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Abstract: The purpose of this work was to analyze the requirements for the operational feasibility
of flotation systems as well as the effects of the selection of flotation equipment and metal price
uncertainty. A procedure based on mathematical optimization and uncertainty analysis was im-
plemented to achieve this aim. The optimization included flotation and grinding stages operating
under uncertainty, whereas the uncertainty analysis considered the Monte Carlo method. The results
obtained indicate a small number of optimal flotation structures from the economic point of view.
Considering the relationship between the economic performance and metallurgical parameters, we
established that these structures exhibited favorable conditions for operating under uncertainty. Such
conditions were proportional to the percentages representing each structure in the optimal set; i.e.,
a higher percentage of a structure implied a greater capacity to face operational and metal price
changes. The set of optimal structures included configurations implementing cell banks, flotation
columns, or both, indicating the influence of the flotation equipment type on the optimal structures.
We also established the influence of metal price on the number of optimal structures. Therefore, the
results obtained allowed us to separate the design of the flotation systems into two stages: first, a set
of optimal structures exhibiting favorable conditions for facing uncertainty is determined; second, the
optimal operation is established via resilience/flexibility approaches after the previous determination
of the equipment design parameters.

Keywords: design; flotation systems; uncertainty analysis; selection of equipment; grinding

1. Introduction

Historically, flotation circuits have included cell banks; however, changes in the
processed ore, operational grinding conditions, technological developments, valuable
metal prices, energy, and water consumption have generated an evolution from circuits
to flotation systems. These systems include flotation cell banks, flotation columns, and
grinding units, with an arrangement that is complex to determine as the design alternatives
markedly increase as the number of processing stages increases [1].

When industrial aspects are considered, several issues arise. Flotation systems process
a large number of mineralogical species, which increases the complexity of the problem.
These species include particles of different sizes, shapes, and mineral compositions together
with a liquid–gas medium, which makes the systems challenging to model. On the other
hand, the design of these flotation systems is addressed by considering the experience of
the designer and is supported by laboratory/pilot tests, simulation, and modeling. The
number of design alternatives is significant, which limits the evaluation and selection of
alternatives during laboratory/pilot tests. In addition, uncertainty, such as metal price and
ore composition, adds complexity to the problem. Thus, the design of flotation systems
considering all aspects mentioned is technically and economically non-viable.
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The available literature reports design procedures focused on concentration circuits im-
plementing mainly cell banks. These procedures are based on mathematical programming
and include the following ingredients: a superstructure of alternatives, a mathematical
model, and an algorithm to solve the problem [2]. The resulting mathematical model is
typically a mixed-integer non-linear programming (MINLP) problem, which is difficult
to solve [3]. Several authors have proposed implementing certain assumptions to handle
the design problem. For example, Cisternas et al. [4] proposed describing the recoveries in
flotation stages via distribution functions, resulting in a mixed-integer linear programming
(MILP) problem. They reported that there are few optimal structures for a wide range of
recoveries; i.e., the recovery of mineralogical species has a minor effect on the optimal
structures. Based on these results, methodologies to design flotation circuits in two steps
were proposed [5–7]: first, the researchers detected a set of optimal circuit structures using
distribution functions to represent the stage recoveries, and second, the optimal design was
determined for each of the optimal structures. Similarly, Acosta-Flores et al. [8] proposed
characterizing both the flotation stage recovery and grinding stage conversion through
distribution functions. The authors reported that there were few optimal structures for the
flotation systems.

Equipment selection has been investigated in a few works. Schena et al. [9] used
a series of generic superstructures to represent the equipment, including bank cells and
grinding units. However, the grinding units were fixed to reduce the mathematical com-
plexity of the problem. Later, Cisternas et al. [10] utilized a hierarchized superstructure
to select bank and column flotation units. However, fixed values of stage recoveries were
utilized to avoid a mixed-integer non-convex non-linear problem. Later, Méndez et al. [11]
included the selection of grinding stages in the design of a flotation circuit. Again, the
grinding unit types were fixed to solve the optimization problem.

On the other hand, uncertainty is inherent in industrial processes, including flotation
systems. The effect of uncertainty on the metallurgical behavior of flotation systems
could be critical, affecting the economic performance. Several approaches have been
proposed in the literature to deal with this uncertainty [12]; e.g., Cisternas et al. [4] and
Montenegro et al. [13] used stochastic programming to develop a procedure based on an
MILP model to design flotation circuits in which the recoveries in the flotation stages were
described by distribution functions. Jamett et al. [14] also applied stochastic programming
to design flotation circuits. They used a bank model and limited instances during the
design procedure to reduce the computational effort, and consequently the global optimum
was not obtained. Liang et al. [15] proposed a framework for the design and optimization of
flotation circuits by using the distribution profiles of economic performance. Two sources
of uncertainties were considered: first, the copper price and the feed stream; second,
the kinetic parameters of the flotation cell model. To solve the MINLP problem under
uncertainty, the fuzzy distributional robust optimization method based on possibility and
necessity theories was implemented. However, these works neither considered the selection
of flotation equipment nor grinding stages, which are essential aspects of industrial practice.
Unlike these previous works, Acosta-Flores et al. [8] included uncertainty in the flotation
and grinding stages via the distribution functions and consequently in the design of
flotation systems. However, they did not consider the selection of flotation equipment
and did not study the effect of metal price on the flotation system’s design. According to
Cisternas et al. [2,16], the metal price influences the structure of flotation circuits and thus
must be thoroughly addressed during the design stage. Therefore, equipment selection,
metal price uncertainty, and flotation and grinding stage uncertainty often are not studied
as a whole during the design of flotation systems, as evidenced in works cited earlier and
in other existing studies in the available literature (Table 1).

