conditions during the later prograde skarn stage; (4) during the retrograde
skarn stage, amphibole, chlorite, epidote, phlogopite, serpentine, biotite, and chlorite formed under
more oxidizing conditions, and subsequent mixing of the Fe-rich fluids with meteoric water triggered
the precipitation of the massive magnetite; and (5) the final sulfide–carbonate stage was involved in
the formation of carbonate and sulfide minerals as a result of a change in conditions from oxidizing
to reducing.

Keywords: skarn minerals; redox condition; mineralizing fluids; hydrothermalism; source of ore
material

1. Introduction

Iron plays an important role from both an economic and geological perspective, so it
is necessary to carry out innovative research on iron ore-forming theory. There are various
iron deposits, consisting of magmatic, structural, sedimentary, and metamorphic units [1].
Iron deposits may have a different genesis, such as skarn iron deposits (magmatic type),
which are commonly related to hydrothermal metasomatism [2], while marine ooidal
ironstones (sedimentary type) have hydrothermal and/or biogenic origin [3,4]. Iron skarn
deposits are a significant source of high-grade iron ores in China. These deposits are
distributed along downthrown fault-controlled belts in southwestern Hebei, northeastern
Henan, southeastern Shanxi, Subei, Wanbei, and western Shandong in the North China
Craton (NCC) (Figure 1). These deposits are hosted at the contact between Paleozoic
carbonate rocks and Mesozoic plutonic rocks [2]. Isotope geochronological data measured
for skarn and hydrothermal minerals (such as sphene, zircon, and allanite) formed contem-
poraneously with mineralization in these skarn deposits in eastern North China Craton
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show consistent ages that constrain the time of ore formation to 137–127 Ma [5–8]. Two
models have been proposed to explain the genesis of these iron skarn deposits: (1) Fe
enrichment by the exsolution of Fe-rich fluids from the evolving silicate melt, followed
by enrichment of Fe resulting from alkali metasomatism of the shallow plutons [9–12];
and (2) Fe enrichment of hydrothermal fluid by leaching from solidified plutons and/or
sedimentary wall rocks, with magnetite precipitation occurring as a result of changes in
the physicochemical conditions of the fluid [13]. Studies of skarn ore magnetite have pro-
posed various genetic models of these iron skarn deposits, including ore-forming magma
injection and magmatic–hydrothermal mineralization [14,15]. Although the ore-forming
stages have been discussed in existing research, the mineralization process and variation
of metallogenic conditions in the different ore-forming stages of these iron skarn deposits
need to be depicted in detail.
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Figure 1. Tectonic sketch map of the North China Craton (modified from Zhao [16]), and distribution
of iron skarn deposits (modified from Zhao et al. [2]) and Lower Cretaceous magmatic rocks (modified
from Zhang et al. [17]).

Accordingly, the source of iron material, the mineralization process, and the link
between magmatism and mineralization in these iron skarn deposits within the eastern
North China Craton (NCC) remain ambiguous. The Jinling deposit is one of the largest
iron skarn deposits in western Shandong Province, China. This study presents new mineral
chemical data for feldspar, amphibole, garnet, clinopyroxene, and magnetite from the
Jinling pluton and iron skarn deposit. These results provide mineralogical insights into the
mineralization process and metallogenic conditions of iron skarn deposits within the NCC.

2. Geological Background and Sample Description
2.1. Regional Geology

The NCC is one of the world’s oldest cratons and underwent large-scale changes as
a result of the amalgamation of the Western and Eastern blocks along the Trans–North
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China Orogen during the Paleoproterozoic [18,19] (Figure 1) and continuing through to the
destruction of these blocks during the late Mesozoic. The basement of the NCC comprises
mainly Archean to Paleoproterozoic tonalite–trondhjemite–granodiorite (TTG) gneiss that
underwent amphibolite- to granulite-facies metamorphism and was subsequently uncon-
formably overlain by Mesoproterozoic to Cenozoic cover successions [20,21]. Western
Shandong is located in the southeastern NCC and is bounded to the east by the translitho-
spheric Tan–Lu Fault (Figure 2a). Sedimentary rocks in the area are dominated by Paleozoic
carbonates and clastic rocks. Mesozoic magmatic rocks intruded the Precambrian base-
ment rocks and sedimentary strata from the Late Triassic (~225 Ma) to the Late Cretaceous
(~73 Ma), with a peak during the Early Cretaceous (132–112 Ma) [17]. Structural features
in western Shandong comprise folds and ductile shear belts in the Precambrian basement,
synclines and brachyanticlines in the Paleozoic strata, and NW- to NNE-trending faults.
Mesozoic mineralization and magmatic activity were associated with faults that formed as
a result of the reactivation of the Tan–Lu Fault.
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Figure 2. (a) Simplified geological map of western Shandong (modified from Lan et al. [22]).
(b) Sketch map of the Jinling pluton and distribution of the Jinling iron skarn deposits (modified from
Hao [23]).

2.2. Geology of the Jinling Iron Skarn Deposit

The Jinling typical iron skarn deposit of the NCC is associated with dioritic plutons and
Paleozoic carbonates. It occurs in the Jinling brachyanticline, with the hosted iron ore bodies
being distributed along its periphery (Figure 2b). The core of the brachyanticline comprises
the ore-related Jinling pluton, which is composed predominantly of basic–intermediate
diorites, weakly alkaline diorites, and dike rocks [23].

Fourteen ore bodies have been identified in the Houjiazhuang and Wangwangzhuang
areas. The lenticular to stratoid ore bodies are distributed along the contact zone and range
in thickness from 2.5 to 25.0 m (Figure 3). These ores are characterized by Fe grades of
>51 wt.% and associated with copper, cobalt, and other components. The ore bodies of the
Jinling iron skarn deposit are located at the contact between the Mesozoic dioritic rocks and
the Ordovician Majiagou Formation carbonates. Three alteration or metamorphic zones
have been identified (from the center of the pluton to the wall rocks): the alkali alteration
zone, the contact metamorphic zone (the skarn zone), and the thermal contact metamorphic
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zone. The alkali (sodic) alteration zone is restricted to the dioritic rocks. The wall rocks were
metamorphosed to recrystallized limestone and marble in the thermal contact metamorphic
zone (Figure 4). Skarn formation resulted from the intense metasomatism that occurred
at the contact between the diorites and carbonates (i.e., in the contact metamorphic zone).
As a result, the ore bodies are distributed close to the wall rocks within the skarn zone
(Figure 3) and mainly consist of magnetite with minor minerals, such as diopside, garnet,
epidote, amphibole, chlorite, calcite, chalcopyrite, and pyrite.
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3. Petrography
3.1. Jinling Ore-Related Pluton

The Jinling ore-related pluton occurs within Ordovician limestone in the core of the
Jinling brachyanticline (Figure 2b). The lithology of this pluton is complex, comprising
pyroxene diorite, hornblende diorite, biotite diorite, quartz diorite, and monzonite. This
complexity arises from the multiple pulses of magma that formed the pluton [23]. Their
distribution is illustrated in Figure 2b. Alkali metasomatism, particularly sodic alteration,
is common in these rocks (Figure 5a–c). Although most of the Jinling iron ore bodies occur
at the contact between monzonite and Ordovician limestone, some are found at the contact
between hornblende diorite and Carboniferous rocks (Figure 2b).
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Figure 5. Petrographic features of plutonic rocks of the Jinling pluton. (a) Intensely albitized diorites
show the replacement of plagioclase by albite. (b,c) Small albite and biotite grains have partially
replaced hornblende and pyroxene resulting from alkali metasomatism. All photos were taken under
crossed polarizers. Abbreviations: Ab = albite, Hb = hornblende, Bt = biotite, Cpx = clinopyroxene,
Mag = magnetite, Pl = plagioclase.

3.2. Skarn and Iron Ore of the Jinling Deposit

The skarn and iron ore bodies in the Jinling deposit are the product of intense meta-
somatism (Figure 3). The skarn, which is 0.5–30.0 m thick, is developed at the base of the
ore bodies (Figure 3) and is composed of garnet, diopside, epidote, amphibole, phlogopite,
chlorite, serpentine, and calcite.