Another approach proposed in the literature to address the uncertainty in processes is
flexibility and resilience, which are significant components of the operability of industrial
processes; i.e., these are applied after designing the process. Flexibility can be defined as
the capability to adapt to new or changing requirements, whereas resilience can be defined
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as the capability to recover or adjust to misfortune. In this way, flexibility might be better
suited for optimists, and resilience might be better for pessimists [17]. These concepts are
related to robust optimization; i.e., they provide conservative solutions [18]. In the context
of mineral processing, specifically flotation systems, flexibility and resilience have not been
applied yet. For this purpose, the required conditions must first be analyzed to guarantee
their application.

The basic model used for flexibility considers design variables related to the structure
and equipment sizes of the plant, state variables, control state, and uncertain parameters,
as well as equations representing the plant performance and constraints representing the
operational feasibility. This approach considers a nominal value of the uncertain parame-
ters and the expected deviations to analyze the feasibility of operation via mathematical
optimization. In the context of flotation systems, a successful operation depends on the
relationship between the recovery and the concentrate grade. The recovery and concentrate
grade are opposing but can be included satisfactorily in expressions of economic types,
such as the net-smelter-return formula [2]. According to Cisternas et al. [2], the structure
is more influential on the economic performance of flotation systems than operational
conditions. Thus, a flotation system with a poorly designed structure will be difficult to
improve economically under uncertainty, even when modifying the operational condi-
tions. Considering that processing stages exhibit operational uncertainty, a good structure
would offer the possibility to establish nominal values for these stages, favoring both the
operational feasibility and maximization of revenues generated by the flotation systems.

From the previous literature review, we observed the following: first, the impact of the
metal price uncertainty on the design of flotation systems has not been addressed; second,
the set of optimal structures for a specific flotation system is small; third, the uncertainty
in the species stage recovery has a limited influence on the optimal structures; fourth, the
selection of equipment for flotation systems operating under uncertainty has not been
thoroughly addressed; and fifth, successful operation is related to the structure of the
flotation system. Consequently, the following questions arise:

• Is it possible to determine the structures presenting favorable conditions for operating
the flotation systems?

• Does the selection of flotation equipment and metal price influence the operability of
the flotation systems?

Thus, the main objective of this work is to establish, from the design point of view, the
requirements necessary for the operational feasibility of flotation systems.

2. Strategy

A procedure based on mathematical programming and uncertainty analysis is used
to address the hypotheses. First, the set of feasible flotation circuit structures to find the
optimal structure is represented by a superstructure. This superstructure is utilized to
generate a mathematical model, which is used to find the optimal structures. On the
other hand, the uncertainty in the variables is represented by distribution functions. Thus,
a sample is taken from these distribution functions, and the optimization problem is
solved to find the optimal structure. This sampling and optimization process is performed
many times to obtain a representative sample of the problem. The results are analyzed to
understand the effect of uncertainty (Figure 1). The uncertainty analysis, superstructure
representation, modeling, and optimization are briefly described below.
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Table 1. Flotation system design methodologies, NLP = nonlinear programming, LP = linear programming, and MINLP =
mixed integer nonlinear programming. Uncertainty described by distribution functions.

Reference Model Type Cell/Bank/Approximate
Model Grinding

Operational and
Metal Price
Uncertainty

Selection of
Flotation

Equipment

Mehrotra and Kapur, 1974 [19] NLP Bank No No–No No
Reuter et al., 1988 [20] LP Bank No No–No No

Reuter and Van Deventer, 1990 [21] LP Bank Yes No–No No
Schena et al., 1996 [22] MINLP Bank Yes No–No No
Schena et al., 1997 [9] MINLP Bank No No–No No
Guria et al., 2005 [23] NLP Cell No No–No No
Guria et al., 2005 [24] NLP Cell No No–No No

Cisternas et al., 2006 [10] MINLP Bank Yes No–No Yes
Méndez et al., 2009 [25] MINLP Bank Yes No–No Yes
Ghobadi et al., 2011 [26] MINLP Bank No No–No No

Maldonado et al., 2011 [27] NLP Bank No No–No No
Hu et al., 2013 [1] MINLP Cell No No–No No

Montenegro et al., 2013 [13] MILP Approximate No Yes–No No
Cisternas et al., 2014 [16] MINLP Bank No No–No No

Jamett et al., 2015 [14] MINLP Bank No Yes–No No
Cisternas et al., 2015 [4] MILP Approximate No Yes–No No

Acosta-Flores et al., 2018 [7] MINLP Bank–Cell No No–No No
Lucay et al., 2019 [28] MINLP Bank No No–No No
Liang et al., 2020 [15] MINLP Cell No Yes–No No

Acosta-Flores et al., 2020 [8] MILP Approximate Yes Yes–No No
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2.1. Uncertainty Analysis (UA)

During the construction of a mathematical model, several aspects must be specified,
including the type and structure of the model, parameters, resolution, and calibration data,
among others. Each of these aspects has an associated uncertainty; i.e., an assumption
generating uncertainty in the model responses. The uncertainty can be classified as either
stochastic and epistemic [29–31]. The first is also referred to as variability, irreducible
uncertainty, inherent uncertainty, or uncertainty due to chance. This type of uncertainty
is related to variation, which is inherent to a given system, typically as a result of the



Minerals 2021, 11, 646 5 of 17

random nature of model inputs, such as the feed grade and the metal price. The second
is also referred to as reducible uncertainty, subjective uncertainty, or uncertainty due to
lack of knowledge. This type of uncertainty as a resource of non-deterministic behavior
derives from a lack of knowledge of the system or the environment, such as the recovery in
flotation stages and the conversion in grinding. Both types of uncertainties can be modeled
as random variables described by probability distributions.

The uncertainty analysis (UA) allows the uncertainty of the model responses as a
result of the uncertainty of model inputs to be quantified. UA can be performed in four
steps: first, the uncertainty of input variables must be described through probability
distributions; second, samples are generated from the probability distributions via the
Monte Carlo method; third, the values of the output variables for each element of the
sample are determined; and fourth, the results are analyzed using descriptive statistics.
The mathematical model subjected to UA was developed using a methodology based on
mathematical programming, as described below.

2.2. Superstructure

A superstructure represents a set of structure alternatives where the optimal solution
is sought. These structures can represent the equipment, tasks, or states. For example,
equilibrium states were utilized in searching for the optimal structure for separation
using fractional crystallization [32]. In contrast, Gálvez et al. [33] and Trujillo et al. [34]
employed an equipment superstructure to represent superstructures for dewatering and
heap leaching design, respectively. The nature of the flotation problem facilitates the use
of equipment or stage superstructures to represent the configuration alternatives of the
flotation systems. This approach considers the connection between the processing stages,
mixers, and splitters. The processing stages include flotation and grinding; mixers are used
to mix the feed entering to a processing stage, and splitters are used to send the flows of one
stage to another. The connection between all stages implies the degeneration of the design
problem; i.e., the appearance of illogical structures and/or defining the same structures
two or more times. In this work, to avoid these degenerations, an origin–destination matrix
was applied [16].

2.3. Modeling of Design Alternatives

The input variables of the mathematical model include the flotation stage recoveries,
grinding stage conversion fractions, and metal price. These input variables exhibit uncer-
tainty modeled through distribution functions. The mathematical model includes mass
balances in the flotation stages, grinding stages, mixers, and splitters. The objective func-
tion is revenue maximization, where the revenue is calculated using the net-smelter-return
formula [2]. The revenue is an appropriate objective function for this type of problem [16].
Both the stream interconnection from one stage to another and flotation equipment selec-
tion can be modeled by disjunctive equations, which, together with the linear nature of the
objective function and mass balances, result in a MILP problem. The modeling of design
alternatives is shown above.

Definition of sets: The main sets are

S = {s/s is stream in the superstructure}

LC = {s/s is concentrate stream, s ∈ S}

LT = {s/s is tail stream, s ∈ S}

E = {e/e is f lotation stage, grinding stage, splitter, mixer}

D = {d/d is splitter}

K = {k/k is composition class in the f eed}

J = {j/j is granulometric class}
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K1 = {(k1, k)/ k1 is origin composition and k is the destination composition, k, k1 ∈ K}

K2 = {(k, k2)/k is origin composition and k2 is the destination composition, k, k2 ∈ K}

J1 = {(j1, j)/j1 is the same size or largest size range than j, j1 > j, j, j1 ∈ J}

J2 = {(j, j2)/j2 is the same size or smallest size range than j, j2 < j, j, j2 ∈ J}

IN(e) = {i/i is mass stream entering to processing stage e ∈ E}

OUT(e) = {i/i is mass stream outing f rom processing stage e ∈ E}

Each stream s ∈ S is associated with the variable

W(s, k, j) =


Wc(s, k, j) where s ∈ LC

Wt(s, k, j) where s ∈ LT
(1)

where W(s, k, j) represents the mass flow rate of class k of size j in stream s. The mass flow
rate of species k of size j fed to the flotation system, W f (k, j), is a parameter, and thus the
values are known.