Three types of iron ore occur in the Jinling deposit: massive, banded, and disseminated.
Massive ore is the dominant type, whereas disseminated and banded iron ores are less
common. Massive iron ore comprises >80 wt.% subhedral to euhedral magnetites of
0.1 to 5.0 mm in size. Massive magnetites characterized by smaller grain sizes coexist with
biotite, chlorite, and serpentine (Figure 6b,c,f,h), whereas those characterized by larger
grain sizes coexist with altered diopside, garnet, and calcite (Figure 6g,i,j). Disseminated
iron ore occurs mainly in fractures within altered plutonic rocks and skarn, and comprises
<50 wt.% subhedral–granular magnetites of 0.01 to 0.20 mm in size (Figure 6a). Banded
iron ore occurs along two sides of the massive ores. The iron-rich bands are 0.05 to
0.20 mm thick and contain ~60 wt.% magnetite (Figure 6d). Many of the magnetite grains
in the banded ores have enclosed early anhedral and metasomatized diopside (Figure 6e).
A small amount of euhedral pyrite and chalcopyrite occur as veins that cut the massive
ores locally (Figure 6k,l).
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Figure 6. Various types of iron ore and characteristics of wall rocks in the Jinling iron skarn deposit.
(a) Disseminated magnetite that is interstitial to early euhedral diopside. (b,c) Massive magnetite
crystals coexisted with biotite and chlorite. (d) Banded magnetite. (e) Banded magnetite that has
enclosed an early anhedral crystal of diopside that was metasomatized. (f) Massive magnetite crystals
coexisted with fibrous serpentine that has completely replaced early diopside. (g) Metasomatic
texture formed between early subhedral–euhedral diopside, garnet, and late massive magnetite.
(h) The residual metasomatic texture between diopside and fibrous serpentine coexisted with massive
magnetite. (i,j) Late calcite has partially replaced euhedral massive magnetite. (k,l) Euhedral pyrite
and chalcopyrite veins in iron ore. Photos (a,b,d,e,g,i,j) were taken under open polarizers and
(c,f,h) taken under crossed polarizers. Abbreviations: Bt = biotite, Cal = calcite, Chl = chlorite,
Ccp = chalcopyrite, Di = diopside, Grt = garnet, Mag = magnetite, Py = pyrite, Srp = serpentine.
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3.3. Mineral Paragenetic Sequence

Based on field mapping and petrography, the mineralization in the Jinling deposit can
be divided into four stages: (i) alkali metasomatism, (ii) prograde skarn, (iii) retrograde
skarn, and (iv) sulfide–carbonate.

During the alkali metasomatism stage, plagioclase, amphibole, and pyroxene in the
diorites were partially replaced by small subhedral–euhedral albite and biotite grains
(Figure 5a–c).

The minerals that formed during the prograde skarn stage comprise diopside–garnet
± disseminated and banded magnetite. Two types of diopside are recognized based on
color: colorless and light green (Figure 7a). The colorless diopsides formed first and have
been partially replaced by garnet and magnetite (Figure 6g), whereas the light-green diop-
sides formed later along the margins of the colorless variety and coexist with subhedral gar-
net (Figure 7a). The diopsides have been intensely altered and partially replaced by amphi-
bole, epidote, biotite, and quartz (Figure 7b–g). Zoned andradite and the colorless diopside
have been partially replaced by later massive magnetite (Figures 6g and 7h,i). Disseminated
and banded magnetite grains that formed during the prograde skarn stage are subhedral–
anhedral, occur interstitial to diopside (Figure 6a,e), and constitute 50 wt.%–70 wt.%
of the rock.

The minerals that formed during the retrograde skarn stage comprise amphibole–
epidote, phlogopite, serpentine, biotite, chlorite, and massive magnetite. Amphibole is
divided into two compositional types. Alkali amphiboles coexist with massive magnetite
and occur as needle-shaped to fibrous aggregates (Figures 6b,c and 7j). Ca-rich amphiboles
occur as subhedral–euhedral crystals, coexist with phlogopite and epidote, and are par-
tially replaced by late pyrite and calcite (Figure 7b,c,e). The subhedral–euhedral epidote
coexisting with Ca-rich amphibole has partially replaced the early diopside (Figure 7c,d),
and replacement relict textures between serpentine and diopside have also been preserved
(Figure 6f,h). In contrast, the fine-grained euhedral phlogopite, serpentine, and biotite that
coexist with massive magnetite occur interstitially to the early diopside (Figures 6b,c and 7f,g).
Subhedral–euhedral massive magnetites that coexist with alkali amphibole, biotite, chlo-
rite, and serpentine (Figure 6b,c,f,h) have locally modified early diopside and garnet
(Figure 7i).

The minerals that formed during the sulfide–carbonate stage comprise calcite, quartz,
pyrite, and chalcopyrite. Anhedral calcite and quartz are the predominant minerals and
occur interstitially to skarn minerals (Figures 6i,j and 7a,b,d,f,i–l). Euhedral pyrite associated
with anhedral calcite occurs interstitially to diopside and Ca-rich amphibole (Figure 7e,l).
Euhedral pyrite and chalcopyrite also occur in veins that cut the ore (Figure 6k,l).

The mineral paragenetic sequence is illustrated in Figure 8.
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Figure 7. Paragenetic association of minerals from the different stages of mineralization. (a) Two
types of euhedral diopside formed during the prograde skarn stage. Light-green diopside, which
coexisted with garnet, grew along the margins of the colorless diopside. (b) Subhedral–euhedral
Ca-rich amphibole that formed during the retrograde skarn stage. The amphibole replaced the early
diopside and was partially replaced by late pyrite and calcite. (c,d) Diopside was replaced by late
amphibole and epidote. (e) Early diopside was replaced by late amphibole, both of which were
subsequently partially replaced by late pyrite and calcite. (f) Anhedral diopside was metasomatized
and partially replaced by biotite and quartz. (g) Epidote, phlogopite, chlorite, calcite, and quartz
have partially replaced early diopside. Note the association of phlogopite with Ca-rich amphibole.
(h) Diopside was replaced by zoned andradite. (i) Massive magnetite was partially replaced by calcite
that was modified by earlier diopside and garnet. (j) Massive magnetite was partially replaced by
late anhedral quartz. (k) Euhedral epidote was partially replaced by late anhedral calcite, within
which twin lamellae are parallel to the angle bisector of the two heterotropic cleavages. (l) Pyrite
associated with calcite that partially replaced euhedral amphibole. Photos (a–d,g,i) were taken under
open polarizer, and (e,f,h,j,k) were taken under crossed polarizers. in the figure caption. Abbrevi-
ations: Amp = amphibole, Bt = biotite, Calc-amp = calcic amphibole, Cal = calcite, Chl = chlorite,
Di = diopside, Di1 = colourless diopside, Di2 = light green diopside, Ep = epidote, Grt = garnet,
Mag = magnetite, Phl = phlogopite, Py = pyrite, Qz = quartz.



Minerals 2022, 12, 1152 9 of 23

Minerals 2022, 12, x FOR PEER REVIEW 9 of 24 

 
Figure 8. Mineral paragenesis for the Jinling iron skarn deposit. 

4. Analytical Methods 
Chemical analyses of representative magmatic and mineralized skarn minerals were 

performed at the Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Jilin 
University, China. Mineral chemical analyses were carried out by using an electron mi-
croprobe analyzer (EMPA, JXA-8200, JEOL produced in Showajima, Tokyo, Japan) with 
five wavelength-dispersive spectrometers. Natural and synthetic minerals, glass, and 
pure oxides were taken as standards. Counting times were the 20 s at the peak and in the 
background. The applied acceleration voltage was 15 kV, the beam current was 10 nA, 
and the beam diameter for all analyses was typically 2–5 μm. ZAF-correction calculation 
was carried out during the quantitative analysis. 

5. Analytical Results 
5.1. Feldspar and Clinopyroxene in the Jinling Diorites 

Chemical compositions of representative magmatic feldspar and clinopyroxene from 
Jinling diorites are presented in Table 1 and Supplementary Table S1. 

The feldspars are characterized by high Na2O (4.84 wt.%–11.36 wt.%), low CaO (0.05 
wt.%–0.24 wt.%), and highly variable K2O (0.06 wt.%–11.17 wt.%). Lower total wt.% (ca. 
98 wt.%) is due to albitization (Figure 5a). Numbers of cations based on 8 O. They range 
in composition from 0.22 wt.% to 1.25 wt.%An, 39.61 wt.% to 99.24 wt.% Ab, and 0.35 wt.% 
to 60.17 wt.% Or. Plagioclase and alkali feldspar are both albitized, with the latter being 

Figure 8. Mineral paragenesis for the Jinling iron skarn deposit.

4. Analytical Methods

Chemical analyses of representative magmatic and mineralized skarn minerals were
performed at the Key Laboratory of Mineral Resources Evaluation in Northeast Asia,
Jilin University, China. Mineral chemical analyses were carried out by using an electron
microprobe analyzer (EMPA, JXA-8200, JEOL produced in Showajima, Tokyo, Japan) with
five wavelength-dispersive spectrometers. Natural and synthetic minerals, glass, and pure
oxides were taken as standards. Counting times were the 20 s at the peak and in the
background. The applied acceleration voltage was 15 kV, the beam current was 10 nA, and
the beam diameter for all analyses was typically 2–5 µm. ZAF-correction calculation was
carried out during the quantitative analysis.

5. Analytical Results
5.1. Feldspar and Clinopyroxene in the Jinling Diorites

Chemical compositions of representative magmatic feldspar and clinopyroxene from
Jinling diorites are presented in Table 1 and Supplementary Table S1.
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Table 1. EPMA data for magmatic feldspar from Jinling diorites.

Sample No. JL-fsp1 JL-fsp2 JL-fsp3 JL-fsp4 JL-fsp5 JL-fsp6 JL-fsp7 JL-fsp8

SiO2 67.13 66.46 61.03 67.64 61.71 64.06 64.21 67.91
TiO2 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.04

Al2O3 19.15 20.23 23.61 19.62 23.44 18.47 20.69 19.05
Cr2O3 0.01 0.00 0.03 0.00 0.00 0.00 0.03 0.00
FeO 0.11 0.03 0.50 0.07 0.48 0.10 0.44 0.04
MnO 0.00 0.05 0.06 0.00 0.06 0.00 0.01 0.00
MgO 0.02 0.07 0.50 0.01 0.29 0.00 0.22 0.00
CaO 0.17 0.09 0.15 0.18 0.24 0.05 0.23 0.09

Na2O 11.32 10.49 7.33 10.84 8.11 4.84 7.48 11.36
K2O 0.09 0.81 3.86 0.66 3.69 11.17 4.91 0.06
Total 98.00 98.23 97.14 99.02 98.02 98.69 98.22 98.55

Si 2.99 2.96 2.79 2.99 2.80 2.97 2.91 3.01
Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Al 1.01 1.06 1.27 1.02 1.25 1.01 1.11 0.99
Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fe2+ 0.00 0.00 0.02 0.00 0.02 0.00 0.02 0.00
Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mg 0.00 0.01 0.03 0.00 0.02 0.00 0.02 0.00
Ca 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.00
Na 0.98 0.91 0.65 0.93 0.71 0.44 0.66 0.98
K 0.01 0.05 0.23 0.04 0.21 0.66 0.28 0.00

Total 5.00 4.99 5.00 4.98 5.03 5.08 5.00 4.99
An 0.82 0.45 0.83 0.88 1.25 0.22 1.16 0.41
Ab 98.68 94.74 73.64 95.33 75.98 39.61 69.01 99.24
Or 0.50 4.80 25.53 3.79 22.77 60.17 29.82 0.35

The feldspars are characterized by high Na2O (4.84 wt.%–11.36 wt.%), low CaO
(0.05 wt.%–0.24 wt.%), and highly variable K2O (0.06 wt.%–11.17 wt.%). Lower total wt.%
(ca. 98 wt.%) is due to albitization (Figure 5a). Numbers of cations based on 8 O. They
range in composition from 0.22 wt.% to 1.25 wt.%An, 39.61 wt.% to 99.24 wt.% Ab, and
0.35 wt.% to 60.17 wt.% Or. Plagioclase and alkali feldspar are both albitized, with the latter
being more intensely altered. In addition, both of these minerals exhibit compositional
changes from the core to the rim (Figure 9a), with the alkali feldspar having higher Or and
lower An content in the core than the rim (Figure 9b).
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in the transitional region between diopside and augite (Figure 10a). 

Figure 9. BSE images (a,b) and compositional (c,d) variation of feldspars from Jinling diorites.

The clinopyroxenes exhibit a compositional range of 43.27 wt.%–45.04 wt.% Wo,
42.33 wt.%–44.12 wt.% En, 9.62 wt.%–11.47 wt.% Fs, and 1.14 wt.%–2.02 wt.% Ac (Table 2).
In the pyroxene classification ternary diagram, the clinopyroxene samples are plotted in
the transitional region between diopside and augite (Figure 10a).
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Table 2. Average composition and compositional range of EPMA data for clinopyroxenes from
Jinling diorites (JL-cpx1–4), skarn, and ore (JL-cpx5–54, samples JL-cpx5–36 are colorless and samples
JL-cpx37–54 are light-green in the Figure 7a).

Sample No. JL-cpx1–4 JL-cpx5–35 JL-cpx36–54

Range (n = 4) Ave Range (n = 31) Ave Range (n = 19) Ave

SiO2 52.71–54.35 53.51 49.51–56.56 54.08 48.44–54.37 52.84
TiO2 0.07–0.32 0.16 0.00–0.13 0.03 0.00–0.19 0.12

Al2O3 0.39–1.15 0.66 0.16–5.33 1.16 0.45–5.45 1.31
Cr2O3 0.00–0.04 0.02 0.00–0.15 0.02 0.00–0.11 0.03
FeO 5.81–6.96 6.54 0.26–4.51 2.16 6.10–10.23 7.67
MnO 0.21–0.42 0.33 0.00–0.26 0.07 0.15–0.40 0.23
MgO 15.00–15.76 15.45 14.09–18.54 16.93 10.19–14.48 13.40
CaO 21.36–22.52 21.90 24.54–26.22 25.30 22.65–24.56 23.68

Na2O 0.31–0.56 0.42 0.00–0.24 0.10 0.15–0.86 0.50
K2O 0.00–0.01 0.00 0.00–0.04 0.02 0.00–0.12 0.02
Total 98.49–99.64 98.98 98.22–102.64 99.86 98.24–101.34 99.80

Si 1.97–2.01 2.00 1.85–2.01 1.97 1.87–2.01 1.97
Ti 0.00–0.01 0.00 0.00 0.00 0.00–0.01 0.00

IVAl 0.00–0.03 0.01 0.00–0.15 0.03 0.00–0.13 0.03
VIAl 0.02 0.02 0.00–0.09 0.02 0.01–0.11 0.03
Cr 0.00 0.00 0.00 0.00 0.00 0.00

Fe3+ 0.00–0.04 0.01 0.00–0.10 0.03 0.00–0.10 0.04
Fe2+ 0.17–0.21 0.19 0.00–0.11 0.04 0.14–0.27 0.20
Mn 0.01 0.01 0.00–0.01 0.00 0.00–0.01 0.01
Mg 0.84–0.88 0.86 0.79–1.00 0.92 0.59–0.80 0.75
Ca 0.86–0.89 0.88 0.96–1.01 0.99 0.91–0.99 0.95
Na 0.02–0.04 0.03 0.00–0.02 0.01 0.01–0.06 0.04
K 0.00 0.00 0.00 0.00 0.00–0.01 0.00

Total 3.98–4.03 4.00 3.98–4.05 4.01 3.99–4.04 4.01
Wo 43.27–45.04 44.22 48.49–51.88 49.85 45.65–50.05 47.96
En 42.33–44.12 43.41 40.48–49.93 46.36 30.54–40.31 37.74
Fs 9.62–11.47 10.83 0.39–7.31 3.44 9.74–17.34 12.47
Ac 1.14–2.02 1.54 0.1–0.87 0.35 0.54–3.14 1.83
Di 79.00–83.00 81.25 88.00–100.00 95.39 71.00–84.00 78.33
Hd 16.00–20.00 18.00 0.00–12.00 4.32 15.00–28.00 20.94
Jo 1.00 1.00 0.00–1.00 0.13 1.00 0.94

Minerals 2022, 12, x FOR PEER REVIEW 11 of 24 

Table 2. Average composition and compositional range of EPMA data for clinopyroxenes from Jin-
ling diorites (JL-cpx1–4), skarn, and ore (JL-cpx5–54, samples JL-cpx5–36 are colorless and samples 
JL-cpx37–54 are light-green in the Figure 7a). 