Mass balance in flotation stage, splitters, and mixers: The following equation provides
the mass balance in the flotation stage, splitters, and mixers:

∑s∈IN(e) W(s, k, j) = ∑l∈OUT(e) W (l, k, j) , k ∈ K, j ∈ J, e ∈ E (2)

Flotation balance: The following equations provide the concentrate and tail streams,
respectively, generated by a flotation stage:

WC(e, k, j) = ∑
l∈OUT(e)

Wc(l, k, j), k ∈ K, j ∈ J, e ∈ E (3)

WT(e, k, j) = ∑
l∈OUT(e)

Wt(l, k, j), k ∈ K, j ∈ J, e ∈ E (4)

where
Wc(l, k, j) = T(e, k, j)·FS(e, k, j), l ∈ OUT(e), e ∈ E (5)

Wt(l, k, j) = (1− T(e, k, j))·FS(e, k, j), l ∈ OUT(e), e ∈ E (6)

FS(e, k, j) = ∑
s∈IN(e)

W(s, k, j) (7)

FS(e, k, j) = WC(e, k, j) + WT(e, k, j) (8)

where W(s, k, j) is the mass flow rate of specie k of size j in stream s entering flotation stage
e, Wc(l, k, j) is the concentrate mass flow rate of specie k of size j in stream l exiting from
flotation stage e, Wt(l, k, j) is the tail mass flow rate of specie k of size j in stream l exiting
from flotation stage e, and T(e, k, j) represents the recovery of class k of size j in flotation
stage e. In this work, the latter will be represented by distribution functions.

Mass balance in grinding: The following equations provide the mass balance by
grinding stages:

∑
s∈IN(e)

∑
(k,j)∈(K,J)

W(s, k, j) = ∑
l∈OUT(e)

∑
(k,j)∈(K,J)

W(l, k, j), e ∈ E (9)

where W(s, k, j) is the mass flow rate of specie k of size j in stream s entering grinding stage
e, and W(l, k, j) is mass flow rate of specie k of size j in stream l exiting from grinding stage
e. In this work, the latter is estimated by the following linear model [26]:

W(l, k, j) = W(s, k, j) + τ ∑
(k1,j1)∈(K1,J1)

φ
k,j
k1,j1W(i, k1, j1)− τ ∑

(k2,j2)∈(K2,J2)

φ
k2,j2
k,j W(i, k, j) (10)
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where τ is the residence time of feed in the grinding, and φ
k,j
k1,j1 and φ

k2,j2
k,j are denominated

as transference functions. The grinding makes either a fraction or all particles from class
(k1,j1) transformed into material belonging to class (k, j), and, simultaneously, either a
fraction or all of the particles in class (k, j) are transformed into a material belonging to
class (k2,j2). These transformations of material are described by distribution functions.

Disjunction in splitters: The mass flow rate entering splitter d can be sent to different
destinations, where the selection of a destination annuls the other destinations. This can be
expressed via the following equations:

∑
l∈OUT(d)

∑
(k,j)∈(K,J)

W(l, k, j) = W(d) , d ∈ D, l ∈ OUT(d), d ∈ D ⊂ E (11)

∑
(k,j)∈(K,J)

W(l, k, j) ≤ M·Y(d, l) , d ∈ D, l ∈ OUT(d), d ∈ D ⊂ E (12)

∑
l∈OUT(d)

Y(d, l) ≤ YD(d) (13)

where YD(d) is a binary variable indicating the existence of splitter d, and Y(d, l) is a binary
variable indicating the destination of the mass flow, W(d), leaving splitter d. M indicates
the upper bound of W(d).

Equipment selection: The cleaner and recleaner stages can include cell bank or flotation
columns. The selection of equipment can be expressed via the following equations:

YCol1 + YCell1 = Ycleaner (14)

YCol2 + YCell2 = Yrecleaner (15)

where YCol1 is a binary variable indicating the selection of columns in the cleaner stage,
YCell1 is a binary variable indicating the selection of cell banks in the cleaner stage, Ycleaner
is a binary variable indicating the existence of a cleaner stage, YCol2 is a binary variable
indicating the selection of columns in the recleaner stage, YCell2 is a binary variable indi-
cating the selection of cell banks in the recleaner stage, and Yrecleaner is a binary variable
indicating the existence of a recleaner stage.

Metallurgical parameters: The following equations provide the mass flow rate and
grade of concentrate, respectively, generated by the flotation systems:

CF = ∑
l∈IN(P)

∑
(k,j)∈(K,J)

Wc(l, k, j) (16)

grade =
∑l∈IN(P) ∑(k,j)∈(K,J) Wc(l, k, j)g(k, j, cu)

∑l∈IN(P) ∑(k,j)∈(K,J) Wc(l, k, j)
(17)

where g(k, j, cu) is the copper grade of class k of size j, and P represents the final concentrate.
Objective function: In this work, the objective function is given by

Revenue = CF[p(grade− µ)(q− R f c)− Trc]H (18)

where p is the fraction of metal paid, µ is the grade deduction, Trc is the treatment charge,
q is the metal price, R f c is the refinery charge, and H represents the annual operational
hours.