Sample 
No. 

JL-cpx1–4 JL-cpx5–35  JL-cpx36–54  

 Range (n = 4) Ave Range (n = 31) Ave Range (n = 19) Ave 
SiO2 52.71–54.35 53.51  49.51–56.56 54.08  48.44–54.37  52.84  
TiO2 0.07–0.32 0.16  0.00–0.13 0.03  0.00–0.19  0.12  
Al2O3 0.39–1.15 0.66  0.16–5.33 1.16  0.45–5.45  1.31  
Cr2O3 0.00–0.04 0.02  0.00–0.15 0.02  0.00–0.11  0.03  
FeO 5.81–6.96 6.54  0.26–4.51 2.16  6.10–10.23  7.67  
MnO 0.21–0.42 0.33  0.00–0.26 0.07  0.15–0.40  0.23  
MgO 15.00–15.76 15.45  14.09–18.54 16.93  10.19–14.48  13.40  
CaO 21.36–22.52 21.90  24.54–26.22 25.30  22.65–24.56  23.68  
Na2O 0.31–0.56 0.42  0.00–0.24 0.10  0.15–0.86  0.50  
K2O 0.00–0.01 0.00  0.00–0.04 0.02  0.00–0.12  0.02  
Total 98.49–99.64 98.98  98.22–102.64 99.86  98.24–101.34  99.80  

Si 1.97–2.01 2.00  1.85–2.01 1.97  1.87–2.01  1.97  
Ti 0.00–0.01 0.00  0.00 0.00  0.00–0.01  0.00 

IVAl 0.00–0.03 0.01  0.00–0.15 0.03  0.00–0.13  0.03  
VIAl 0.02 0.02  0.00–0.09 0.02  0.01–0.11  0.03  
Cr 0.00 0.00  0.00 0.00  0.00  0.00 

Fe3+ 0.00–0.04 0.01  0.00–0.10 0.03  0.00–0.10  0.04  
Fe2+ 0.17–0.21 0.19  0.00–0.11 0.04  0.14–0.27  0.20  
Mn 0.01 0.01  0.00–0.01 0.00  0.00–0.01  0.01  
Mg 0.84–0.88 0.86  0.79–1.00 0.92  0.59–0.80  0.75  
Ca 0.86–0.89 0.88  0.96–1.01 0.99  0.91–0.99  0.95  
Na 0.02–0.04 0.03  0.00–0.02 0.01  0.01–0.06  0.04  
K 0.00 0.00  0.00 0.00  0.00–0.01  0.00  

Total 3.98–4.03 4.00  3.98–4.05 4.01  3.99–4.04  4.01  
Wo 43.27–45.04 44.22  48.49–51.88 49.85  45.65–50.05  47.96  
En 42.33–44.12 43.41  40.48–49.93 46.36  30.54–40.31  37.74  
Fs 9.62–11.47 10.83  0.39–7.31 3.44  9.74–17.34  12.47  
Ac 1.14–2.02 1.54  0.1–0.87 0.35  0.54–3.14  1.83  
Di 79.00–83.00 81.25  88.00–100.00 95.39  71.00–84.00 78.33  
Hd 16.00–20.00 18.00  0.00–12.00 4.32  15.00–28.00 20.94  
Jo 1.00 1.00 0.00–1.00 0.13  1.00 0.94  

 
Figure 10. Classification diagram of clinopyroxenes from Jinling diorites, skarn, and ore (a), modi-
fied from Morimoto et al. [24]) and the compositional fields for garnet in Fe skarn deposits (Meinert 
et al. [25]) are shown in the diagram for comparison (b). 

  

Figure 10. Classification diagram of clinopyroxenes from Jinling diorites, skarn, and ore (a), modified
from Morimoto et al. [24]) and the compositional fields for garnet in Fe skarn deposits (Meinert et al. [25])
are shown in the diagram for comparison (b).



Minerals 2022, 12, 1152 12 of 23

5.2. Clinopyroxene, Garnet, and Amphibole in Skarn and Iron Ore

The clinopyroxene from skarn and ores of Jinling iron skarn deposit can be divided into
two types of colorless and light green according to the different petrographic characteristics.
Chemical compositions of these two types of clinopyroxene are reported in Supplemen-
tary Table S1. The numbers of cations based on 6 O and cations are normalized to four
in total. The colorless clinopyroxenes in the Jinling iron skarn have a compositional range of
48.49 wt.%–51.88 wt.% Wo, 40.48 wt.%–49.93 wt.% En, 0.39 wt.%–7.31 wt.% Fs,
0.1 wt.%–1.87 wt.% Ac, 0.88 wt.%–1.00 wt.% Di, 0 wt.%–0.12 wt.% Hd, and 0 wt.%–0.01 wt.%
Jo. The light-green clinopyroxenes have a compositional range of 45.65 wt.%–50.05 wt.% Wo,
30.54 wt.%–40.31 wt.% En, 9.74 wt.%–17.34 wt.% Fs, 0.54 wt.%–3.14 wt.% Ac,
0.71 wt.%–0.84 wt.% Di, 0.15 wt.%–0.28 wt.% Hd, and 0.01 wt.% Jo. Although the light-green
clinopyroxenes have higher FeO and lower MgO and CaO content than the colorless variety,
all of the clinopyroxenes are classified as diopside (Figure 10a) and are plotted largely in
the iron skarn compositional field on a Jo–Di–Hd discrimination diagram (Figure 10b).

Garnets in the skarn exhibit weak core-to-rim zoning (Figures 7h and 11a). The
compositional ranges of the cores (n = 17 spots) and rims (n = 5 spots) were summarized
(Table 3). The numbers based on the basis of 12 O and cations are normalized to eight in
total. The calculation of Fe2+ and Fe3+ was completed with the AX program [26]. High
total wt.% of garnet including 103 wt.% at max may be related to the selection of standard
sample and/or the working status of the instrument. The cores of the garnets range in
composition from 90.78 wt.% to 99.57 wt.% Adr, 0.00 wt.% to 8.19 wt.% Grs, and 0.30 wt.%
to 2.21 wt.% (Alm + Prp + Sps), whereas the rims range from 61.06 wt.% to 68.49 wt.% Adr,
30.78 wt.% to 38.16 wt.% Grs, and 0.44 wt.% to 0.78 wt.%Alm + Prp + Sps. The rims of
the garnets are enriched in Al and depleted in Fe compared with the cores (Figure 11c,d).
These compositional relationships are similar to those observed in garnets from other Fe
skarn deposits worldwide (Figure 11b).
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variation (b,d) of garnets from Jinling skarn and ore and the compositional fields for garnet in Fe
skarn deposits (Meinert et al. [25]) are shown in the diagram for comparison.
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Table 3. EPMA data for garnets from skarn and ore Jinling deposit (JL-grt7–11 from the rim and
others from the core).

Sample
No. JL-grt1 JL-grt2 JL-grt3 JL-grt4 JL-grt5 JL-grt6 JL-grt7 JL-grt8 JL-grt9 JL-grt10 JL-grt11

SiO2 35.80 36.90 36.45 36.32 36.69 36.41 37.58 37.98 37.35 38.03 37.54
Al2O3 0.18 0.20 0.08 0.10 0.22 0.28 6.26 7.28 8.02 7.41 7.06
TiO2 0.00 0.01 0.00 0.00 0.00 0.00 0.16 0.04 0.00 0.05 0.00

Fe2O3 31.53 30.08 31.10 31.75 31.47 32.47 22.12 19.90 19.24 19.13 21.58
FeO 0.29 1.61 1.11 0.53 0.69 0.30 0.38 1.07 0.62 1.69 0.20
MnO 0.12 0.11 0.10 0.09 0.10 0.16 0.26 0.25 0.25 0.08 0.12
MgO 0.01 0.03 0.01 0.03 0.02 0.02 0.02 0.00 0.00 0.00 0.03
CaO 33.16 33.04 32.96 33.18 33.55 33.39 34.43 34.17 34.18 34.08 34.75

Na2O 0.02 0.01 0.03 0.05 0.01 0.05 0.03 0.06 0.00 0.02 0.04
K2O 0.00 0.00 0.00 0.01 0.00 0.03 0.04 0.02 0.00 0.00 0.01

Cr2O3 0.00 0.01 0.01 0.03 0.03 0.00 0.02 0.00 0.07 0.00 0.04
Total 101.12 101.99 101.86 102.08 102.78 103.09 101.29 100.77 99.72 100.49 101.36

Si 3.00 3.05 3.03 3.01 3.02 2.99 3.03 3.06 3.03 3.07 3.01
Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
Al 0.02 0.02 0.01 0.01 0.02 0.03 0.59 0.69 0.77 0.71 0.67
Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fe3+ 1.99 1.87 1.94 1.98 1.95 2.01 1.34 1.21 1.17 1.16 1.30
Fe2+ 0.02 0.11 0.08 0.04 0.05 0.02 0.03 0.07 0.04 0.11 0.01
Mn 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.01 0.01
Mg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ca 2.97 2.93 2.93 2.95 2.96 2.94 2.97 2.95 2.97 2.94 2.99
Na 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.01
K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total 8.01 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00
Uv 0.00 0.04 0.04 0.11 0.10 0.00 0.05 0.00 0.21 0.00 0.13
Adr 99.13 98.99 99.57 99.39 98.82 98.64 68.49 64.65 61.06 64.27 65.81
Prp 0.05 0.12 0.04 0.11 0.08 0.06 0.10 0.00 0.00 0.00 0.11
Sps 0.29 0.26 0.25 0.21 0.23 0.37 0.59 0.58 0.57 0.19 0.27
Grs 0.00 0.00 0.00 0.00 0.00 0.00 30.78 34.76 38.16 35.29 33.68
Alm 0.68 0.89 1.38 1.18 0.83 1.74 0.00 0.00 0.00 0.25 0.00

Sample
No. JL-grt12 JL-grt13 JL-grt14 JL-grt15 JL-grt16 JL-grt17 JL-grt18 JL-grt19 JL-grt20 JL-grt21 JL-grt22

SiO2 36.96 36.37 38.37 36.17 36.11 36.81 36.41 36.01 36.89 36.84 36.22
Al2O3 0.25 1.88 7.65 0.64 0.91 0.40 0.26 0.27 0.24 0.20 0.23
TiO2 0.00 0.00 0.04 0.04 0.00 0.00 0.00 0.00 0.00 0.04 0.00

Fe2O3 29.97 28.73 19.40 28.97 31.6 30.84 31.59 30.96 30.25 30.25 31.37
FeO 1.09 0.61 2.21 1.13 0.29 0.43 0.29 0.28 1.20 1.07 0.29
MnO 0.08 0.07 0.07 0.08 0.08 0.09 0.04 0.06 0.09 0.13 0.15
MgO 0.01 0.00 0.04 0.04 0.04 0.04 0.06 0.03 0.04 0.09 0.00
CaO 33.57 33.31 33.91 32.60 33.67 33.78 33.85 33.71 33.34 33.10 33.29

Na2O 0.00 0.02 0.02 0.05 0.01 0.03 0.06 0.01 0.00 0.04 0.05
K2O 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.05 0.01

Cr2O3 0.02 0.00 0.00 0.14 0.00 0.03 0.03 0.05 0.00 0.05 0.01
Total 101.96 101.00 101.72 99.86 102.71 102.45 102.59 101.39 102.06 101.84 101.60

Si 3.06 3.01 3.06 3.05 2.97 3.03 3.00 3.00 3.05 3.05 3.01
Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Al 0.02 0.18 0.72 0.06 0.09 0.04 0.03 0.03 0.02 0.02 0.02
Cr 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fe3+ 1.86 1.79 1.16 1.84 1.96 1.91 1.96 1.94 1.88 1.88 1.96
Fe2+ 0.08 0.04 0.15 0.08 0.02 0.03 0.02 0.02 0.08 0.07 0.02
Mn 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01
Mg 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.00
Ca 2.97 2.96 2.90 2.94 2.97 2.98 2.99 3.01 2.95 2.94 2.97
Na 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.01 0.01
K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00

Total 8.00 8.00 8.00 8.00 8.01 8.00 8.01 8.01 8.00 8.00 8.00
Uv 0.07 0.00 0.00 0.46 0.00 0.10 0.10 0.15 0.00 0.15 0.03
Adr 97.64 90.78 63.57 96.32 95.63 97.31 98.65 97.50 98.84 98.86 98.83
Prp 0.05 0.00 0.17 0.16 0.15 0.18 0.26 0.11 0.18 0.36 0.00
Sps 0.18 0.16 0.15 0.18 0.19 0.22 0.09 0.15 0.20 0.30 0.35
Grs 2.05 8.19 34.22 2.47 2.45 2.20 0.78 2.10 0.53 0.12 0.35
Alm 0.00 0.87 1.89 0.42 1.57 0.00 0.12 0.00 0.24 0.20 0.43

Chemical compositions of amphibole from skarn and iron ore are reported in Table 4.
F and Cl are below the detection limit. The numbers based on the basis of 23 O and
cations are normalized to 16 in total. The calculation of Fe2+ and Fe3+ was completed
by AX program [26]. The grain sizes of amphiboles in skarn and iron ore are 2–8 mm in
length. The amphiboles are characterized by high CaO (12.27–12.83 wt.%) and low Na2O
(2.32–3.25 wt.%) content. These amphiboles are classified as pargasite based on their Si
(5.54–5.93), CaB (1.96–2.02), and (Na + K)A (0.95–1.06) values (Figure 12) and the fact that
VIAl (0.56–0.81) is greater than or equal to Fe3+ (0.42–0.74).
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Table 4. EPMA data for amphiboles from Jinling skarn and ore.

Sample
No.

JL-
amp1

JL-
amp2

JL-
amp3

JL-
amp4

JL-
amp5

JL-
amp6

JL-
amp7

JL-
amp8

JL-
amp9

JL-
amp10

JL-
amp11

JL-
amp12

JL-
amp13

JL-
amp14

SiO2 39.25 38.35 39.75 37.23 39.68 39.26 38.68 39.62 38.99 38.12 38.18 38.58 38.78 38.42
TiO2 0.71 0.43 0.34 0.34 0.37 0.30 0.37 0.23 0.50 0.52 0.40 0.46 0.26 0.22

Al2O3 16.29 17.21 15.16 18.27 15.55 15.34 16.71 15.66 15.19 17.50 18.63 17.16 16.50 16.45
Cr2O3 0.06 0.02 0.00 0.00 0.08 0.03 0.11 0.00 0.02 0.00 0.00 0.04 0.00 0.00
FeO 8.17 8.40 10.50 8.89 9.11 9.79 8.28 8.49 9.99 8.60 8.09 7.85 8.79 8.63
MnO 0.08 0.11 0.15 0.10 0.04 0.10 0.13 0.09 0.19 0.09 0.05 0.05 0.08 0.13
MgO 14.96 14.48 13.65 14.01 14.47 14.28 14.72 15.13 13.91 14.30 14.22 14.65 14.47 14.44
CaO 12.56 12.51 12.43 12.47 12.62 12.27 12.55 12.68 12.50 12.83 12.76 12.56 12.56 12.54