2.4. Optimization Algorithms

The optimization algorithms can be divided into exact and approximate methods [35].
In this work, exact methods were implemented to solve the design problem. These algo-
rithms obtain an optimal solution and guarantee its optimality. Specifically, the algorithms
implement the problem’s analytical properties to generate a sequence of points converging



Minerals 2021, 11, 646 8 of 17

to a globally optimal solution. The related literature highlights several solvers to address
the MILP model; for example, the CPLEX solver.

3. Applications

The methodology previously defined was applied to design structures for flotation
systems and, consequently, to prove the hypotheses. Initially, the processed feed considered
nine species, characterized by three main components: 9 t/h of chalcopyrite with 33%
copper, 23 t/h of mixed mineral with 17% copper, and 350 t/h of gangue with 0% copper,
where each of these main components includes three particle sizes. The superstructure
implemented consisted of the following stages: Rougher (R), Cleaner1 (C1), Cleaner2
(C2), Scavenger1 (S1), Scavenger2 (S2), Cleaner–Scavenger (CS), Regrinding1 (Gr1), and
Regrinding2 (Gr2). The connections between the stages considered are described by the
origin–destination matrix shown in Table 2. In Table 2, “x” and “o” represent tails and
concentrate streams, respectively. For example, the concentrate from Cleaner1 (C1) can be
sent to C2 or become the product P, whereas the tails can be sent to the stages R, S1, Gr2,
and CS.

Table 2. Origin–destination matrix for concentrates (o) and tails (x) of flotation system.

Stages R Gr1 C1 C2 S1 S2 Gr2 CS W P

R o o x
Gr1 o o
C1 x o x x x o
C2 x x x x o
S1 o o o o x o o
S2 o o o o o x

Gr2 o o o o o
CS o x o o

In Table 2, the symbols W and P represent the final tail and final concentrate, respec-
tively. The origin–destination matrix represents a total of 21,600 flotation circuit structures.
There are 120 input variables of the mathematical model, of which 72 are related to flotation
stages and 48 are connected to grinding stages. The variables exhibit epistemic uncer-
tainty due to the insufficient quantity of information and, according to the principle of
indifference, can be described using uniform distribution functions [30]. Tables 3–5 give
the uniform distribution function for the flotation stage (Table 3) and grinding stages
(Tables 4 and 5). Here, the standard notation for the uniform distribution is utilized, which
is X~U(a,b), where a and b are the lowest and highest values of x, respectively. The copper
price exhibits stochastic uncertainty due to its unpredictable nature and according to [36]
must be described by the uniform distribution function. Standard operational conditions
of grinding and flotation stages were extracted from the works reported in Table 1. Sub-
sequently, these values were used to define ranges of uncertainty in each process and for
each mineralogical species. For example, the recovery of chalcopyrite ore with an average
size exhibits a good recovery in the rougher stage. Thus, in this work, this was taken as
being equal to 0.9. Based on this latter value, variations of ±5% was considered, obtaining
the range shown in Table 3.
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Table 3. Recovery in flotation stages, range of uncertainty U(a,b).

Stages CPY.f1 CPY.f2 CPY.f3 MIX.f1 MIX.f2 MIX.f3 SC.f1 SC.f2 SC.f3

R (0.665,0.735) (0.855,0.945) (0.760,0.840) (0.380,0.420) (0.665,0.735) (0.570,0.630) (0.048,0.053) (0.095,0.105) (0.048,0.053)
C1, cell (0.475,0.525) (0.665,0.735) (0.475,0.525) (0.190,0.210) (0.475,0.525) (0.285,0.315) (0.048,0.053) (0.057,0.063) (0.048,0.053)
C2, cell (0.475,0.525) (0.665,0.735) (0.475,0.525) (0.190,0.210) (0.475,0.525) (0.285,0.315) (0.048,0.053) (0.057,0.063) (0.048,0.053)
C1, col (0.285,0.315) (0.380,0.420) (0.285,0.315) (0.190,0.210) (0.285,0.315) (0.190,0.210) (0.024,0.026) (0.024,0.026) (0.024,0.026)
C2, col (0.285,0.315) (0.380,0.420) (0.285,0.315) (0.190,0.210) (0.285,0.315) (0.190,0.210) (0.024,0.026) (0.024,0.026) (0.024,0.026)

S1 (0.665,0.735) (0.855,0.945) (0.760,0.840) (0.380,0.420) (0.665,0.735) (,0570,0.630) (0.048,0.053) (0.095,0.105) (0.048,0.053)
S2 (0.665,0.735) (0.855,0.945) (0.760,0.840) (0.380,0.420) (0.665,0.735) (,0570,0.630) (0.095,0.105) (0.190,0.210) (0.095,0.105)
CS (0.665,0.735) (0.855,0.945) (0.760,0.840) (0.380,0.420) (0.665,0.735) (,0570,0.630) (0.095,0.105) (0.190,0.210) (0.095,0.105)

Table 4. Conversion in grinding 1, range of uncertainty U(a,b).

CPY.f1 CPY.f2 CPY.f3 MIX.f1 MIX.f2 MIX.f3 SC.f1 SC.f2 SC.f3

CPY.f1 (0.05,0.15) (0.35,0.45) (0.45,0.55)
CPY.f2 (0.15,0.25) (0.75,0.85)
CPY.f3 1
MIX.f1 (0.05,0.15) (0.05,0.15) (0.25,0.30) (0.25,0.30) (0.05,0.15) (0.00,0.10) (0.00,0.075) (0.00,0.075)
MIX.f2 (0.05,0.15) (0.55,0.65) (0.05,0.15) (0.15,0.25)
MIX.f3 1
SC.f1 1
SC.f2 (0.190,0.210) (0.095,0.105)

Table 5. Conversion in grinding 2, range of uncertainty U(a,b).

CPY.f1 CPY.f2 CPY.f3 MIX.f1 MIX.f2 MIX.f3 SC.f1 SC.f2 SC.f3

CPY.f1 (0.048,0.053) (0.285,0.315) (0.615,0.682)
CPY.f2 (0.285,0.315) (0.665,0.735)
CPY.f3 1
MIX.f1 (0.19,0.21) (0.19,0.21) (0.095,0.105) (0.19,0.21) (0.19,0.21) (0.0475,0.0525) (0.0237,0.0262) (0.0237,0.0262)
MIX.f2 (0.095,0.105) (0.285,0.315) (0.095,0.105) (0.21,0.19) (0.19,0.21) (0.095,0.105)
MIX.f3 (0.19,0.21) (0.38,0.42) (0.38,0.42)
SC.f1 (0.095,0.105) (0.38,0.42) (0.475,0.525)
SC.f2 (0.665,0.735) (0.285,0.315)

3.1. Uncertainty in Grinding and Flotation Stages, and the Selection of Equipment in the Recleaner Stage

In this first instance, the model considers uncertainty in the processing stages and
selects flotation equipment in the recleaner stage. Three scenarios were studied: the first
considered the fixed copper price; the second considered a description of the copper price
of U[3000,4000] USD/t, and the third considered a representation of the copper price of
U[5000,7000] USD/t. The code was developed in GAMS, using a laptop with Intel Core
i7 2.21 GHz and 16 GB of RAM. The code was evaluated 30,000 times (samples from the
distribution functions) for each scenario, and the results obtained are shown below.

Figure 2 shows the structures of the flotation systems obtained by solving the MILP
model using the fixed copper price. Seven structures arose from a total of 21,600 possibili-
ties, with structure 1 (43.2%) and structure 2 (49.5%) predominating, as shown in Figure 3.
Here, only five optimal structures are shown because the other structures exhibited a
low percentage appearance related to the operational conditions outlier, resulting in a
degeneration of the design problem. Structures 1 and 2 are configurations that allow for the
maximization of revenues in a wide range of values for recoveries and conversions in the
flotation and grinding stages, respectively. This characteristic means that structures 1 and 2
offer a wide range of nominal values for the processing stages, around which it is possible
to define constraints representing the operational feasibility of flotation systems. Thus,
these results indicate that few structures exhibit favorable conditions to face uncertainty
and, consequently, conditions favoring both the operational feasibility and maximization
of the revenues generated. Figure 2 indicates that the selection of equipment influences
the capacity to face the uncertainty by the optimal structures. Structure 1 exhibits a better
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capability to adapt to new situations when using the flotation columns in the recleaner
stage, whereas structure 2 presents a better capacity to face operational changes when
using the cell banks in the recleaner stage. The difference between structures 1 and 2 is that
the first sends the concentrate of the cleaner–scavenger stage to the cleaner stage, whereas
the second sends the concentrate of the cleaner–scavenger stage to the recleaner stage. This
difference means that the recleaner stage receives a feeding with different metallurgical
characteristics. In structure 1, those characteristics are improved by implementing cell
banks favoring the recoveries of classes containing valuable species, whereas in the case
of structure 2, those characteristics are improved by using flotation columns favoring an
increase in the concentrate grade. These structures do not recirculate flows to the rougher
stage, reducing the overload of the flotation systems. It is important to indicate that dif-
ferent targets of concentrate grades can also influence structures for flotation systems.
Designing structures for flotation systems considering predefined metallurgical parameters
is called reverse optimization. This alternative approach makes an MINLP problem more
challenging to solve than the MILP model presented in this work.
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The effect of no equipment selection was also analyzed; specifically, the design prob-
lem was solved considering the following instances: first, the recleaner stage using columns,
and second, the recleaner stage using a flotation bank. The results are shown in Figure 4
and reveal that structure 1 was predominant when the recleaner stage implemented cell
banks, whereas structure 1 and structure 2 were predominant when the recleaner stage
used columns. Thus, the type of flotation equipment used in the recleaner stage influ-
ences the optimal structures for flotation systems and consequently their capability to face
uncertainty, which is consistent with the previous results.
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Figure 5a shows the structures for flotation systems provided by the methodology
when the copper price exhibits uncertainty as described by U[3000,4000] USD/t. Nine opti-
mal structures were identified, where 3, 8, and 9 can be considered outlier configurations
due to their low appearance percentage (not shown). Again, despite uncertainty in the cop-
per price, the methodology indicated that few structures exhibited favorable conditions to
face uncertainty and, consequently, conditions favored both the operational feasibility and
maximization of revenues. The uncertainty of the copper price slightly modified the results
obtained in the first scenario. In fact, despite uncertainty in the copper price, structure 1
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(43.4%) and structure 2 (44.6%) predominated. The flotation equipment type influenced the
optimal structures. In fact, structures 1, 4, 5, and 7 considered selecting equipment, whereas
structures 2 and 6 did not consider choosing between columns or cell banks. Structure 1
exhibited a better capability to face operational uncertainty when implementing cell banks
(62%) compared with flotation columns (38%) in the cleaner stage. Structure 2 showed a
better capability to adapt to operational uncertainty when implementing flotation columns
(100%) in the cleaner stage. All the structures obtained considered six flotation stages and
two grinding stages. These latter stages improved the liberation of valuable species and
the quality of the final concentrate, consequently increasing the revenues.
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Figure 5b also shows the optimal structures of flotation systems provided by the code
when the copper price exhibits uncertainty, as described by U[5000,7000] USD/t. In general,
structures 1, 5, and 12 did not consider selecting flotation equipment, whereas structure 2
considered selecting between columns and cell banks depending on the operational condi-
tions. A high copper price reduced the number of primal optimal structures—i.e., those
obtained when the copper price was described by U[3000,4000] USD/t—and promoted the
appearance of new structures. In general, the primal structures with a low percentage of
appearance tended to disappear, which could be related to their low capacity to maximize
the recovery of classes containing valuable species. Thus, a high copper price reduced
the number of structures, favoring both the operational feasibility and maximization of
generated revenues. In this scenario, structure 2 was predominant with 92.3% appear-
ance, which could be attributed to the following: first, this structure provides a high rate
of recovery of copper; second, it exhibits flexibility by including columns or cell banks
depending on operational conditions; and third, it exhibits robustness to face economic
and operational uncertainty.