Na2O 2.46 2.87 2.44 2.99 3.25 2.96 2.69 2.62 2.32 2.93 3.16 2.79 2.64 2.46
K2O 1.44 0.96 1.44 0.59 0.67 0.81 1.18 1.07 1.53 1.01 0.74 1.09 1.42 1.47
Total 95.98 95.34 95.86 94.89 95.84 95.14 95.42 95.59 95.14 95.90 96.23 95.23 95.50 94.76

Si 5.79 5.69 5.93 5.54 5.88 5.86 5.73 5.84 5.84 5.61 5.60 5.72 5.76 5.74
Ti 0.08 0.05 0.04 0.04 0.04 0.03 0.04 0.03 0.06 0.06 0.04 0.05 0.03 0.03

IVAl 2.20 2.31 2.06 2.45 2.13 2.13 2.26 2.13 2.14 2.38 2.40 2.28 2.24 2.25
VIAl 0.64 0.70 0.61 0.76 0.57 0.57 0.66 0.60 0.56 0.67 0.81 0.72 0.64 0.65
Cr 0.007 0.002 0.000 0.000 0.009 0.004 0.013 0.000 0.003 0.000 0.000 0.005 0.000 0.000

Fe3+ 0.48 0.53 0.42 0.68 0.43 0.54 0.53 0.63 0.63 0.74 0.50 0.45 0.52 0.66
Fe2+ 0.53 0.51 0.89 0.42 0.70 0.68 0.50 0.42 0.62 0.32 0.49 0.52 0.57 0.42
Mn 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.02
Mg 3.29 3.20 3.04 3.11 3.20 3.18 3.25 3.33 3.11 3.14 3.11 3.24 3.20 3.21
Ca 1.98 1.99 1.99 1.99 2.00 1.96 1.99 2.00 2.01 2.02 2.00 2.00 2.00 2.01
Na 0.70 0.83 0.71 0.86 0.93 0.86 0.77 0.75 0.67 0.84 0.90 0.80 0.76 0.71
K 0.27 0.18 0.27 0.11 0.13 0.15 0.22 0.20 0.29 0.19 0.14 0.21 0.27 0.28

Total 16.04 16.01 15.98 15.97 16.11 16.02 16.11 15.94 15.97 15.96 16.01 16.05 16.01 15.97
Mg/(Mg
+ Fe2+) 0.86 0.86 0.77 0.88 0.82 0.82 0.87 0.89 0.83 0.91 0.86 0.86 0.85 0.88

CaB 1.98 1.99 1.99 1.99 2.00 1.96 1.99 2.00 2.01 2.02 2.00 2.00 2.00 2.01
NaB 0.02 0.01 0.01 0.01 0.00 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NaA 0.69 0.81 0.69 0.85 0.94 0.82 0.77 0.75 0.68 0.86 0.90 0.80 0.76 0.72
KA 0.27 0.18 0.27 0.11 0.13 0.15 0.22 0.20 0.29 0.19 0.14 0.21 0.27 0.28
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5.3. Magnetite from Diorite, Skarn, and Iron Ore

The representative compositions of disseminated, banded, and massive magnetite
are summarized in Supplementary Table S2. The numbers of cations based on 32 O and
cations are normalized to 24 in total. The calculation of Fe2+ and Fe3+ was completed by
the AX program [26]. Disseminated and banded magnetites have FeO, MgO, SiO2, Al2O3,
and TiO2 content of 83.43 wt.%–92.10 wt.%, 0.00 wt.%–7.86 wt.%, 0.03 wt.%–2.57 wt.%,
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0.14 wt.%–1.33 wt.%, and 0.00 wt.%–0.87 wt.%, respectively. Massive magnetites are character-
ized by higher FeO (87.81 wt.%–94.57 wt.%) content and lower MgO (0.01 wt.%–0.60 wt.%),
SiO2 (0.03 wt.%–1.10 wt.%), TiO2 (0.00 wt.%–0.14 wt.%), and Al2O3 (0.00 wt.%–0.45 wt.%)
content than the disseminated and banded magnetite (Table 5; Figure 13). Small mag-
netite crystals in the massive assemblages have higher FeO content than the larger crystals
(Figure 13).

Table 5. EPMA data for magnetites from Jinling diorites, skarn, and ore.

Sample
No.

JL-mag1–3
Magmatic Magnetite

JL-mag4–10
Disseminated Magnetite

JL-mag11–18
Banded Magnetite

JL-mag19–51
Massive Magnetite

Range (n = 3) Ave Range (n = 7) Ave Range (n = 8) Ave Range (n = 33) Ave

SiO2 0.03–0.05 0.04 0.03–2.57 0.87 0.03–0.16 0.08 0.03–1.10 0.31
TiO2 0.06–0.27 0.17 0.00–0.18 0.07 0.25–0.87 0.61 0.00–0.14 0.04

Al2O3 0.04–0.30 0.13 0.31–1.33 0.56 0.14–1.25 0.70 0.00–0.45 0.18
Cr2O3 0.75–0.88 0.81 0.00–0.07 0.02 0.00–0.12 0.03 0.00–1.57 0.07
V2O3 0.36–1.03 0.77 0.02–0.07 0.04 0.00–0.07 0.02 0.00–0.07 0.02
FeO 89.89–90.84 90.42 86.40–92.10 90.16 83.43–88.59 85.75 87.81–94.57 92.05
MnO 0.00–0.03 0.01 0.00–0.10 0.03 0.14–0.36 0.23 0.00–0.16 0.05
MgO 0.00–0.03 0.02 0.00–1.03 0.30 3.54–7.86 5.95 0.01–0.60 0.15
CaO 0.00–0.07 0.03 0.00–1.21 0.38 0.00 0.00 0.00–0.32 0.04
Total 91.69–92.82 92.41 91.64–93.14 92.43 91.90–94.26 93.36 89.37–95.29 92.91

Si 0.01 0.01 0.01–0.78 0.27 0.01–0.05 0.02 0.01–0.35 0.09
Ti 0.01–0.06 0.04 0.00–0.04 0.02 0.06–0.19 0.13 0.00–0.03 0.01
Al 0.01–0.11 0.05 0.11–0.48 0.20 0.05–0.42 0.24 0.00–0.16 0.06
Cr 0.18–0.22 0.20 0.00–0.02 0.01 0.00–0.03 0.01 0.00–0.39 0.02
V 0.09–0.26 0.19 0.00–0.01 0.01 0.00–0.02 0.01 0.00–0.02 0.00

Fe3+ 15.42–15.49 15.45 13.90–15.85 15.22 15.17–15.82 15.44 15.20–15.94 15.71
Fe2+ 8.01–8.06 8.03 7.94–8.05 8.02 4.76–6.48 5.52 7.77–8.29 8.01
Mn 0.00–0.01 0.00 0.00–0.03 0.01 0.03–0.09 0.06 0.00–0.04 0.01
Mg 0.00–0.02 0.01 0.00–0.47 0.14 1.57–3.35 2.58 0.01–0.28 0.07
Ca 0.00–0.02 0.01 0.00–0.39 0.12 0.00 0.00 0.00–0.11 0.01

Total 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00
V/Ti 0.00–0.02 0.01 0.29–15.36 6.67 0.00–0.17 0.06 0.00–3.21 0.65
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Figure 13. Variation in FeO content from magmatic, disseminated, banded, and massive magnetites
from Jinling diorites, skarn, and ore.
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6. Discussion
6.1. Source of Iron

Previous studies have suggested two potential sources of iron for the iron skarn
mineralization: (1) exsolution of Fe-rich fluids from silicate melt at depth, and (2) leaching
of Fe from sedimentary wall rocks and the solidified mafic pluton at relatively shallow
depths [27]. Several earlier studies addressed that the magma from which the Jinling
diorites crystallized most probably originated from mixing between enriched mantle-
derived mafic magma and felsic magma derived from the ancient lower crust of the
NCC [7,9,28]. Because the mantle-derived magma had relatively high Fe content and the
ancient crust of the NCC comprised mafic rocks and BIFs, the parental magma of the Jinling
diorites would also have contained relatively high iron content, which is in agreement
with the high FeO content (89.89 wt.%–90.84 wt.%) of the magmatic magnetite in the
diorites (Table 5). Furthermore, given the high f O2 of the melt (+0.83~+1.87 [29]), sulfur
likely existed as SO4

2− rather than S2−, and therefore Fe would not have been removed
by sulfide liquation. Consequently, Fe would have remained in the silicate melt until
reaching fluid saturation. This view is supported by experimental and fluid-inclusion
studies that demonstrated the high solubility of Fe (>10 wt.%) as iron chloride complexes
in high-temperature and high-salinity magmatic fluids [30,31]. The presence of halite-
bearing fluid inclusions in quartz that crystallized during the later stages of formation of
the Jinling diorites [32] suggests that the hydrothermal fluids were Cl-rich and might have
had the potential to transport Fe. Therefore, the parent magma of the Jinling intrusion
was characterized by high iron content along with high oxygen fugacity, which favored
the retention of metallogenic material in the melt. Fluid exsolution occurred when the
melt reached water saturation as a result of decreases in temperature and pressure during
magma ascent, emplacement, and fractionation. Concurrently, more iron entered the fluids
and formed the iron-rich ore-forming fluids.

Alkali metal ions are considered an important complexing agent for Fe and can
contribute to the emigration of Fe from silicate melts or minerals [33]. The importance of
such ions as complexing agents in the Jinling diorite is supported by the pervasive alkali
metasomatism (mainly albitization) (Figures 5a–c and 9a,b). The magmatic clinopyroxene
in the Jinling diorites is plotted in the transitional region between diopside and augite on a
clinopyroxene classification diagram (Figure 10a), indicating that Fe was remobilized from
augite to diopside by the hydrothermal fluids. The metasomatism also affected plagioclase,
alkali feldspar, and mafic minerals, further augmenting the Fe content of the hydrothermal
fluid. Given that the carbonate wall rocks do not contain significant concentrations of Fe,
they could not have been a source of the Fe. Therefore, the most likely scenario in which
the Fe skarn mineralization formed in the Jinling deposit was the leaching of Fe from the
solidified diorites by Fe-rich magmatic fluids derived from the primitive melt.

Magmatic and hydrothermal magnetite are compositionally distinct, with the former
being enriched in such elements as Ti and V [34]. This characteristic can therefore be used
to deduce the nature (i.e., magmatic vs. hydrothermal) of skarn mineralization [35,36].
Two models have been proposed for the genesis of magnetite in iron skarn deposits:
(1) crystallization from an immiscible Fe-rich melt that exsolved from the parent magma [37]
and (2) precipitation from hydrothermal fluids [38,39]. Genetic classification diagrams,
such as Ti vs. (Ni/Cr) and (Al + Mn) vs. (Ti + V) diagrams, cannot be utilized to accurately
distinguish between magmatic magnetite from volcanic rocks and hydrothermal magnetite
from skarn, porphyry, Ag–Pb–Zn, or bedded Cu–Ag deposits [40]. The origins of magnetite
can, however, be characterized using a Fe vs. (V/Ti) classification diagram, which was
proposed based on the compatibility of these elements in magnetite and the disparity in
the concentrations of these elements in silicate melts and hydrothermal fluids [40]. In
an Fe vs. (V/Ti) diagram, the magnetite in the Jinling iron ores is plotted mainly in the
hydrothermal magnetite field, with some in the re-equilibrated magnetite field (Figure 14).
This suggests that the magnetite in the Jinling iron ores is hydrothermal in origin. In
addition, the disseminated, banded, and massive magnetite in the Jinling iron ores are all
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characterized by low TiO2 and V2O3 content (0.01 wt.%–0.87 wt.% and 0.01 wt.%–0.07 wt.%,
respectively) (Table 5), typical of hydrothermal magnetite [34,41]. Combined with the fact
that the ore bodies hosted in the contact zone underwent intense metasomatism and are
distributed close to the wall rocks, the Jinling iron skarn deposit can be characterized as a
hydrothermal skarn deposit.
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6.2. Implications for Mineralization Processes
6.2.1. Alkali Metasomatism Stage

During the alkali metasomatism stage, iron was added to the hydrothermal fluid via
fluid–mineral interaction. This interaction generated the pervasive alkali metasomatism in
the Jinling diorites and magmatic minerals, such as plagioclase, alkali feldspar, amphibole,
and pyroxene, in them (Figures 5a–c and 9a,b).

6.2.2. Prograde Skarn Stage

The mineral assemblage diopside–andradite ± disseminated and banded magnetite
formed during the prograde skarn stage. The paragenesis of skarn minerals, combined with
variations in their chemical composition, can be used to characterize the physicochemical
conditions of the ore-forming fluids and the processes that generate iron mineralization.
The hydrothermal fluids migrated from the Jinling pluton to the surrounding carbonate
rocks owing to differences in the physicochemical conditions during the emplacement and
crystallization of the pluton. Calcium and magnesium were continuously added to the hy-
drothermal fluids by the metamorphically induced decomposition and recrystallization of
the carbonate rocks. This increase in Ca and Mg concentrations allowed high-temperature
Ca- and Mg-rich skarn minerals (i.e., diopside and garnet) to crystallize as fluid temper-
atures decreased. Previous studies have demonstrated that the breakdown of carbonate
minerals and the subsequent extraction of Ca2+ and Mg2+ are accelerated under acidic and
reducing conditions [42]. Therefore, the crystallization of Ca–Mg-bearing diopside and
andradite suggests that the hydrothermal fluid that exsolved from the parental magma
was relatively acidic and weakly reducing. The light-green diopside is characterized by
higher FeO and lower MgO and CaO content than the earlier colorless variety (i.e., the
clinopyroxenes vary from diopside to hedenbergite) (Table 2; Figure 10), suggesting that the
redox conditions of the hydrothermal fluid evolved from relatively reducing to relatively
oxidizing as the concentration of an iron ion in the fluid increased.

Previous research suggests that skarn-related garnets can crystallize over a range of
redox conditions, which is recorded in their iron and aluminum content. Consequently, the



Minerals 2022, 12, 1152 18 of 23

composition of garnet can be used as a proxy for changing redox conditions in hydrothermal
fluids [43]. In addition, experimental results suggest that andradite typically forms under al-
kaline and oxidizing conditions, whereas grossular garnet typically forms under acidic and
reducing conditions [44]. Andradite from the Jinling skarn is compositionally zoned, with
higher Fe2O3 and lower Al2O3 in cores than rims (Figure 11). Furthermore, the cores of the
andradite are characterized by a wider range in And (cores: 63.57 wt.%–99.57 wt.% vs. rims:
61.06 wt.%–68.49 wt.%) and Gro (cores: 0.00 wt.%–8.19 wt.% vs. rims: 30.78 wt.%–38.16 wt.%)
content than the rims (Table 3). This, again, suggests that the redox conditions of the
hydrothermal fluid evolved from relatively oxidizing to relatively reducing. However, the
chemical compositions of the cores and rims of garnet are characterized by low Fe2+/Fe3+

values (0.01–0.13). Given that the Fe2+/Fe3+ values of skarn minerals formed under reduc-
ing conditions are higher than those formed under oxidizing conditions [45], the relative
oxidizing conditions of the mineralizing environment during the prograde skarn stage can
be constrained with minor changes.

As mentioned above, the colorless diopside formed earlier under relative reduction
conditions, but the later light-green diopside and coextensive andradite crystallized under
relative oxidation conditions. The redox conditions evolved from relatively reducing ear-
lier to relatively oxidizing later during the entire prograde skarn stage, despite changing
slightly during the formation of andradite. The model of ironstone formation from modern
hydrothermal settings indicates that the Fe2+ ions can migrate from the reducing hydrother-
mal environment to the relatively oxidizing surface layer [4]. Meanwhile, given that Fe is
more soluble in hydrothermal fluids under alkaline and oxidizing conditions than under
reducing conditions [46], it is likely that Fe was further enriched in the ore-forming fluids
under the relative oxidizing conditions during the later prograde skarn stage.