3.2. Uncertainty in Regrinding and Flotation Stages and Selection of Equipment in Cleaner and
Recleaner Stages

In this second instance, the design methodology considered uncertainty in the pro-
cessing stages and equipment selection in the cleaner and recleaner stages. Similarly, three
scenarios were analyzed; fixed copper price, uncertainty in copper price characterized by
U[3000,4000] USD/t, and copper price uncertainty characterized by U[5000,7000] USD/t.
The following conditions were incorporated in the code: (a) if the cleaner stage implements
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columns, then the recleaner stage must implement columns; and (b) if the cleaner stage
implements cell banks, then the recleaner stage can implement cell banks or columns. These
conditions were implemented using the logic constraints described in [37]. Again, the code
was executed 30,000 times for each scenario, and the results obtained in this instance are
shown in Figure 6.
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(b) with a copper price uncertainty described by U[000,000,3,4] USD/t.

Figure 6a shows the structures of flotation systems obtained with a fixed copper
price. Nine optimal structures appear in this scenario, with structure 2 (45.2%), structure
1 (29.9%), structure 6 (10.9%), structure 4 (7.8%), and structure 5 (4%) predominating,
whereas structures 3, 7, and 8 can be considered as outlier configurations. This figure
shows that optimal structures implemented a cell bank or flotation column in cleaner and
recleaner stages. For example, structure 1 utilized cell banks in the cleaner and recleaner
stages in 100% and 82% of the cases studied, respectively. Therefore, in the recleaner stage,
flotation columns were utilized in 18% of the cases studied. This description is performed
for other configurations. In the cleaner stage, structure 2, structure 4, structure 5, and
structure 6 implemented banks and columns in 77% and 23%, 100% and 0%, 99% and 1%,
and 24% and 76% of cases, respectively. In the recleaner stage, structure 2, structure 4,
structure 5, and structure 6 implemented banks and columns in 0% and 100%, 92% and 8%,
6% and 94%, and 0% and 100% of cases, respectively. Thus, selecting flotation equipment
in the cleaner and recleaner stages influenced the optimal flotation structures. Again, the
results indicate that few structures exhibited favorable conditions for facing uncertainties,
at the same time offering conditions favoring both optimal operation and the maximization
of the revenues generated. In industrial practice, structures 1 and 2 are observed. The first
structure implemented cell banks in the cleaner and recleaner stages, favoring recovery.
This dispositive utilized a mechanic system that generates turbulence, benefiting the contact
between particle and bubble and consequently increasing the recovery of species. The
second structure implemented flotation columns in the recleaner stage. This equipment
exhibited the absence of a mechanic system and the presence of wash water, reducing the
entrainment of impurities and consequently increasing the concentrate grade [38].