Diopside crystallizes at temperatures and pressures greater than 520 ◦C and 2 kbar [47],
whereas andradite crystallizes within a temperature range of 300–520 ◦C and at pressures
of around 0.5 kbar [48]. In the Jinling iron skarn deposit, colorless diopside formed earlier
than both light-green diopside and andradite, suggesting that the temperature and pressure
of the hydrothermal system decreased during the prograde skarn stage. Consequently, fluid
boiling likely occurred once hydrostatic pressure equaled the saturation pressure [49]. The
occurrence of fluid boiling is supported by (i) the abrupt changes in FeO and Al2O3 content
from core to rim of andradite (Figure 11), and (ii) evidence from fluid-inclusion microther-
mometry, which suggests that the fluids boiled at temperatures above 500–600 ◦C [32].
Owing to gas loss during boiling, Fe concentrations and the pH of the hydrothermal fluid
increased, prompting the dissociation of iron chloride complexes, which caused the precipi-
tation of magnetite near the boiling surface [50]. Hence, a small amount of disseminated
and banded magnetite formed during the prograde skarn stage.

6.2.3. Retrograde Skarn Stage

The amphibole–epidote–phlogopite–serpentine–biotite–chlorite–massive magnetite
association was developed during the retrograde skarn stage. Diopside and garnet formed
earlier and were subsequently substituted by massive magnetite coexisting with biotite,
chlorite, and serpentine (Figures 6g–j and 7i), whereas Ca-rich amphibole associated with
phlogopite or epidote was replaced by later pyrite or calcite (Figure 7b,c,e).

Previous studies have demonstrated that an increase in f O2 not only decreases the
partition coefficient of V into magnetite but also promotes the formation of epidote [35,51].
Therefore, the lower V content of massive magnetite (0.01 wt.%–0.05 wt.%) compared with
disseminated and banded magnetite (0.01 wt.%–0.70 wt.%) (Table 5), together with the
occurrence of epidote, suggest that this stage was characterized by higher f O2 and pH than
the prograde skarn stage. Furthermore, under such alkaline conditions, the hydrothermal
fluid might have leached Fe from other minerals [52], which is consistent with the negative
correlation between FeO and MgO or Al2O3 of magnetite in the Jinling ore (Figure 15).
As the temperature of the hydrothermal fluid decreased, the solubility of Si, Al, Mg, and
Ca also decreased, prompting the precipitation of hydrous minerals, such as phlogopite,
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epidote, amphibole, and chlorite, under conditions of decreasing temperature and pressure,
high oxygen fugacity and alkalinity, and iron-enriched fluids. This view is supported by
the higher FeO content of massive magnetite (87.81 wt.%–94.57 wt.%) than disseminated
and banded magnetite (83.43 wt.%–92.10 wt.%) (Table 5), and similarly high FeO content
of epidote (12.40 wt.%–13.87 wt.%) (Table 6; numbers of cations based on 12.5 O and
cations are normalized to eight in total). As a result of these courses mentioned above, the
concentration of iron in the hydrothermal fluids would have been further enriched during
the early retrograde skarn stage.
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Table 6. EPMA data for epidote from Jinling skarn and ore.

Range (n = 10) Ave Range (n = 10) Ave

SiO2 37.43–38.09 37.79 Si 3.00–3.04 3.03
TiO2 0.00–0.42 0.13 Al 0.00–0.03 0.01

Al2O3 21.32–22.72 21.96 Ti 2.02–2.14 2.07
Cr2O3 0.00–0.07 0.01 Cr 0.00 0.00
Fe2O3 13.78–15.41 14.65 Fe3+ 0.83–0.93 0.87
MnO 0.00–0.11 0.06 Mn 0.00–0.01 0.00
MgO 0.00–0.05 0.03 Mg 0.00–0.01 0.00
CaO 22.82–23.51 23.05 Ca 1.96–2.01 1.98

Na2O 0.00–0.14 0.06 Na 0.00–0.02 0.01
K2O 0.00–0.02 0.01 K 0.00 0.00
Total 97.31–98.42 97.75 Total 7.98–8.01 7.99

Stable isotope and fluid-inclusion data from the skarn deposit suggest that the ore-
forming fluids of the retrograde skarn stage would be mixed with meteoric water [42].
The nonuniform distribution of oxygen isotopes in epidote from the Jinling skarn [32]
suggests that the ore-forming fluids were mixed with fluids from other sources. Upon
reaching Fe saturation, the oxygen fugacity and pH of the ore-forming fluids increased
rapidly [53], which destabilized the iron chloride complexes and reduced the solubility of
Fe [54]. This prompted the rapid precipitation of magnetite, forming the high-grade massive
magnetite ores.

6.2.4. Sulfide–Carbonate Stage

During the sulfide–carbonate stage, abundant carbonate minerals (mostly calcite)
and minor sulfides (e.g., pyrite and chalcopyrite) and quartz formed interstitial to skarn
minerals (Figures 6i,j and 7a–f,i–l). Pyrite also formed as late-stage veins that cut the iron
ore (Figure 6k,l). The precipitation of abundant magnetite caused the redox conditions of
the mineralizing fluid to become more reducing, which is consistent with the growth of
sulfide minerals.
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6.2.5. Summary of Mineralization Processes

The mineralizing processes of the Jinling iron skarn deposit can be summarized in
four stages. (1) During the alkali metasomatism stage, hydrothermal fluids exsolved from
an Fe-rich parental magma and concentrated Fe by leaching it from the solidified diorite
pluton (Figure 16a). (2) During the prograde skarn stage, high-temperature, anhydrous
skarn minerals (diopside + garnet) formed as a result of fluid–rock interaction. Iron was
further enriched in the fluids under the relatively oxidizing and alkaline conditions. A
decrease in pressure during the later period of this stage caused the fluid to boil and locally
precipitate small amounts of disseminated and banded magnetite (Figure 16b). (3) During
the retrograde skarn stage, a decrease in temperature and pressure and a rise in the f O2
of the hydrothermal fluid prompted the precipitation of hydrous, low-temperature skarn
minerals (amphibole + chlorite + epidote). Iron was further enriched during this stage as a
result of this precipitation. The precipitation of large quantities of magnetite was initiated
by the mixing of the ore-forming fluids with fluids from other sources (e.g., meteoric fluids)
(Figure 16c). (4) During the sulfide–carbonate stage, large quantities of carbonate and small
amounts of sulfides and quartz precipitated as the redox conditions of the hydrothermal
fluid became reducing (Figure 16d).
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Figure 16. Sketch model of mineralizing processes of the Jinling deposit, Western Shandong Province.
(a) Alkali metasomatism stage along with fluid exsolution. (b) Diopside and garnet formed due to
fluid–rock interaction during the prograde skarn stage. (c) Amphibole, chlorite and epidote formed
and the precipitation of large quantities of magnetite occurred during the retrograde skarn stage.
(d) Carbonate, quartz and small amounts of sulfides formed during the sulfide–carbonate stage.
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7. Conclusions

The Jinling deposit is a hydrothermal iron skarn deposit. The Fe-rich mineralizing
fluids exsolved from the parental magma and were further enriched by Fe leached from
the solidified diorites. As part of the mineralizing process, high-temperature anhydrous
skarn minerals (diopside + garnet) formed during the prograde skarn stage under rela-
tively oxidizing and alkaline conditions, whereas low-temperature hydrous skarn minerals
(amphibole + chlorite + epidote) formed during the retrograde skarn stage under more
oxidizing conditions. Large quantities of massive magnetite precipitated during the later
retrograde skarn stage as a result of mixing between the mineralizing fluids and fluids
from other sources. Then, the redox conditions became more reducing during the sulfide–
carbonate stage, and large quantities of carbonate and small amounts of sulfides and
quartz precipitated.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/min12091152/s1, Table S1. EPMA data for clinopyroxenes from
Jinling diorites (JL-cpx1-4), skarn and ore (JL-cpx5-54, samples JL-cpx5-35 are colorless and samples
JL-cpx36-54 are light-green); Table S2. EPMA data for magnetites from Jinling diorites, skarn and ore.
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