Figure 6b shows the optimal flotation structures provided by the code when the
copper price uncertainty was described by U[3000,4000] USD/t. Here, structure 2 (44.9%),
structure 1 (27.2%), structure 6 (12.1%), and structure 4 (7.4%) were predominant. This
figure shows that in the cleaner stage, structure 1, structure 2, structure 4, structure 5,
structure 5, and structure 6 implemented banks and columns in 100% and 0%, 72% and
28%, 100% and 0%, 97% and 3%, and 15% and 85% of cases, respectively. In the recleaner
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stage, structure 1, structure 2, structure 4, structure 5, and structure 6 implemented banks
and columns in 73% and 27%, 0% and 100%, 85% and 15%, 19% and 81%, and 0% and
100% of cases, respectively. Thus, selecting the flotation equipment influenced the optimal
structures for flotation systems. Again, the methodology indicates that few structures
exhibited favorable conditions to face uncertainty, and consequently conditions favoring
both optimal operation and the maximization of revenues were generated. The copper
price uncertainty had a slight effect on the predominant optimal structures. Structure 2
preserved the utilization of cell banks or columns in the cleaner stage and columns in the
recleaner stage (see Figure 7).
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Figure 8 shows the optimal structures obtained when the copper price uncertainty
was described by U[5000,7000] USD/t. Here, a high copper price reduced the number
of primal optimal structures (U[3000,4000] USD/t) and promoted the appearance of new
structures. Again, the primal optimal structures with a low percentage of appearance
tended to disappear. All structures implemented cell banks in the cleaner stage, perhaps to
maximize the recovery of classes containing valuable mineralogical species. Here, structure
2 was predominant with 76.2% appearance and implemented flotation columns (61%)
and cell banks (39%) in the recleaner stage. This high percentage of appearance could be
attributed to its good capacity for recovery, flexibility, and robustness in facing uncertainty.
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The methodology and instances analyzed indicated that few structures exhibited
favorable conditions for facing uncertainty. At the same time, these structures offered
conditions favoring both optimal operation and the maximization of revenues generated
by flotation systems. Such favorable conditions were proportional to the percentage
representing structures in the optimal set; i.e., a higher percentage of the structure implied a
greater capacity to face operational and metal price changes. In addition, selecting flotation
equipment influenced the selection of the optimal flotation structures independently of the
magnitude of the copper price uncertainty. On the other hand, considering that the recovery
of mineralogical classes is related directly to the type of flotation equipment, we showed
that the recovery influences the optimal structures for flotation systems, contradicting
the reports presented in [2,4]. The structures obtained in this work are distinct from
those published by Acosta-Flores et al. [8]. Both cases can be attributed to the range of
uncertainty used to describe recoveries for flotation equipment, which is based on the
design characteristics described above.

From the industrial point of view, the proposed methodology can be applied in differ-
ent situations. In the early stage of design, the methodology would be useful to identify
alternatives for their evaluation and comparison with other industrial designs. In the
design stage, it can be integrated with the approach implemented by the designer. In the
operation stage, the methodology can be applied to search for improvements in industrial
systems by evaluating configuration alternatives that include the selection/inclusion of
flotation and grinding equipment. Furthermore, it could be integrated with the mine
planning model by incorporating the uncertainty in fed mineralogical species. For ex-
ample, geometallurgy aspects could be included in planning, relating these issues with a
plant’s retrofitting.

4. Conclusions

In this work, a methodology based on mathematical programming and uncertainty
analysis was proposed to address the effect of structures, the selection of equipment, and
metal price on the operability of flotation systems. The proposed procedure included
flotation stages, grinding stages, and metal price modeled via distribution functions and
was applied to design structures for flotation systems processing copper ore and operating
under uncertainty. The results revealed that the set of optimal structures for flotation
systems is small, including structures implementing cell banks, flotation columns, or
both, indicating the influence of flotation equipment type on the optimal structures for
flotation systems. These structures exhibited favorable conditions to face uncertainty, and
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consequently these structures offer conditions favoring both optimal operation and the
maximization of revenues generated by flotation systems. From the research performed,
the following conclusions arise:

• Using mathematical programming and uncertainty analysis, we determined structures
presenting favorable conditions for facing operational and economic uncertainty
and consequently conditions favoring flexibility/resilience to determine an optimal
operation region;

• The selection of flotation equipment and metal price influenced the percentages of
structures in the optimal set. A higher percentage of optimal solutions of one structure
implies a greater capacity to face operational and metal price changes. A high copper
price reduced the number of primal optimal structures and promoted the appearance
of new structures.

Therefore, the obtained results allow the separation of the design of the flotation
systems into two stages: first, a set of optimal structures exhibiting favorable condi-
tions to face uncertainty is determined; second, the optimal operation is established via
resilience/flexibility approaches after the previous determination of the equipment de-
sign parameters.
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